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Abstract

Tuberculosis (TB) caused by the intracellular pathogen Mycobacterium tuberculosis (MTB) continues to threaten 
public health globally. Considering the wide emergence of drug resistant MTB strains, particularly Multi-Drug Resistant 
(MDR-) and extensive Drug-Resistant (XDR-) TB, achieving the STOP-TB goal by 2050 remains questionable and 
challenging. One of the principal components in eradicating and eliminating TB and guaranteeing global TB control 
is the development of new treatment and prevention tools, including drugs and vaccines. The first and crucial step 
of this process is the identification of targets within the bacterial pathogen, which is driven by understanding the 
complex interplay between pathogen and host, as these interactions are key factors in determining the outcome of 
the MTB infection. We generated MTB and host (human) intra-species and the host-pathogen inter-species functional 
interaction networks using genomic and functional data retrieved from high-throughput experiments. In previous 
work, the MTB functional network was used to identify 881 proteins potential drug targets within this organism which 
provided the opportunity to expand the range of existing drug targets. Here we are using the functional interplay 
between host and pathogen to filter and prioritize the set of targets. This yields a filtered set of targets which also 
consider the host system and effects on host-pathogen interactions by leaving out proteins predicted to interact 
with human proteins. Further functional and statistical analyses were conducted in which uncharacterized proteins 
and those with paralogs were removed, resulting in a reduced list of protein targets with essential functions and no 
functional connections with human proteins.

Keywords: Mycobacterium tuberculosis; Potential drug; REACTOME 
database; Anti-tubercular compounds

Introduction
Despite the wide variety of anti-tuberculosis drugs, tuberculosis 

(TB), caused by Mycobacterium tuberculosis (MTB), remains a public 
health challenge today, claiming millions of lives and new cases every 
year. This success of MTB is in part due to the discontinuity of its life 
cycle in the host system, owing to its ability to enter and exit from 
different states in response to the antimycobacterial host defense 
mechanisms, enabling it to infect, grow, persist and survive in human 
macrophages [1]. Enhanced service provision of the existing antibiotics 
in recent years through Direct Observed Treatment (DOT) as 
implemented by the World Health Organization (WHO) is of immense 
value in controlling the disease. Unfortunately, these drugs have 
several shortcomings, the most important being the emergence of drug 
resistance, making even the front-line drugs ineffective. In addition, the 
deadly interaction between TB and Human Immunodeficiency Virus 
(HIV)/Acquired Immunodeficiency Syndrome (AIDS) is threatening 
to compromise gains in TB control, leading to further challenges for 
anti-tubercular drug discovery [2].

TB is currently treated with a decades-old drug regimen, lasting 
at least six months [3,4] using the initial combination of isoniazid, 
rifampin, pyrazinamide, and ethambutal as front-line drugs [5], a 
control strategy implemented by WHO in response to the global 
TB epidemic. Unfortunately, there is no guarantee of the complete 
sterilization of the infection and non-compliance with this long 
duration of TB treatment contributes to the development of resistance. 
In addition, the global HIV/AIDS epidemic has led to an explosive 
increase in TB incidence and contributes to increases in multidrug-
resistant TB (MDR-TB) prevalence [6], which is a form of TB that 
is resistant to at least two of the most commonly used drugs in the 
current four-drug or first-line therapies (isoniazid and rifampin). As 
current anti-tuberculosis drugs are not sufficiently efficient, prone to 

development of multi-drug resistance and no new anti-tuberculosis 
drugs have been designed for over 20 years, it is increasingly important 
to pursue new and effective strategies to confront the challenge of TB 
in this 21st century.

