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            ABSTRACT 

High frequency screening of populations has been proposed as a strategy in facilitating control of the COVID-19 

pandemic. We use computational modeling, coupled with clinical data from rapid antigen tests, to predict the impact 

of frequent viral antigen rapid testing on COVID-19 spread and outcomes. Using patient nasal or nasopharyngeal 

swab specimens, we demonstrate that the sensitivity/specificity of two rapid antigen tests compared to quantitative 

real-time polymerase chain reaction (qRT-PCR) are 82.0%/100% and 84.7%/85.7%, respectively; moreover, 

sensitivity correlates directly with viral load. Based on COVID-19 data from three regions in the United States and 

São José do Rio Preto, Brazil, we show that high frequency, strategic population-wide rapid testing, even at varied 

accuracy levels, diminishes COVID-19 infections, hospitalizations, and deaths at a fraction of the cost of nucleic acid 

detection via qRT-PCR. We propose large-scale antigen-based surveillance as a viable strategy to control SARS-CoV-2 

spread and to enable societal re-opening. 
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   INTRODUCTION 

The COVID-19 pandemic has taken an unprecedented toll on 
lives, wellbeing, healthcare systems, and global economies. As of 
13 April 2021, there have been more than 136.2 million 
confirmed cases globally with over 2.9 million confirmed deaths 
[1]. However, these statistics and the current mapping of disease 
spread present an incomplete picture of the outbreak largely due 
to the lack of adequate testing, particularly as undetected 
infected cases are the main source of disease spread [2–7]. It is 
estimated that the number of infected cases is more than 6 times 
greater than the cases reported [8]. As of April 2021, the United 
States, India, and Brazil remain the top three countries with the 
highest number of COVID-19 cases and deaths worldwide. As 
countries begin to re-open their economies, a method for  

 

accessible and frequent surveillance of COVID-19, with the 
necessary rapid quarantine measures, is crucial to prevent the 
multiple resurgences of the disease.    

The current standard of care rightfully places a strong focus on the 
diagnostic limit of detection, yet frequently at the expense of cost 
and turnaround time. This approach has contributed to limited 
population testing largely due to a dearth of diagnostic resources. 
Quantitative real-time polymerase chain reaction (qRT-PCR) is the 
gold-standard method for clinical diagnosis, with high sensitivity 
and specificity, but these tests require trained personnel, expensive 
reagents and instrumentation, and significant time to execute 
[9,10]. 
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Facilities offering qRT-PCR sometimes require a week or longer 
to complete and return the results to the patient [11,12]. During 
this waiting period the undiagnosed individual may spread the 
infection and/or receive delayed medical treatment. Moreover, 
due to the cost and relative inaccessibility of qRT-PCR in both 
resource-limited and abundant settings, large-scale screening 
using qRT-PCR at frequent intervals remains impractical to 
identify infected but asymptomatic or mildly symptomatic 
infections. Numerous studies have reported asymptomatic SARS-
CoV-2 infections as well as a variation in viral load within and 
between individuals at different time points, suggesting the need 
for more frequent testing for informative surveillance [13–18].  

Technologies such as rapid viral antigen detection, Clustered 
Regularly Interspaced Short Palindromic Repeats (CRISPR), and 
Loop-Mediated Isothermal Amplification (LAMP) of SARS-CoV-
2 provide potential large-scale screening applications, yet their 
implementation is stymied by requirements for qRT-PCR-like 
accuracy before they can reach the market [19]. Several members 
of the scientific and medical community have emphasized the 
value of widespread and frequent antigen testing [20–22]. In 
countries such as India, where the qRT-PCR resources would not 
be sufficient to cover monitoring of the population, the use of 
rapid antigen tests is well underway [23,24]. In early May 2020, 
the United States Food and Drug Administration (FDA) 
authorized the first antigen test for the laboratory detection of 
COVID-19, citing a need for testing beyond molecular and 
serological methods. Antigen testing detects the viral proteins 
rather than nucleic acids or human antibodies, allowing for 
detection of an active infection with relative ease of sample 
collection and assay. These rapid assays–like other commercially-
available rapid antigen tests - can be mass-produced at low prices 
and be administered by the average person without a laboratory 
or instrumentation. These tests also take as little as 15 minutes to 
determine the result, enabling real-time diagnosis and/or 
surveillance. Although antigen tests usually perform with high 
specificities (true negative rate), their sensitivity (true positive 
rate) is often lower when compared to molecular assays. While 
qRT-PCR can reach a limit of detection as low as 102 genome 
copies per mL, rapid antigen testing detects viral protein that is 
assumed to correlate with approximately 105 genome copies per 
mL [25]. 

We hypothesize that frequent antigen-based rapid testing even 
with lower sensitivities compared to qRT-PCR-along with 
appropriate quarantine measures-can be more effective at 
decreasing COVID-19 spread than less frequent molecular 
testing of symptomatic individuals. Keeping in mind the realities 
of daily testing in resource-limited regions, we also hypothesize 
that testing frequency can be adjusted according to the 
prevalence of the disease; that is, an uptick in reported cases 
should be accompanied by more frequent testing. During the 
viral incubation period, high infectivity correlates with a high 
viral load that can be detected by either qRT-PCR or rapid 
antigen testing [18,21,26–28]. Rapid tests thus optimize 
diagnosis for the most infectious individuals. Studies also point 
to the relatively small window of time during an individual’s 
incubation period in which the qRT-PCR assay is more sensitive 
than rapid tests [21].  

In this study we report the clinical validation of two direct 
antigen rapid tests for detection of SARS-CoV-2 spike 

glycoprotein (S) or nucleocapsid protein (N) using retrospectively 
collected nasopharyngeal or nasal swab specimens. Using the 
clinical performance data, we develop a modeling system to 
evaluate the impact of frequent rapid testing on COVID-19 
spread and outcomes using a variation of a SIR model, which has 
been previously used to model COVID-19 transmission [29–35]. 
We build on this model to incorporate quarantine states and 
testing protocols to examine the effects of different testing 
regimes. This model distinguishes between undetected and 
detected infections and separates severe cases, specifically those 
requiring hospitalization from those less so, which is important 
for disease response systems such as intensive care unit triaging. 
We simulate COVID-19 spread with rapid testing and model 
disease outcomes in three regions in the United States and São 
José do Rio Preto, Brazil - the site of the clinical validation study - 
using publicly available data. To date, COVID-19 modeling 
describes the course of disease spread in response to social 
distancing and quarantine measures, and a previous simulation 
study has shown that frequent testing with accuracies less than 
qRT-PCR, coupled with quarantine process and social 
distancing, are predicted to significantly decrease infections 
[21,29,35–39]. Godio et al. and Hou et al. use the classic SEIR 
model to predict COVID-19 spread and dynamics. Reno et al. 
use this approach to predict COVID-19-associated 
hospitalizations under social distancing policies. While SEIR 
models are foundational for epidemiological studies, they fail to 
distinguish between diagnosed and undiagnosed individuals. To 
address this limitation, Giordino et al. propose and implement a 
SIDHARTHE model, on which our model is based, to 
understand disease spread in Italy, but their analysis does not 
incorporate different testing regimes.  Larremore et al. discuss 
how rapid testing strategies, even when applied with low-
sensitivity tests, are useful, as we do, when applied to their S-I-R-
Q-SQ model.  Neither Giordino et al. nor Larremore et al.  use 
realized outbreaks to extract parameters - instead they are chosen 
based on informed guesses and/or idealized closed systems. They 
also do not compare the results of their simulations with the data 
reported, and hence the analyses are limited by their purely 
theoretical nature. 

