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Abstract
This paper presents the available technique and discusses the difficulties to implement intelligent robots in next-

generation automobile assembly. First, it presents the status of automobile assembly line, analyzes the problems 
and difficulties of current industrial robots-based assembly systems, and summarizes the technology needed to 
overcome the problems and difficulties. Then, it presents the new technology for intelligent assembly developed at 
National Institute of Advanced Science and Technology (AIST), which can be directly used to implement intelligent 
robots for automobile assembly. Next, the paper analyzes the drawbacks of the newly developed technology and 
discusses remaining challenges, and presents our view of next-generation automobile assembly systems.
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States in Automobile Assembly Line
Industrial robots are widely used in automobile assembly lines. 

These robots are called industrial robots since their goal is to follow 
some pre-taught paths or way points, which is essentially the same as 
automation machines. The tasks performed by these robots include 
welding, painting, pick-and-place in structured environment (e.g., 
glass installation, door installation, and nut/bolt fastening), etc.

The tasks performed by industrial robots are exciting. On the other 
hand, there are lots of tasks remained to be done by human workers. 
These tasks include (1) picking parts from cluster, (2) reorienting parts 
to certain poses, and (3) force-based assembly. These tasks cannot be 
done using industrial robots and teach pendants since: (1) The parts 
shapes and physical properties are varying. It is difficult to manually 
specify the grasping strategies for infinite number of parts. (2) The 
initial poses and goal poses of manipulated parts are changing. It is 
difficult to teach the robots all motions to reorient different parts. (3) 
The first two processes lead to variety in force control and assembly, 
which also make pre-teaching difficult.

One advisable way to automate the remaining tasks is to develop 
intelligent robots. The fundamental technique includes (1) computer 
vision for object recognition, (2) object analyzer for grasp planning, 
(3) motion planning, (4) force analysis and assembly planning, and (5)
machine learning.

Development of Intelligent Robots for Assembly at AIST
The manipulation group at National Institute of Advanced Industrial 

Science and Technology (AIST), Japan, is developing intelligent robots 
to assembly objects. Over the years, we have developed software for all 
fundamental technique.

(1) We developed object recognition technique by using point
clouds collected from structure light- based depth sensors. The 
developed platform has high precision as it uses point clouds and 
geometric constraints in the robot execution phase to avoid unexpected 
noises [1]. We also developed multi-view vision systems by considering 
the results of previous manipulation [2].

(2) We developed object analyzer and gripping planner by
segmenting and clustering objects surface meshes, as well as considering 
torque and object surface properties. The planner can find candidate 
grasps for parallel industrial robotic grippers with probabilistic 
completeness. Some technical details are available in [3,4].

(3) We developed middle and low-level manipulation planners to
generate robot motions [5]. In the middle level, we use regrasp and 
handover technique to compute the intermediate states of robotic 
grippers and objects, and generate pre and post robot configurations 
using motion primitives to orchestrate the computed intermediate 
states. In the low level, we use probabilistic motion planning algorithms 
like Rapidly-exploring Random Tree (RRT) to plan more detailed 
collision-free and kinematic available motion sequences between the 
intermediate configurations.

(4) We developed assembly planners by analyzing the constraints
between objects [6]. The assembly planner could automatically 
generate assembly sequences (order of assembly), assembly directions, 
and available grasps. The assembly planner is a high-level planning 
component and could work together with middle and low-level 
planning components discussed in item (3), and the vision system 
discussed in item (1), to perform integrated assembly and motion 
planning.

(5) We are exploring cutting-edge technique like machine learning 
to solve difficult problems like picking from clutter [7]. The technique 
in items (1) to (4) was conventional and the goal was to find collision-
free and kinematic available robot and hand configurations. Instead 
of the conventional approach, we developed new picking solutions 
by taking advantages of obstacles. Our assumption was that collision 
might not be negative and might even be helpful. We used machine 
learning to learn how to take advantages of the obstacles.