In view of TB challenges, the goal of eradicating TB in the coming 
years depends on the development of new diagnostics, treatment and 
prevention tools, including drugs and vaccines [1]. Any new effective 
drug should be able to shorten the duration of the treatment, improve 
the treatment of MDR-TB, and possibly provide an effective treatment 
of latent TB infection. Thus, in addition to being compatible with 
Antiretroviral Drugs (ARVs) used to stop the progression of HIV 
disease, the properties of anti-TB agents must include antibacterial 
activity, capacity to inhibit the development of resistance, and ability 
to kill the intracellular organisms that are in a persistent state. For this, 
target identification and validation are essential for the success of the 
drug discovery and development process. However, the identification 
of novel drug targets for diseases and development of new drugs have 
always been expensive and time-consuming and the amount of time 
required for designing a new drug is still high, approximately ten to 
fifteen years [7].
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Currently, technological developments in large-scale bio-
logical experiments, coupled with bioinformatics tools, can provide 
inexpensive strategies which shorten the length of time spent in drug 
discovery. This can be achieved through integration of functional and 
genomics data to generate the organism under consideration’s protein-
protein functional interaction networks [8-10]. This approach provides 
the op opportunity to look at genes within their context in the cell for the 
global analysis of whole genomes, allowing the identification on of key 
proteins essential to the pathogen’s growth, survival and viability using 
network topological properties. Another benefit of this model is that it 
enables the expansion of the range of potential drug targets and leads 
to optimal target-based strategies, free of trial and error. We applied 
this strategy to MTB [10] and 881 proteins were found to be critical in 
maintaining the system’s integrity, influencing the system ‘s robustness 
and stability under perturbations, thus helping the bacterial pathogen 
to survive and achieve its goal within the host. Filtering this list of key 
proteins can produce appropriate and effective new drug targets for the 
development of novel drugs with new biological mechanisms of action 
against drug susceptible and drug-resistant strains.

The identification of drug targets requires consideration of a variety 
of criteria, including understanding the complex interplay between 
pathogen and host, as these interactions are key factors in determining 
the outcome of the MTB infection. Considering the host system 
could yield more suitable drug targets that prevent potential adverse 
reactions in the host. Here, we use human-MTB functional interactions 
predicted by integrating functional and genomics data to filter the list 
of 881 potential targets for MTB by considering only proteins or genes 
which do not interact with human proteins unless they have different 
functions, as potential drug target candidates.

Method and Materials
Previously generated human and MTB intra-species functional 

networks were used. These functional networks were constructed 
by combining protein interaction data from the STRING database 
[11,12] and complemented by additional interaction data from 

sequence and microarray data for the MTB network [10,13] and by 
Bossi and Lehner’s interaction data [14], together with data from the 
REACTOME database [15] for the human network, as depicted in 
Figure 1. For the human-MTB inter-species functional network, we are 
using the functional interactions previously retrieved through manual 
curation of the literature and predicted using the interologs method 
and filtered using gene expression data [16]. As in the case of the MTB 
functional network, these inter-species functional interactions are 
complemented by functional interactions from sequence data, more 
precisely interactions predicted from protein sequence similarity and 
shared domains between proteins from the InterPro database (http://
www.ebi.ac.uk/interpro).

Building unified human and MTB intra-species functional 
networks

Interaction data used to build intra-species human and MTB 
functional interaction networks were retrieved from diverse sources. 
The uncertainty of data and noise inherent in each source were managed 
by systematically weighing or scoring these functional associations 
[9]. These scoring schemes are data source and technology dependent 
i.e., a given scoring scheme varies according to the data sources and is 
designed on the basis of the technology used. Functional interactions 
from the STRING database were used with confidence scores as defined 
by the STRING scoring schemes.

For each evidence source, functional interaction scores were 
categorized into three different confidence levels, namely low, medium 
and high confidence. All interactions whose scores are strictly less than 
0.3 were considered to be low confidence, scores ranging from 0.3 to 
0.7 (0.3 ≤ score ≤ 0.7) were classified as medium confidence and scores 
greater than 0.7 yield high confidence interactions. The final combined 
score was computed by combining all confidence scores between two 
proteins ı and for all datasets through a unified network, under the 
assumption of independence and given by
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Figure 1: Flowchart depicting MTB protein target filtering. The chart describes the construction of Human, MTB and Human-MTB functional interaction net-
works and use of these networks to filter the list of MTB protein targets identified from the MTB network.
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where  
d
ijs  is the confidence score of a functional interaction between i 

and j predicted using the type of data d, and D the number of interaction 
sources in the dataset under consideration.