By simulating the implementation of rapid testing strategies 
using parameters extracted from data from realized outbreaks, we 
are able to expand on existing insights, including: predicting the 
effectiveness of such schema on outbreaks with differing 
dynamics and at varying intervention times, extracting 
parameters to train the comprehensive SIDHARTHE-Q model, 
and demonstrating a method that is easily applied to fit 
parameters for any COVID-19 outbreak given a data set 
including daily reports of confirmed cases, current 
hospitalizations, and deaths.  Using this method, we propose and 
test the effectiveness of a variety of testing strategies and analyze 
key factors affecting their success or failure. Both simulations and 
data-driven predictions are of utmost importance to make 
decisions concerning an unprecedented event such as a rapidly- 
evolving pandemic, and this is the first modeling system using 
publicly-available data to simulate how potential public health 
strategies based on testing performance, frequency, and 
geography impact the course of COVID-19 spread and outcomes. 

Our findings suggest that a rapid test, even with sensitivities 
lower than molecular tests, when strategically administered 2-3 
times per week, will reduce COVID-19 spread, hospitalizations,  
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and deaths at a fraction of the cost of nucleic acid testing via 
qRT-PCR. Modern surveillance systems should be well equipped 
with rapid testing tools to ensure that disease tracking and 
control protocols are effective and well-tailored to national, 
regional, and community needs.   

METHODS 

Development of direct antigen rapid tests for the detection of 
SARS-CoV-2 

We developed a direct antigen rapid test for the detection of the 
nucleocapsid protein or spike glycoprotein from SARS-CoV-2 in 
nasal or nasopharyngeal swab specimens as previously described 
[63]. Briefly, the rapid antigen tests are immunochromatographic 
format with a visual readout using anti-N or anti-S mouse 
monoclonal antibodies (E25Bio, Inc., Cambridge, MA, USA) 
that are either coupled to 40 nm gold nanoparticles (Abcam, 
Cambridge, UK) or adsorbed to nitrocellulose membranes 
(Sartorius, Goettingen, Germany). Each rapid antigen test has a 
control area adjacent to the paper absorbent pad; the control is 
an anti-mouse Fc domain antibody (Leinco Technologies, 
Fenton, MO, USA) that will capture any of the antibody-
conjugated gold nanoparticles to generate a control visual signal. 
A visual signal at the test area reflects SARS-CoV-2 N or S that is 
“sandwiched” between an anti-N or anti-S antibody adsorbed to 
the nitrocellulose membrane and a second anti-N or anti-S 
antibody covalently coupled to visible gold nanoparticles.  

Validation of Direct Antigen Rapid Test for the 
Detection of SARS-CoV-2 

In a retrospective study of nasal swab specimens form human 
patients, we compared the accuracy of the rapid antigen test for 
detection of SARS-CoV-2 N to the viral loads of individuals. All 
individuals were symptomatic between 1-10 days of fever. Nasal 
swab specimens (n=158) were tested following approved human 
subjects use protocols. The nasal swab specimens were banked 
frozen from suspected patients submitted to PATH for routine 
COVID diagnosis. Prior to using the rapid test, the nasal swab 
specimens were validated by qRT-PCR using the FDA EUA 
ThermoFisher/AppliedBiosystems TaqPATH COVID-19 
Combo Kit (ThermoFisher, Waltham, MA USA). The primary 
study under which the samples and data were collected received 
ethical clearance from the PATH Research Ethics Committee, 
protocol number 00004244; all participants provided written 
informed consent for the use of the samples. The nasal swab 
specimens were de-identified, containing no demographic data, 
prior to analysis, and the experiments were performed in 
accordance with relevant guidelines and regulations.       

The nasal swabs were originally collected in 1 mL PBS, where 50 
μl was mixed with 50 μl of Solution Buffer (0.9% NaCl and 
0.1% Triton X-100). The 100 μl mixture was then pipetted onto 
the rapid antigen test for SARS-CoV-2 N detection and allowed 
to react for 15 minutes. After processing of the rapid antigen 
test, the visual positive or negative signal was documented.      

Additionally, in a retrospective study of nasopharyngeal swab 
specimens from human patients, we compared the accuracy of 
the rapid antigen test to the viral load of individuals. 
Nasopharyngeal swab specimens (n=121) were tested in Brazil 
following approved human subjects use protocols. The age of 
study participants ranged from 1 to 95 years with an overall 
median of 37 years (interquartile range, 27–51 years), and 62%  

 

were female. All individuals were symptomatic between 1-10 days 
of fever. The demographic summary of the patients are included 
in Table S2. The nasopharyngeal swab specimens were banked 
refrigerated or frozen samples from suspected patients submitted 
to the lab for routine COVID diagnosis. Prior to using the rapid 
test, the nasopharyngeal swab samples were validated by qRT-
PCR using GeneFinderTM COVID-19 Plus RealAmp Kit 
(OSANGHealtcare, Anyang-si, Gyeonggi-do, Republic of Korea 
I). The primary study under which the samples and data were 
collected received ethical clearance from the Faculdade de 
Medicina de São José do Rio Preto (FAMERP), protocol number 
31588920.0.0000.5415; all participants provided written 
informed consent for the use of the samples. All excess samples 
and corresponding data were banked and de-identified prior to 
the analyses, and the experiments were performed in accordance 
with relevant guidelines and regulations.   

Nasopharyngeal swab specimens (1 mL) were concentrated using 
Vivaspin 500 centrifugal concentrators (Sartorius, Goettingen, 
Germany) at 12,000 x g for 10 minutes. The concentrated 
nasopharyngeal swab specimen retentate was transferred to a 
collection tube and the rapid antigen test for SARS-CoV-2 spike 
detection was inserted into the tube with the retentate and 
allowed to react for 15 minutes. After processing of the rapid 
antigen test, the visual positive or negative signal was 
documented.    