(6) We analyzed the states of force sensors and used state machines 
to perform the last step of assembly. The details were published in [8] 
where a dual-arm robot assemble two objects connected using snap 
joints. Some similar technique is available in [9,10] which used force 
sensors and state machines to fasten bolts. This technique for object 
manipulation can be directly used by intelligent robots in automobile 
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for the assembly of the coming connected and autonomous cars, 
which have more complicated components to assembly. Compared 
with existing industrial robots, the system will further reduce the 
necessary human interventions and replace the human workers in non-
teachable tasks with intelligent robots. The input to the system could 
be from CAD software or human demonstration. The system could be 
reconfigured quickly for different parts. The automobile parts produced 
by manufacturers will be directly supplied to the system without 
unboxing. The system computes the assembly sequences without 
human intervention for underlying details. This paper presented the 
technique and discussed the difficulties to implement this kind of 
system. We expect it will provide a study motivation for researchers in 
these technique and systems.
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industry. Some of them have been implemented for the specific tasks. 
One example is to assembly exhaustive parts [11]. Conventional 
solution is human workers pick out components from feeding trays, 
place them down on fixtures, and command industrial robots to weld 
them. The industrial robots cannot be taught to perform the pick-and-
place tasks as the components are at various poses. Using the newly 
developed visual detection and grasp and manipulation planning 
technique, intelligent robots take all roles. They detect the components 
and pick them out directly from the tray using vision technique. They 
reorient and place down the components on fixtures, and weld them, 
using grasping and manipulation planning technique. Human workers 
are not directly involved in the process. The technique is superior in 
that it is adaptive to non-structured environment. It has high precision 
vision based on low-cost structure light-based sensors, and has high 
success rate in planning by using dual-arm humanoid robots.

Challenges
Although the fundamental technique has been developed, there 

remains several challenges. For one thing, each of the fundamental 
technique has some bottlenecks: (1) Structure light-based 3D vision 
is not applicable to non-lambert surfaces, non-reflective surfaces, 
and transparent surfaces. Parts with these surfaces widely exist in 
automobile assembly. Recognizing them remains challenging. (2) 
Probabilistically complete gripping planner is only applicable to 
parallel robotic grippers. It is difficult to plan complete grasps for 
robot grippers with varying finger shapes [12,13]. It is also difficult 
to plan complete grasps for robot hands with more than two fingers 
(although non-complete planners are available [14,15]. (3) Planning 
optimal sequences by considering many more constraints like energy 
consumption and by taking advantages of environmental structures 
like supporting pins [16] are computational infeasible. There could be 
infinite combinatorics which require fast pruning and carefully designed 
heuristics or heuristic database. (4) Collecting training data for real-
world robots is difficult. Although some inspiring examples have been 
done in [7,17], it is still difficult to allow failures and program robots 
to learn from failures online in real factories. (5) Force sensing and 
state analyzing are highly dependent on specific objects. Automatically 
performing state analyzing requires allowance of failures, which is still 
lab work (as discussed in item (4).

For the other, it is difficult to integrate the available technique. 
The integration requires a large software platform spanning from 
computational geometry to force analysis and state machines. It also 
requires the support of databases. We have started a project named 
PyHiro at Github [18]. The goal of this project is to develop an 
integrated assembly system using the available technique. The platform 
is under the support of MySQL database to save robots, grippers, 
intermediate states, etc. Integrating and coordinating the roles of the 
various technique in the platform is an open problem.

Vision of the Next-generation Automobile Assembly 
System

Using the available technique, we could develop a highly automatic 
system where the input is an   assembled object model (geometric 
information and physical properties) and the relative relations between 
the parts in the model, the output is a sequence of robot motions that 
pick out parts from boxes, reorient parts to specific poses, and assemble 
them. The robot analyzes the environment and decides whether to take 
advantages of environmental structures during the assembly process. It 
could also provide suggestions to factory managers about how to set up 
the environment to facilitate the assembly line.

The system will be suitable for varying parts and objects, especially 
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