From a unified functional network, a reliability threshold was 
applied to reduce the impact of bias in functional interactions coming 
from experimental predictions and computational approaches [10]. 
For intra-species functional networks we only considered interactions 
whose confidence scores ranged from medium to high confidence and 
for functional interactions with low confidence, only those predicted by 
at least two different approaches were considered, in order to produce 
a network of reasonable confidence interactions and coverage. This 
produces a human functional network with 17847 proteins and 710142 
interactions and a final MTB functional network containing 4136 
proteins and 59919 interactions. The MTB functional network was 
used to identify the system’s key proteins using network topological 
properties and 881 proteins were predicted to be potential MTB drug 
targets [10].

Building a unified Human-MTB inter-species functional 
network

As pointed out previously, we are using functional interaction 
pairs retrieved through manual curation of the literature and predicted 
using the interologs method. Interologs are interacting proteins in 
one organism whose corresponding orthologs are also predicted to 
interact in another organism [17]. For predicting these interologs, 
experimentally verified interactions between human and bacterial 
proteins were extracted from the Pathosystems Resource Integration 
Center (PATRIC) [18] and the Host-Pathogen Interaction database 
(HPIDB) [19], and intra-species interacting pairs of proteins from the 
Database of Interacting Proteins (DIP) [20] were also collected. For 
each interaction, orthologs of both of the proteins were identified in 
human and MTB proteomes, respectively, and we inferred that these 
orthologs also interact. Ortholog files were downloaded from the 
Integr8 project [21] (http://www.ebi.ac.uk/integr8) at the European 
Institute of Bioinformatics (EBI). These interactions are complemented 
by additional interaction data from protein sequence similarity and 
conserved protein domains scored using information theoretic-based 
approaches described in [9]. Here, we performed the Basic Local 
Alignment Search Tool (BLAST) algorithm [22,23] for sequence 
similarity searching, specifically we ran the blast all program, aligning 
all MTB protein sequences against the human protein sequences and 
vice versa using same parameters as in [9].

Functional and statistical analysis

To gain insight into the biological processes of the proteins 
involved in human-MTB interactions, we functionally com-pared 
predicted human-MTB protein pairs to random protein pairs by 
computing their Gene Ontology (GO) biological process similarity. We 
used the GO-universal metric [24] based on the GO-DAG topology 
[25,26] to compute the biological similarity between two proteins. 
This also allows us to assess the relevance of this predicted human-
MTB functional inter-actions as functional interactions are likely to 
occur between proteins involved in similar biological processes [27]. 
Thus, for each pair of proteins involved in a predicted human-MTB 
functional interaction, we computed the semantic similarity between 
their GO annotations and compared these similarity scores on average 
to scores between interacting proteins from random human-MTB 
functional interactions.

Deriving statistically significant GO annotations among these 
inter-species interacting proteins is based on the hyper-geometric 
distribution model. This model consists of computing a p-value for 
each term using its frequencies of occurrence in the experiment. 
This p-value is the probability that the number of genes or proteins 
annotated with the term under consideration in the target set occurs by 
chance or is comprised of randomly drawn genes from the reference or 
background set. We used the Bonferonni p-value, which is a corrected 
p-value for multiple testing, and we selected those GO terms enriched 
in our target protein list by requiring a p-value less than 0.05. The 
human and MTB protein annotation data were downloaded from the 
Gene Ontology Annotation (GOA) project [28] (http://www.ebi.ac.uk/
goa).

Results and Discussions
We used human, MTB intra-species functional networks and a 

human-MTB inter-species functional network to filter a list of 881 
protein targets previously identified within MT B using topological 
properties of its protein-protein functional interaction network 
[10]. To achieve this, we overlaid predicted human-MTB functional 
interactions onto the human and MTB (strain CDC1551) protein-
protein functional interaction networks to analyze inter-species 
interacting proteins and to uncover suitable protein targets.