Both nasal and nasopharyngeal swabs were used for the detection 
of SARS-CoV-2 N and S, respectively. Some studies have shown 
higher efficacy of nasopharyngeal swabs for PCR tests; the similar 
results between our two cohorts are likely due to the different 
proteins being detected [64,65]. 

 

Figure 1: Graphical scheme displaying the relationships between the 
stages of quarantine and infection in SIDHRE-Q model. Q-U, 
quarantine uninfected; S, susceptible (uninfected); I, infected 
undetected (pre-testing and infected); D, infected detected (infection 
diagnosis through testing); H, hospitalized (infected with life threatening 
symptom progression); R, recovered (healed); E, extinct (dead); and Q-R, 
quarantine recovered (healed but in quarantine by false positive testing). 

Data for Modeling  

As of August 2020, the United States and Brazil have the highest 
number of confirmed COVID-19 cases and deaths worldwide, 
with both countries reporting their first case on 26 February 202) 
1. Although several affected US regions could have been 
modeled, we look at data from Massachusetts, New York, and 
Los Angeles: these regions each contained “hotspots”, or areas of 
surging COVID-19 cases, at different points in time during the 
pandemic and have publicly available government-provided 
surveillance data. Our model is fit using data over 105 days 
beginning on April 1 for Figure 1, 2 and 3, and 105 days 
beginning on April 10 for Figure 4 (see “Modeling Parameters” 
in Methods). 
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Figure 2: COVID-19 Outcomes in 3 US Regions and Brazil as a result of Frequent Rapid Testing Protocol using the SIDHRE-Q Model. The 
Cumulative Detected Infected, Hospitalized, Deceased, Active Infections, Recovered, and Quarantined are modeled over 105 days (top to bottom) 
using reported data from 4 global regions: Massachusetts, Los Angeles, New York City, and São José do Rio Preto in Brazil (left to right). The COVID-
19 population spread and outcomes are modeled under a Rapid Testing Protocol (sensitivity 80%, specificity 90%) with variable testing frequencies 
ranging from 1-21 days between tests. This protocol is compared to a symptom-based Rapid Testing protocol and a symptom-based PCR protocol. 
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Figure 3: Effect of Rapid Testing Protocol under variable testing sensitivities (30%-90%) and increasing frequency under the SIDHRE-Q Model. The 

Cumulative Infections, Maximum Simultaneously Hospitalized, and Deceased populations are modeled for Massachusetts, Los Angeles, New York City, 
and São José do Rio Preto in Brazil with a 90% test specificity.

In order to understand the various testing proposals on a global 
scale, we performed our clinical study in and expanded the 
modeling study to Brazil. The specific data we use to fit our model 
are cumulative confirmed cases, total deaths, and number of daily 
hospitalizations due to COVID-19. This surveillance data was 
retrieved from government-provided online databases [66–72]. 

Modeling Parameters 

                                                                                                          (1) 

  Equation 1 below provides the exact differential equations   
governing the model. 

From Table 4 describing each parameter, note that each of their 
values are the inverse of the average rates at which a transition is 
made. For example, the term ψQU is set equal to the population 
exiting quarantine per day, with ψ=1/10 days.  The assumption 
made is that the distribution of time already spent in quarantine 
is approximately uniform among the quarantined population at 
any given time.  The uniform rate approximation breaks down 
during periods when flows between states are changing rapidly 
within a matter of days, such as in early stages of the pandemic. 
The result of running the model with fixed infection and 
quarantine times as well as a discussion of how that change is 
incorporated in Figure S9.  The mean value method of assigning 
values to parameters is standard in epidemiological modeling 
[29,73]. 

In order to determine the numerical values of the parameters 
defining the flows between states, we use a least squares 
regression to find fits for each seven day interval.  All data points 
within each interval and from each data set are fit collectively 
within each interval (the resulting fits do not represent the mean 
of separately calculated fits).   
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Figure 4: Effect of County Based Rapid Testing strategy on COVID-19 outcomes in California. This protocol varies testing frequency in accordance to 

the number of recorded cases; the threshold for number of active infections which, if reached, signals to commence everyday testing (the highest 

frequency considered). A Rapid Test with an 80% sensitivity and 90% sensitivity versus is used in this deployment strategy. Shown is the total cost per 

person per day versus the cumulative infections, maximum simultaneously hospitalized, and cumulative deaths with varied thresholds for all of CA is 

shown. The County Based Rapid Testing strategy is compared to uniform testing, which distributes the same number of total tests used in the county 

strategy, albeit evenly across each county. The effects of uniform testing are modeled for both a Rapid Testing protocol and a qRT-PCR protocol (A). The 

effects of County Based Rapid Test Protocol and Uniform PCR Protocol on active infected detected population over time in CA are shown (B). The 

legend denotes the thresholds at which testing frequency is determined, the testing frequencies, the percent of CA population under the strategy, and the 

cost per person per day.

This procedure allows the model to take into account the time 
dependent nature of the parameters, which rely on factors such as 
social distancing regulations and changes in testing capacity.  We 
also fit window sizes between 1 and 21 days and find that while 
the fit degrades with larger window size, the overall shape of the 

curves do not change.  We choose seven days assuming policy 
changes take a week to become effective and that reasonably 
parameters can be expected to change within this time period 
without causing problems with overfitting.  Also, the seven day 
window size accounts for the fact that often data is not reported as  
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diligently over the weekend. Time series of the values of the    
parameters for the geographic locations discussed in this paper 
are included in Figure S6 

Given the restrictions on data available for the populations of 
various states, varying all of the parameters results in an over 
parameterized system. Therefore, a subset of the model 
parameters are fit while the others are either extracted from 
other sources; see Table 4. The fitting procedure minimizes the 
sum of the squared residuals of the normalized total cases, 
current daily hospitalizations, cumulative deaths, and percentage 
of total infected individuals currently hospitalized. The first three 
are present in the data sets while the latter is derived from the 
estimates of the ratio between infected undetected to infected 
detected individuals from the CDC Laboratory Seroprevalence 
Survey Data [74].  Each of these data sets is normalized to 
maintain equal weight for least squares optimization. 

While this ratio changes over time, the percentage of infected 
individuals developing severe symptoms should remain roughly 
constant throughout the course of the epidemic in the different 
locations studied. 

We consider the data sets for outbreaks in MA, NYC, LA, and 
SJRP, Brazil [66–71]. While each location has testing and fatality 
information dating back to January, hospitalization data was not 
included until late March (for NYC and SJRP) and April (for 
MA and LA).  Hence we begin our fitting procedure and testing 
strategy on 1 April for each of the data sets; by this point, the 
outbreak is advanced in NYC, substantial in MA, non-negligible, 
but far from its peak, in LA, and in early stages in SJRP, Brazil.  
Starting simulations at various stages of the outbreak allows one 
to see the difference in results between when a testing strategy is 
administered. 

In order to determine the effectiveness of the county-based 
strategy when applied to the state of California, we also fit all of 
the counties in California with a population greater than 1.5% 
of that of the entire state and with greater than zero deaths. The 
results do not depend on these selections, but instead suggest 
practical criteria to administer limited resources. The fitting is 
done starting 10 April for these counties, as at this point the 
outbreak is sufficiently well-documented in each to successfully 
model. For the county-level data we compute a seven day running 
average of each of the data sets to which we then fit in order to 
smooth out fluctuations in the data, likely due to reporting, 
which are more significant here than in the other data sets 
considered, as the county populations are smaller and hence 
discrepancies impact the smoothness of the data more.  The fits 
for each of the counties can be found in Figure S7.  

As one can see from Figure 1, these data sets are particularly not 
smooth, which indicates inefficiencies in reporting. Additionally, 
it is difficult to gauge their consistency within the dates provided 
or to compare between locations, as reporting mechanisms 
changed over time within the same locations.  Despite this lack 
of consistency, our model and fitting mechanism was successful 
in reproducing the progress of the outbreak in each data set 
studied. 

RESULTS 

Accuracy of direct antigen rapid tests correlates with viral 
load levels  

Rapid antigen tests have recently been considered a viable source  

 

for first-line screening, although concerns regarding the accuracy 
of these tests persist. We clinically validated two different direct 
antigen rapid tests for the detection of either nucleocapsid 
protein (N) or spike glycoprotein (S) from SARS-CoV-2 in 
retrospectively collected nasal or nasopharyngeal swab specimens. 
Of the total number of nasal swab specimens evaluated by qRT-
PCR for amplification of SARS-CoV-2 N, S, and ORF1ab genes, 
100 tested positive and 58 tested negative (Table 1). The overall 
sensitivity and specificity of the rapid antigen test for detection of 
SARS-CoV-2 N, evaluated across the nasal swab specimens, was 
82.0% and 100%, respectively.  

Table 1: Clinical validation summary for the direct antigen rapid test 
(DART) for SARS-CoV-2 nucleocapsid protein evaluated using 158 
retrospectively collected patient nasal swab specimens. 

 

Table 2: Clinical validation summary for the SARS-CoV-2 direct antigen 
rapid test (DART) for SARS-SoC-2 spike glycoprotein evaluated using 
121 retrospectively collected patient nasopharyngeal swab specimens. 

 

Of the total number of nasopharyngeal swab specimens 
evaluated by qRT-PCR for amplification of SARS-CoV-2 N, 
RNA-dependent RNA polymerase (RdRp), and envelope (E) 
genes, 72 tested positive and 49 tested negative (Table 2). The 
overall sensitivity and specificity of the rapid antigen test for 
detection of SARS-CoV-2 S, evaluated across the nasopharyngeal 
swab specimens was 84.7% and 85.7%, respectively. 

The Ct value indirectly quantifies the viral RNA copy number 
related to the viral load of the sample for the specific assay [40–
42]. Ct values represent the number of qRT-PCR cycles at which 
generated fluorescence crosses a threshold during the linear 
amplification phase; Ct values are therefore inversely related to 
the viral load. Our data demonstrate that the sensitivity of the 
rapid antigen tests is positively correlated to the viral load level 
(Table 3). 

+ - Total Sensitivity 82.0% 73.1% 88.9%

+ 82 0 82 Specificity 100.0% 93.8% 100.0%

- 18 58 76

Positive 

Predictive 

Value

100.0%

Total 100 58 158

Negative 

Predictive 

Value

76.3% 67.9% 83.0%

Prevalence 63.3% 55.3% 70.8%

Overall 

Agreement
88.6% 82.6% 93.1%

All Data Summary

qRT-PCR              

(gene average)

95% Confidence 

Interval 

DART

+ - Total Sensitivity 84.7% 74.3% 92.1%

+ 61 7 68 Specificity 85.7% 72.8% 94.1%

- 11 42 53

Positive 

Predictive 

Value

89.7% 81.3% 94.6%

Total 72 49 121

Negative 

Predictive 

Value

79.3% 68.7% 86.9%

Prevalence 59.5% 50.2% 68.3%

Overall 

Agreement
85.1% 77.5% 90.9%

All Data Summary

qRT-PCR              

(gene average)

95% Confidence 

Interval 

DART



Moraes MM, et al. 

8 J Clin Trials, Vol.11 Iss.6 No:1000483 

 

 

 

Table 3: Data summary of Direct Antigen Rapid Test (DART) for 
detection of SARS-CoV-2 nucleocapsid protein and DART for detection 
of SARS-CoV-2 spike glycoprotein performance in comparison to qRT-
PCR results. Sensitivity, specificity, Positive Predicative Value, (PPV) 
Negative Predictive Value (NPV), prevalence, and overall agreement are 
calculated for increasing PCR Cycle threshold (Ct) values. 

 

For the SARS-CoV-2 N and S rapid tests, the sensitivities were 
greater than 90% when tested with samples containing Ct values 
<25, but plateaued to approximately 80-85% when tested with 
samples containing Ct values between 30-40 (Table 3, Figure S1). 
Taken together, the clinical data shows that the rapid antigen test 
performs with increasing accuracy for individuals with a higher 
viral load, and potentially the most infectious [18,26–28].  

An Enhanced Epidemiological SIDHRE-Q Model 

We propose an enhanced epidemiological modeling system, 
SIDHRE-Q, a variant of the classical SIR model in order to 
expand our clinical validation study and to understand the 
effects of using frequent rapid tests such as the rapid antigen test 
on COVID-19 outbreak dynamics. The changes we make to the 
basic model to encompass the unique characteristics of the 
COVID-19 pandemic are similar to those presented by Giordano 
et al.29 (Figure 1, Figure S2). The differential equations 
governing the evolution of the SIDHRE-Q model and 
descriptions of the parameter values are provided in the methods 
section (Equation 1, Table 4).   

An individual that begins in Susceptible (S) may either transition 
to a Quarantine Uninfected (Q-U) state via a false positive result 
or to an Infected Undetected (I) state via interaction with an 
infected individual.  Should an individual in S move into Q-U, 
they are quarantined for 10 days before returning to S, a time 
period chosen based on current knowledge of the infectious 
period of the disease and is consistent with CDC guidelines [43]. 
One could also conceive of an effective strategy in which 
individuals exit quarantine after producing a certain number of 
negative rapid tests in the days following their initial positive 
result or confirm their negative result using qRT-PCR.  
Prolonged incubation beyond 10 days is assumed to be unlikely – 
post-quarantine risk of transmission is estimated at 1% - and 
hence is not included in this probabilistic model [43]. 