Comparing functional similarity scores between predicted 
and random Human-MTB interacting proteins

A GO semantic similarity measure can be used to assess the 
functional similarity between protein pairs of predicted functional 
interactions [27]. We used 4616 functional relation-ships predicted 
between 1011 human and 626 MTB proteins to determine whether 
functional similarity scores between these interacting proteins tend to 
be significantly different from those obtained after generating random 
interactions between human and MTB proteins. Using the Biological 
Process (BP) ontology, we obtained an average similarity score of 0.31 
between predicted interacting human-MTB proteins and of 0.06 for 
random interactions between human and MTB proteins.

To determine whether this difference was statistically significant 
and not merely due to chance, we estimated the distribution of 
average functional similarity scores for random interactions using a 
Monte Carlo sampling procedure (Figure 2). When compared to this 
distribution, a nonparametric p-value <2.2e−16 was obtained under 
the hypothesis that the central measure score of randomly drawn 
interactions is less than that of predicted human-MTB interactions. This 
indicates that functional similarity scores of the predicted interactions 
are significantly higher than random interactions, suggesting that 
the predicted interactions tend to be involved in similar biological 
processes, and thus are plausible [27,28].

Clustering interacting proteins and enrichment analysis

We used Human-MTB interacting proteins to build weighted 
networks from human and MTB functional networks. We generated 
a human weighted network of 889 out of 1011 proteins predicted to 
interact with MTB proteins intra-connected by 9042 interactions and an 
MTB weighted network of 598 out of 626 proteins predicted to interact 
with human proteins intra-connected by 10574 interactions. Note that 
these networks are weighted using protein functional similarity scores 
computed using the GO-universal metric. Thereafter, we clustered 
proteins from each organism in different classes or communities [29] 
and performed enrichment analysis to highlight the most relevant GO 
terms associated with a given gene list in each cluster compared to all 
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annotated genes in the network. 11 clusters have been identified for 
human proteins predicted to interact with MTB proteins and 10 for 
MTB proteins predicted to interact with human proteins. Results are 
shown in Table 1 for human and Table 2 for MTB with the two most 
statistically relevant terms for each cluster.

The human proteins predicted to interact with MTB proteins 

were specifically enriched in recognizing the presence of the infection 
and are fundamentally involved in responding to the MTB infection. 
For example, certain human proteins, especially those belonging 
to cluster 1, are enriched in processes related to negative regulation 
of apoptosis, which is in agreement with the fact that virulent MTB 
strains inhibit apoptosis of the host macrophage at the early infection 

Cluster Proteins Enriched Terms GO Ids GO term Level p-value Bonferonni-correction
1 135 18 GO:0043066 negative regulation of apoptotic 

process
7 6.99253×10−09 3.41235×10−06

GO:0006987 activation of signaling protein activity 
involved in unfolded protein response

11 1.80733×10−08 8.81979×10−06

2 121 19 GO:0010467 gene expression 4 0.00000 0.00000
GO:0006120 mitochondrial electron transport, NADH 

to ubiquinone
9 1.37596×10−10 4.93969×10−08

3 95 29 GO:0044281 small molecule metabolic process 3 0.00000 0.00000
GO:0006006 glucose metabolic process 7 2.69909×10−10 1.08233×10−07

4 152 56 GO:0042738 exogenous drug catabolic process 10 0.00000 0.00000
GO:0071236 cellular response to antibiotic 6 3.68974×10−05 0.02007

5 77 25 GO:0044255 cellular lipid metabolic process 4 0.00000 0.00000
GO:0033540 fatty acid beta-oxidation using acyl-

CoA oxidase
11 0.00000 0.00000

6 105 38 GO:0034641 cellular nitrogen compound metabolic 
process

3 0.00000 0.00000

GO:0002376 immune system process 1 1.25410×10−05 0.00515
7 50 16 GO:0006183 GTP biosynthetic process 11 0.00000 0.00000

GO:0006283 transcription-coupled nucleotide- exci-
sion repair

9 2.02819×10−08 4.94879×10−06

8 112 26 GO:0034220 ion transmembrane transport 6 1.95507×10−10 1.302076×10−07

GO:0008543 fibroblast growth factor receptor signal-
ing pathway

8 1.89730×10−09 1.26360×10−06

9 39 9 GO:0006457 protein folding 6 0.00000 0.00000
GO:0000398 mRNA splicing, via spliceosome 11 3.49331×10−11 4.89063×10−09

10 1 2 GO:0006950 response to stress 2 0.00590 0.01179
GO:0006457 protein folding 6 0.01383 0.02765

11 2 12 GO:0050796 regulation of insulin secretion 8 7.81617×10−06 0.00016
GO:0006112 energy reserve metabolic process 5 1.25409×10−05 0.00025

Table 1: Clustering human proteins predicted to interact with MTB proteins. Different clusters identified and the two most statistically relevant GO biological process terms 
associated with a given gene list in each cluster.

Cluster Proteins Enriched Terms GO Ids GO term Level p-value Bonferonni-correction
1 107 6 GO:0006418 tRNA aminoacylation for protein transla-

tion
10 4.73638×10−11 7.72030×10−09

GO:0006164 purine nucleotide biosynthetic process 9 4.07330×10−06 0.00066
2 45 8 GO:0033216 ferric iron import 11 0.00035 0.02514

GO:0052099 acquisition by symbiont of nutrients from 
host via siderophores

6 0.00035 0.02514

3 84 8 GO:0006099 tricarboxylic acid cycle 8 0.00000 0.00000
GO:0006096 glycolysis 9 2.26606×10−06 0.00027

4 67 6 GO:0006825 copper ion transport 9 5.7285×10−07 3.72353×10−05

GO:0015986 ATP synthesis coupled proton transport 12 7.95668×10−07 5.17184×10−05

5 107 6 GO:0055114 oxidation-reduction process 3 0.00000 0.00000
GO:0006631 fatty acid metabolic process 8 0.00042 0.03869

6 121 8 GO:0040007 growth 1 0.00000 0.00000
GO:0006457 protein folding 6 2.89594×10−08 4.72038×10−06

7 64 3 GO:0055114 oxidation-reduction process 3 1.39651×10−06 5.16710×10−05

GO:0019367 fatty acid elongation, saturated fatty acid 11 1.85197×10−05 0.00069
8 1 0 - - - - -
9 1 0 - - - - -
10 1 1 GO:0006508 proteolysis 5 0.023509 0.02351

Table 2: Clustering MTB proteins predicted to interact with human proteins. Different clusters identified and the two most statistically relevant GO biological process terms 
associated with a given gene list in each cluster.
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stage to protect their replicative niche [30] by up-regulating the NF-κB 
signaling pathway, resulting in the up-regulation of FLIP, an inhibitor 
of death receptor signaling [31]. These human proteins could enable 
the bacterial pathogen to survive and persist in the macrophages for a 
long time.

The persistence of MTB in the host system depends on the ability 
of the bacterial pathogen to acquire and utilize nutrients from the 
interior of the macrophage phagosome. MTB proteins predicted to 
interact with human proteins are particularly enriched in biological 
processes that allow the bacterial pathogen to acquire nutrients from 
its host (Table 2: cluster 2). In particular, MTB imports iron, which is 
an indispensable nutrient for almost all organisms [32] and is essential 
for growth of MTB [33]. It is known that after its establishment in a 
specific environment, MTB switches its metabolic pathways to utilize 
fatty acids rather than carbohydrates and as shown in Table 2, several 
clusters contain proteins enriched in fatty acid metabolism. This 
suggests that the predicted human-MTB interacting proteins are 
crucial for MTB survival, intracellular lifestyle and spreading strategies. 
These proteins provide insight into how MTB might acquire nutrients 
and how it modulates the host response to its advantage. They may 
play a role in protecting the pathogen from the environment through 
interaction with host proteins.

Predicted interactions and drug targets

A total of 9707 interactions were predicted between 2259 human 
and 633 MTB proteins. Among these 2259 human proteins, only 1011 
are found in the human functional network generated and 626 MTB 
proteins out of 633 are found in the MTB functional network. These 
human and MTB proteins are connected by 4616 interactions out of 
the total of 9707 predicted interactions. These inter-species interactions 
are used to overlay the human network onto the MTB network and 
identify MTB protein targets (of the 881 targets) predicted to interact 
with human proteins.