State I contain individuals who are infected but not diagnosed.  
Given that those diagnosed are predominantly quarantined, the 
undiagnosed individuals in I–many of which are pre- or 
asymptomatic–interact more with the S population than do 
those in Infected Detected (D) and transmission due to this 
population is critically important to modeling outbreaks.  
Therefore, the infectious rate for I is assumed to be significantly 
larger than for D.  Furthermore, a region’s ability to control an 
outbreak is directly related to how quickly and effectively the  

 

 

population in I tests into D, reducing transmission rates through 
quarantine.  From both I and D individuals may transition into 
Recovered (R), accounting for the many cases of infection that 
are never detected. This study, in particular, highlights the 
critical role frequency of testing, along with strict quarantine, has 
in mitigating the spread of the disease and provides specific 
testing strategies based on rapid tests we predict to be highly 
effective. 

In this model, we assume that individuals receive a positive 
diagnosis before developing severe symptoms and that those with 
symptoms severe enough to be potentially fatal will go to the 
hospital.  If an individual develops symptoms, we assume they 
are tested daily until receiving a positive result; hence, before 
severe symptoms develop, they will be diagnosed with high 
probability.  Those who do not develop symptoms are tested 
according to the frequency of tests administered to the general 
population. Therefore, there is no modeled connection between 
I and Hospitalized (H) or between I and Extinct (E), i.e. dead. 
Removing these assumptions would have negligible impact on 
the results as these flows are very small. We estimated the flows 
using data on approximate total deaths due to COVID based on 
excess deaths in the states examined and found them to be zero 
for greater than 10% of the days considered for each location.  
Although lacking this information for São José do Rio Preto, we 
made the same assumption. 

Should an individual test positive and transition to D, they may 
either develop serious symptoms requiring care or recover. Those 
who develop serious symptoms and transition to state H will 
then transition to either R or E.  The recovered population is 
also tested with the same frequency as the rest of the population, 
as infected individuals may recover without being detected and 
the modeled testing strategy has no way of differentiating with 
certainty between false positives and true positive, asymptomatic 
cases.  Therefore, the Quarantined Recovered (Q-R) state is 
introduced with the same connections to R as the connections 
between S and Q-U. Though the reinfection rate of SARS-CoV-2 
has been a point of recent debate, it is assumed that the number 
of re-infected individuals is small 44–48. Therefore, individuals 
cannot transition from R to S, hence the separately categorized 
quarantined populations.  As further knowledge regarding 
reinfection rate develops as the pandemic continues, a flow could 
be added from R to S with rate inversely proportional to the time 
for which immunity lasts. 

We considered several variations and extensions of the SIDHRE-
Q model. In simulations, we tested additional states, such as 
those in the SIDARTHE model, which include distinctions 
between symptomatic and asymptomatic cases for both detected 
and undetected populations29. Correlations between viral load 
and infectivity and sensitivity were also considered. Altogether, 
our modeling system has been well tuned to predict the impact 
of high frequency rapid testing on current COVID-19 spread and 
outcomes.  
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Table 4: Details of parameter values used for SIDHRE-Q Model. 

 

Parameter Details & Statistics 

 
𝛼 
  

𝛼 is rate of transmission between I and S.  It is defined as, per day, the probability 
that an interaction between an undetected infected person and an uninfected 
person results in a new infection, multiplied by the average number of uninfected 
people an undetected infected person comes into contact in a day.    𝛼is estimated 
from the data.  Units: 1/(days). 

 Mean St. Dev. 

MA 0.088 0.051 

LA 0.090 0.034 

NYC 0.067 0.042 

SJRP 0.121 0.042 

𝜂 𝜂 is rate of transmission between D and S. It is defined as the probability that an interaction between an infected 
person and an uninfected person results in a new infection, multiplied by the average number of uninfected people 
a detected infected person comes into contact with in a given day.  Units: 1/(days). 
𝜂 = 0.01 ⋅ 𝛼  
The constant relating 𝜂, 𝛼 accounts for a small but nonzero transmission due to the quarantined (detected) infected 
population.  This value was chosen to be small, assuming an individual in a mandated quarantine will only interact 
with others with low probability, such as within a household, where complete isolation is difficult to maintain. 

𝜈 𝜈is symptomatic detection rate.  It is defined as the probability that a symptomatic 
undetected individual is diagnosed per day.  𝜈is estimated from the data. 𝜈is 
multiplied by sensitivity (assume benchmark sensitivity 100% for PCR, as used 
when fitting).  Units: 1/days. 

 Mean St. Dev. 

MA 0.006 0.005 

LA 0.011 0.006 

NYC 0.005
6 

0.002 

SJRP 0.015 0.007 

𝜖 𝜖 is asymptomatic detection rate.  It is defined as the probability that an asymptomatic undetected infected 
individual is diagnosed on a given day.  𝜖 = 0 while fitting (during PCR symptomatic testing).  
𝜖 =(sensitivity/days between tests) when the rapid testing strategy is activated.  Units: 1/days. 

𝜆 𝜆 is undetected recovery rate.  It is defined as the probability that an undetected infected individual transitions to 
the recovered state on a given day.  𝜆 = 1/10, or the inverse of average recovery time 72.  Units: 1/days. 

𝜇 𝜇 is rate of onset of severe symptoms.  It is the probability that an infected 
individual develops severe symptoms on a given day and transitions into the 
hospitalized state.  The flow from 𝐷 to 𝐻 is assumed to be independent of the 
ratio 𝐼/𝐷, but comes only from the detected infected population, hence why it is 
multiplied by (𝐼 + 𝐷)/𝐷.  𝜇 is estimated from the data.  Units: 1/days. 

 Mean St. Dev. 

MA 0.001
3 

9.5e-4 

LA 0.001
6 

2.4e-4 

NYC 0.001
1 

6.6e-4 

SJRP 0.001
8 

8.0e-4 

𝜌 𝜌 is detected recovery rate.  It is the probability that a detected infected individual transitions to the recovered state 
on a given day. 
 
𝜌 = 1/10, or the inverse of the average recovery time 72.  Units: 1/days. 

𝜎 𝜎is the hospitalized recovery rate.  It is the probability that a hospitalized individual transitions to the recovered 
state on a given day.  𝜎 =  1/11, or the inverse of the average recovery time for a hospitalized individual 72.  Units: 
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1/days. 

𝜏 𝜏 is hospitalized rate of death.  It is the probability that a hospitalized individual 
expires on a given day.  𝜏 is estimated from the data.  Units: 1/days. 

 Mean St. Dev. 

MA 0.034 0.012 

LA 0.016 0.004 

NYC 0.036 0.034 

SJRP 0.032 0.045 

𝛾 𝛾 is the false positive rate.  It is the probability of entering either of the quarantine states on a given day from either 
the Susceptible or Recovered populations.  𝛾 =  0  while fitting (during PCR symptomatic testing).  𝛾 =
(1 −specificity) × (1/days between tests) when the rapid testing strategy is activated.  Units: 1/days. 

𝜓 𝜓is the rate of exit from quarantine.  It is the probability that an individual exits quarantine on a given day.  𝜓 =
1/10, or the inverse of the quarantine period for fixed length quarantine.  Units: 1/days. 

 

Frequent rapid testing with actionable quarantining 
dramatically reduces disease spread 

In order to demonstrate how strategies could affect the disease 
spread in different geographies and demographics, we used 
surveillance data obtained from regions of varying 
characteristics: the state of Massachusetts (MA), New York City 
(NYC), Los Angeles (LA), and São José do Rio Preto (SJRP), 
Brazil, the site of the rapid antigen test clinical validation study. 
These regions are also selected in our study due to the readily 
available surveillance data provided by the local governments. 
We fit the model to the data from each region starting 1 April 
2020. At this time point the disease reportedly is most advanced 
in NYC and least advanced in SJRP, Brazil with estimated 
cumulative infection rates of 7.11% and 0.12%, respectively. 

After calibrating the SIDHRE-Q model, the disease spread is 
observed with varying validated rapid antigen test performances 
and frequencies (Figure 2). Sensitivity (the ratio of true positives 
to the total number of positives) and specificity (the ratio of true 
negatives to the total number of negatives) compared to gold-
standard qRT-PCR were used as measures of test accuracy.  

The rapid test frequency is varied while maintaining an accuracy 
of 80% sensitivity and 90% specificity, comparable to our 
clinical data collected in SJRP, Brazil. These testing scenarios are 
then compared to symptomatic testing, in which individuals 
receive a rapid test only when presenting symptoms, via either a 
rapid test or qRT-PCR. Since the primary testing regimen 
deployed in MA, LA, NYC and SJRP, Brazil is qRT-PCR-based 
and focused on symptomatic individuals, the symptomatic 
testing protocol via qRT-PCR is directly estimated from the data 
to be the rate ν (Table 4).  

The difference between the qRT-PCR and rapid test simulations 
(red and orange lines, respectively) is therefore only sensitivity of 
testing (Figure 2). Test outcome probability in this model is a 
function only of whether an individual is infected and 
independent of other factors; one can consider this a lower 
bound on effectiveness of a strategy, as sensitivity and infectivity 
are often positively correlated with antigen testing. In this model 
with sensitivity s and frequency of testing f, the probability an 
individual is diagnosed in a testing window is given by the 
following: 

 

Pr[Diagnosed within days (𝑥, 𝑥 + 𝑓)] =  (1 − 𝑠)
𝑥

𝑓
−1

⋅ 𝑠. (2) 

To better understand the effect of rapid testing frequency and 
performance on healthcare capacity and mortality rates, we 
simulate the testing strategy with 30%-90% sensitivity each with 
80% or 90% specificity against the symptomatic testing strategy 
(Figure S3).  

As per our hypothesis, frequency and symptom-based testing 
dramatically reduced infections, simultaneous hospitalizations, and 
total deaths when compared to the purely symptom-based testing 
regimens, and infections, hospitalization, and death were reduced 
as frequency increased. Although testing every day was clearly most 
effective, even testing every fourteen days with an imperfect test 
gave an improvement over symptomatic testing with qRT-PCR.  
While the strategy works best when implemented at the very 
beginning of an outbreak, as demonstrated by the results in SJRP, 
Brazil, it also works to curb an outbreak that is already large, as 
demonstrated by the results in NYC. The difference between 
frequencies is more noticeable when the testing strategy is applied 
to the outbreak in NYC, leading us to hypothesize that smaller 
outbreaks require a lower testing frequency than larger ones; note 
the difference between the dependence on frequency to curb a 
small initial outbreak in SJRP, Brazil versus a large one in NYC 
(Figure 3).  

For test performance of 80% sensitivity and 90% specificity, the 
percent of the population that has been infected in total from the 
beginning of the outbreak to mid-July drops from 18% (MA), 11% 
(LA), 26% (NYC), and 11% (SJRP, Brazil) to 3%, 2%, 12%, and 
0.26%, respectively, using a weekly rapid testing and quarantine 
strategy (with regards to predictions of overall infection rates, other 
studies based on seroprevalence and epidemiological predictions 
have reached similar conclusions [49,50]. If testing is increased to 
once every three days, these numbers drop further to 1.6% (ΜΑ), 
1.4% (LΑ), 9.5% (ΝΥC), and 0.19% (SJRP, Brazil) (Table S1).  

To further examine the relationship between frequency and 
sensitivity, we model the maximum number of individuals in a 
given state over the 105-day time period for four geographic regions 
(Figure 3, Figure S4). In all four geographic regions, as frequency of 
testing increases, the total infections, maximum simultaneous  
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hospitalizations, and total deaths converge to small percentages 
regardless of the sensitivity at high frequencies. For example, the 
predictions show that for the outbreak in LA, a testing strategy 
started on 1 April of every 10 days using a test of sensitivity 90% 
would have resulted in 2.5% of the population having been 
infected, while using a test of sensitivity 30% would require a 
strategy of every 5 days to achieve the same number. Thus, we 
conclude that frequency is more important than sensitivity to 
control the outbreak using a test-based strategy, and a large range 
of sensitivities prove effective when testing sufficiently often 
(Figure S4 and S5) [29,51]. The following subsection contains a 
discussion of a location-based method for varying the exact 
frequency of testing based on evolving outbreaks. Frequency of 
testing can be significantly reduced to effectively contain the 
disease once the initial outbreak has been controlled; it is clear 
that this takes only a matter of weeks (Figure 2). 

On the other hand, according to the specificity of the rapid test 
and the quarantine duration, larger testing frequency result in a 
larger percent of the population quarantined (Figure 2). 
Assuming a 90% rapid test specificity and 10-day quarantine 
duration, for the 1-, 3- and 7-day frequencies almost 48%, 24% 
and 12% of the population, respectively, would be quarantined. 
This figure may be reduced with additional rules for exiting 
quarantine early, such as after complementary testing. An 
example of such a strategy is that individuals who test positive are 
required to either quarantine for two weeks or produce two 
consecutive negative rapid tests in the two days following their 
positive result. Assuming 80% sensitivity and 90% specificity, 
those individuals will reenter the public while still infected with 
probability 0.04. If uninfected, that individual will exit 
quarantine after two days with probability 0.81. However, a 
compromise between the reduction of infections and the 
proportion of the population in quarantine would be part of the 
planning for the appropriate testing protocol in each community 
or region. 

While high frequency may be necessary to contain a large 
outbreak initially, relatively infrequent testing, such as every one 
or two weeks, is sufficient to keep controlled outbreaks small, 
while reducing the number of quarantined individuals to less 
than 10% of the population using a two-week mandatory 
quarantine. 