We used the hyper geometric test to determine whether the 
predicted list of proteins contains more drug targets than expected by 

chance. Among 626 MTB proteins predicted to interact with human 
proteins, 275 are in the drug target list.

The statistical test checks whether 275 targets out of 626 MTB 
proteins predicted to interact with human proteins is more than 
random chance compared to the background of 881 MTB potential 
drug targets out of 4136 proteins contained in the MTB functional 
network. Performing the hyper geometric test, a p-value of 3.773454e 
−45 was obtained showing evidence that the list of MTB proteins 
interacting with human proteins contains more drug targets than 
would be expected by chance.

We then used different criteria to filter the 275 interacting proteins, 
as well as non-interacting drug targets to identify the most suitable 
targets using the pipeline described in Figure 3. For the 275 targets 
that interact with human proteins, 259 were predicted to interact 
based on sequence similarity and shared domains, and only 16 targets 
were predicted to interact with human proteins through interologs. 
The 259 MTB drug targets predicted to interact with human proteins 
should be neglected as potential candidates for further target based 
drug development. This is because they may adversely impact the 
host system or can lead to unwanted toxicity as they have similar 
sequences and functions to their human partners. We checked the rest 
for paralogs, using paralog candidates from the Ensembl database [34] 
(http://www.ensembl.org/) and mapping Ensembl IDs to UniProt IDs. 
Of the remaining 16 proteins that interact with human proteins, only 
2, DnaB and RecN, were found to have no paralogs. DnaB is essential 
for growth [35,36], and RecN is required for survival during infection 
[35,36], suggesting they could be good drug targets.

Next, we turned our attention to non-interacting targets. We were 
interested in the biological processes in which the 606 targets, which 
showed no evidence of interacting with human proteins, are involved 
in order to assess the potential biological roles in the organism. We 
first clustered the 400 annotated proteins out of these 606 targets using 
their functional similarity scores and left out proteins which were 
uncharacterized with respect to the GO biological process ontology 
to refine the statistical analysis results. Three clusters were found, 
as shown in Table 3, together with results of enrichment analysis of 
each cluster. These protein clusters are enriched in processes related 
to transcription, regulation and positive regulation of transcription, 
DNA-dependent, which is essential for responding to changing 
environments [37]. During infection, the host system triggers an 
immune response through the proinflammatory cytokine, allowing 
tumour necrosis factor alpha (TNF-α), together with interferon gamma 
(IFN-γ), to activate macrophages to produce nitric oxide synthase 
(NOS2) in order to kill intracellularly replicating MTB [38,39]. Here, 
we observed that some MTB protein clusters are enriched in response 
to nitrosative stress, indicating that these proteins will be active in a 
change in state or function of a cell in response to exposure to nitric 
oxide (NO). In order to ensure efficient uptake, MTB recruits a range 
of cell surface receptors in the host macrophage [40]. Proteins enriched 
in processes related to signal transduction and growth will enable 
bacterial pathogen cells to interpret, integrate and act upon external 
stimuli received by these cell surface receptors or by intracellular 
signals to achieve the desired cellular response. This indicates that this 
set of proteins is crucial for microbial pathogen survival and spreading 
strategies within the host for a long time at various stages of infection.

We used the MTB functional network to analyze paralogs of drug 
targets in terms of shared neighbors and whether these paralogs share 
similar network topological properties with the targets. 1783 MTB 
proteins have paralogs in the proteome, and among these proteins, 
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D
en

si
ty

0.
00

0.
05

0.
10

0.
15

0.
20

0.062 0.063 0.064 0.065 0.066

Figure 2: Analyzing human-MTB interacting protein functional similarity 
scores: Predicted human-MTB functional interactions lead to significantly 
higher functional similarity scores compared to random human-MTB 
interactions. The estimated distribution of random human-MTB interacting 
protein functional average similarity scores is used to determine whether 
the predicted human-MTB interacting protein functional similarity average 
score (μ=0.31) is significantly high. The red line indicates the approximate 
probability density function of the distribution of random human-MTB 
interacting protein average functional similarity scores, estimated using a 
Gaussian smoothing kernel.
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194 were in the list of 400 annotated protein targets. We computed the 
topological similarity between these target proteins and their paralogs 
in terms of number of shared neighbours using Jaccard index [41], 
given by