Additionally, quarantine adherence is of essential importance to 
the success of this strategy, and we assume near-perfect quarantine 
compliance with a small transmission rate due to diagnosed 
individuals (Table 4).  Therefore, measures are needed to ensure 
quarantine is widely adhered to (Figure S8).  Recent research has 
identified a number of ways to increase quarantine compliance, 
including compensating for wages lost, providing quarantine 
facilities and effective handling of the health crisis [52–55]. 

Additionally, while high frequency may be necessary to contain a 
large outbreak initially, relatively infrequent testing, such as every 
one or two weeks, is sufficient to keep controlled outbreaks small, 
while reducing the number of quarantined individuals to less 
than 10% of the population using a two-week mandatory 
quarantine.  

A county-based testing strategy offers a cost-effective 
approach to large-scale COVID-19 surveillance   

To examine the effects of resource-strategic testing schemes, we  

 

modeled the COVID-19 prevalence by varying testing frequency 
across counties of California. For this analysis, only California was 
analyzed because of the accessibility of the county level data and the 
variability of spread dynamics of the outbreaks between counties.  
In this scheme, the percent of active infected detected individuals 
in a county determines the frequency of testing. We define 
thresholds for the number of active detected infections that, when 
hit, initiate testing protocols of different frequencies depending on 
the threshold hit. We first tested evenly spaced thresholds for the 
number of detected active infections up to 1% of the population, 
but later adopted thresholds that were determined according to 
Equation 3. In Equation 3, D = population of state D at the time 
of testing. T=number of active infections which, if reached, initiates 
everyday testing. The days between tests are rounded to the closest 
integer value. 

 

The days between tests are chosen such that the detected active 
infections should remain near to or below T. If the initial detected 
active infections are greater than T, then the testing frequency of 1 
will cause infections to rapidly drop.  Both the threshold at which 
everyday testing begins and the coefficient of log2T/D can be 
modified to produce a strategy that is more or less frequent in 
testing or resource effective; a range of days between tests from 14 
days to 1 day are used (Figure 4a). 

The purpose of this strategy is to tailor testing based on the specific 
characteristics of unique outbreaks in different regions.  A scan 
over different choices of T is shown in Figure 4b; the threshold we 
choose in Figure 4a is 0.05% because it is successful in curbing the 
outbreak in California within the time period we consider.  Our 
analysis could be redone to select another effective fine-grained 
strategy in other states or regions.  The cost analysis is based on 
cost per test - $7 per rapid test and $100 per PCR test - times 
number of tests used. Clearly that calculation neglects the costs of 
storing, distributing, and administering tests, as well as monitoring 
incoming results. The costs associated with these logistics would 
vary with differing policies dictating the use of rapid tests; 
significantly, whether they would be administered at home with 
self-reported results or in a testing facility or workplace for 
validation purposes. For example, a company may choose to use 
the rapid tests to scan employees before allowing them to enter the 
workplace, in a way similar to existing temperature checks. The cost 
of this particular application would be minimal beyond that of the 
actual tests. Such costs would inevitably be greater for PCR tests, 
which require a specialized testing facility, significant equipment, 
and highly trained personnel. 

Using a rapid test with a sensitivity of 80% and a specificity of 
90%, the county-based testing with threshold 0.05% reduces the 
active infections from 0.94% to 0.0005%, while the uniform 
strategy with tests administered every 7 days results in double the 
number of active infections (Figure 4a).  As the threshold is 
reduced, the total cost increases while the cumulative infections, 
maximum percentage hospitalized, and cumulative deaths all 
decrease (Figure 4b). Appropriate choice of threshold is dependent 
on the severity of outbreaks in a specific region and available 
resources, both logistically and fiscally.  With regional data, such as 
that from California used to produce Figure 4b, this study can be 
reproduced to calculate an efficient testing strategy that will 
effectively curb outbreaks of differing severities in any geographic  
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entity.  This analysis does not include any delays in ramping 
testing up and down.  If one were to reproduce this analysis for a 
given testing strategy, a fixed-time delay could be introduced, 
depending on the relevant logistical constraints. 

Strategy B in Figure 4 consists of qRT-PCR testing uniformly 
applied to the highlighted population with a frequency of once 
weekly. The average cost per person per day is just under $15. 
Despite this frequency and the accuracy of qRT-PCR, the strategy 
does not succeed in curbing the spread as fast as strategy A, which 
uses a testing sensitivity and specificity of 80% and 90%, 
respectively, and testing frequency that vary between counties 
depending on the proportion of their population that is currently 
infected. The total cost for strategy A is estimated at a fraction of 
the other at $1.53 per person per day. 

DISCUSSION 

In this study we examine the potential effects of a novel testing 
strategy to limit the spread of SARS-CoV-2 utilizing rapid antigen 
test screening approaches. Our clinical data and SIDHRE-Q 
modeling system demonstrate that 1) frequent rapid testing even 
at a range of accuracies is effective at reducing COVID-19 spread, 
2) rapid antigen tests are a viable source for this strategy and 
diagnose the most infectious individuals, and 3) strategic 
geographic-based testing can optimize disease control with the 
amount of available resources. The public has witnessed and 
experienced symptomatic individuals being denied testing due to 
shortages, and few testing structures for asymptomatic or mildly 
symptomatic individuals – a significant source of disease spread. 
Though several factors contributed to the stymied early response 
measures, such as lockdown and quarantine protocols and 
adherence, severe testing bottlenecks have been a significant 
culprit [56–58]. Early control measures have been shown to 
decrease lives lost by several orders of magnitude [59]. These 
challenges, though exacerbated during the early months of the 
pandemic, remain at the forefront of the public health crises.  

Diagnosis of SARS-CoV-2 infection by qRT-PCR is the current 
standard of care, yet remains expensive and requires a laboratory 
and experienced personnel for sample preparations and 
experimentation. The turnaround time for results can be up to 10 
days, preventing people from either leaving quarantine if they are 
negative, or delaying critical care and infecting others if they are 
positive [12]. This current testing scheme moreover yields 
incomplete surveillance data on which response efforts such as 
societal reopening and hospital management depend. Though 
qRT-PCR is considered the gold-standard diagnostic method 
because of its high sensitivity and specificity, the logistical hurdles 
render it unrealistic for large-scale screening.  

As qRT-PCR remains impractical for this strategy, and rapid tests 
are facing regulatory challenges because they do not perform with 
qRT-PCR-like accuracy, rapid test screening is either nonexistent 
in several countries or symptom-based. Even under best-case 
assumptions, findings have shown that symptom and risk-based 
screening strategies miss more than half of the infected 
individuals [60]. Some have argued that the need for widespread 
testing is overstated due to the variability in test sensitivity and 
specificity [61]. Here, we present alternative large-scale diagnostic 
tools to qRT-PCR, and show that test performance, though 
valuable, is secondary to widespread test frequency, which is 
enabled by accessibility and turnaround time. Furthermore, test 
affordability is essential for the successful implementation in  

 

communities most affected by infection and will to speed up the 
safe opening and functioning of the viral sectors of the economy. 
Giordano et al. has modeled the evolution of SARS-CoV-2 spread, 
introducing a diagnosed state to elucidate the importance of 
population-wide testing [29]. Larremore et al. has examined how 
various test sensitivities and frequencies affect the reproductive 
number [21]. We build upon these findings to show how in 
affected United States and Brazil regions, population-wide frequent 
and rapid testing schemes, with sensitivities ranging from 30%-
90%, can be more effective in curbing the pandemic than a PCR-
based scheme. Integrating real-world surveillance and clinical data 
into our modeling system has allowed us to incorporate regional 
differences - such as variances in healthcare access, state health 
policy and adherence, state GDP, and environmental factors- under 
the same model. Significantly, our findings hold true across 
Massachusetts, New York City, Los Angeles, and São José do Rio 
Preto, Brazil. We also present the economic considerations of these 
testing regimes, showing that widespread rapid testing is more cost 
efficient than less frequent qRT-PCR testing. In line with these 
economic considerations, our model demonstrates the effectiveness 
of a geographic-based frequent testing regime, in which high disease 
prevalence areas receive more frequent testing than low disease 
prevalence areas. 

Since COVID-19 is known to affect certain demographics 
differently, modeling would benefit from incorporating 
demographic information correlated with disease progression and 
spread to define sub-models and sets of parameters accordingly. 
Age, pre-existing conditions, job types, and density of population 
are examples of possible categories, each of which influence the risk 
of contracting and/or dying from COVID-19. Further studies 
would benefit from incorporating these ideas to better understand 
the effectiveness of rapid testing on identifying potential super 
spreading events. Future public health prevention programs should 
use the proposed modeling system to develop and test scenarios for 
precision testing and prevention.  

Our findings also point to low-cost tools for implementation of this 
testing strategy, such as a rapid antigen-based test for the detection 
of SARS-CoV-2 proteins. We show that the rapid antigen tests 
perform with a range of accuracies under which disease spread can 
be dramatically mitigated under our model. Notably, the sensitivity 
is correlated to the individual’s viral load, effectively diagnosing 
those who are potentially the most infectious with the highest 
accuracy. Our findings are significant because rapid antigen tests 
are cheaper than qRT-PCR, can be mass produced to millions per 
day, present results within 15 minutes, and can be administered by 
a nonexpert without a lab or special equipment.  

There are several policy implications for these findings. First, our 
model supports that systems of high frequency rapid testing should 
be implemented as a first-line screening method. This can be first 
enabled by a more holistic regulatory evaluation of rapid 
diagnostics, such that policy emphasizes accessibility and 
turnaround time even under a range of accuracies. One can 
imagine a less accurate, though rapid method of first-line screening 
in schools, public transportation, and airports, or even at home, 
and a qRT-PCR-based method for second-line screening (testing 
those who present severe symptoms or have been in contact with 
infected individuals, testing in a clinical setting, etc). At home tests 
require a built-in digital reporting capability [62]; rapid antigen test 
results can be sent to local health centers with reciprocal 
instructions regarding updated test frequency guidelines to enable  
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adaptive testing strategies.  Second, our cost analysis and rapid 
antigen test data present a viable and potentially more cost-
effective method for screening. Third, our county-based testing 
scheme presents a possible method for wide-scale screening while 
optimizing resources. Future studies should investigate how this 
selective testing strategy can be applied to different location scales 
to further inform health policy. Moreover, though our models 
analyze regions in the United States and Brazil, similar testing 
strategies can be considered globally in both resources limited and 
abundant settings due to the greater accessibility of rapid tests 
compared to qRT-PCR. This model can be further tailored to the 
pandemic course as we gain further evidence regarding SARS-
CoV-2 re-infection rates.    

We emphasize that integral to the effectiveness of diagnostic 
schemes is 1) the proper adherence to quarantine and public 
health measures and 2) the combined use of a variety of 
diagnostic methods including nucleic acid, antigen, and antibody 
tests. According to these models, rapid antigen tests are an ideal 
tool for first-line screening. Clinical molecular tests such as qRT-
PCR are vital to the diagnostic landscape, particularly to re-test 
suspected cases that were negative on the rapid test. Because rapid 
tests present a higher rate of false negatives, methods such as qRT-
PCR remain integral to second-line screening. Antibody tests 
provide important information for immunity and vaccination 
purposes as well as epidemiological surveillance. This model also 
assumes that individuals will quarantine themselves before being 
tested and for 10 days following a positive diagnostic result and 
will not be infected while waiting for the qRT-PCR results. It is 
important to acknowledge the working definition of quarantine.  
The states containing quarantined individuals (QU, QR and D) 
are defined as consisting of a population that is meant to be 
quarantined, not a population that is necessarily in perfect 
compliance with the mandate that they remain fully isolated from 
the population.  Quarantine is assumed to be imperfectly 
executed and the model accounts for a small, tunable interaction 
between quarantined states and the general population, hence it 
is conservative. 

There are important limitations to be considered in this model. 
Differences in disease reporting between the geographical regions 
and the incomplete nature of COVID-19 surveillance data, often 
due to the lack of testing or delays in reporting, are not 
considered in the model. It is imperative that the testing results, 
hospitalization and death statistics, and changes in protocol are 
reported in real-time to scientists and policy makers so that 
models can be accurately tuned as the pandemic develops. 
Moreover, delays required to ramp testing strategies up or down 
are not considered. Infectivity variations between individuals is 
also not applied to this model, and future clinical studies should 
gather data on asymptomatic presenting COVID-19 cases. Non-
compliant quarantine behaviors and possible infections during 
testing waiting times are also not included in the calculations. 
The model also does not take into account infrastructural 
limitations, such as hospital capacity and testing space, which 
depend on factors beyond the scope of this analysis. Though the 
rapid antigen test offers several advantages such as affordability, 
fast turnaround time, and ease of mass production, we are 
assuming that there are systems in place to implement frequent 
and safe low-cost screening across different communities and 
settings. 

Our model underscores the need for a point-of-care or at-home  

 

test for frequent screening, particularly as lockdown restrictions 
ease. Regulatory agencies can work towards evaluating rapid tests to 
alternative standards other than comparison to high sensitivity 
molecular diagnostics, as our model shows that frequency and scale 
of testing may overcome lower sensitivities. Rather, we can refocus 
policy to implement first-line screening that optimizes accuracy 
with efficiency and equitability. 
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