( , )
∩

=
∪

p q
N

p q

N N
S p q

N N
	   			                   (2)

where |Nr| represents the number of protein neighbours to protein r 
in the functional network. Topological similarity scores between these 
target proteins and their paralogs showed a clear tendency to a high 
number of shared neighbors between protein targets and their paralogs, 
sharing 51.3% of neighbors, i.e., more than half identical neighbours, 
on average. Looking at the topological properties of these paralogs, we 
found that 124 out 194 protein targets have paralogs which are also 
targets or key proteins. This provides evidence that proteins playing a 
vital role in the system may have copies with the same characteristics 
for the survival of the system in the case of perturbations. As a 

consequence, a knockout or knockdown of such a target will be 
compensated for by its paralogs so that the system perturbation is 
negligible or less than expected. The extent of the observed similarity 
in the network patterns between protein targets and their paralogs also 
warrants further investigation in terms of their effects as targets.

The target proteins in the third cluster are involved in growth 
processes, indicating that these targets are essential for the growth of 
MTB in the host system. Since an efficient drug target should prevent 
growth of the pathogen, we identified which of our targets were 
essential for growth. 79 and 21 out of 400 annotated protein targets 
were found in the two lists of genes, which were experimentally 
identified by Sassetti et al. [35,36] to be required for normal MTB 
growth and for its survival during infection, respectively. Among these 
targets, 53 out of 79 targets required for MTB growth and 8 out of 21 
targets required for its survival have no conserved paralogs within the 
pathogen. These proteins can be considered attractive and suitable 
targets for the discovery or rational design of novel anti-tubercular 

Cluster Proteins Enriched Terms GO Ids GO term Level p-value Bonferonni-correction
1 216 2 GO:0006351 transcription, DNA-dependent 8 2.18796×10−10 2.88811×10−08

GO:0006355 regulation of transcription, DNA-dependent 8 1.59921×10−06 0.00021
2 120 5 GO:0006355 regulation of transcription, DNA-dependent 8 1.84432×10−08 3.68863×10−06

GO:0000160 phosphorelay signal transduction system 5 1.9038×10−07 3.80761×10−05

GO:0035556 intracellular signal transduction 5 3.52753×10−07 7.05507×10−05

GO:0006351 transcription, DNA-dependent 8 3.00490×10−06 0.00060
GO:0051409 response to nitrosative stress 3 0.00016 0.03255

3 64 4 GO:0040007 growth 1 2.01816×10−12 2.56307×10−10

GO:0044119 growth of symbiont in host cell 7 2.50787×10−06 0.00032
GO:0009097 isoleucine biosynthetic process 10 5.40389×10−05 0.00686
GO:0045893 positive regulation of transcription, DNA-depen-

dent
9 0.00039 0.04926

Table 3: Clustering MTB annotated target proteins that showed no evidence to interact with human proteins. Different clusters identified and associated statistically relevant 
GO biological process terms associated with the gene list in each cluster.

Figure 3: Host-Pathogen drug filtering pipeline. This work-flow describes MTB drug target filtration process where the orange boxes represent the sets of 
unsuitable targets and the green are the suitable ones.
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compounds, as they have been shown experimentally to be required 
for the functioning of organism.

We then looked at the total set of 606 proteins with no direct 
interaction with human proteins to find those with an indirect 
interaction. In general, the connectivity analysis of these targets 
reveals that most of the targets (522 out of 606) which do not interact 
with human proteins are direct neighbors of the 275 protein targets 
predicted to interact with human proteins. The remaining 84 targets 
that are not directly connected to targets interacting with human 
proteins have the following Tuberculosis functional classes (http: //
genolist.pasteur.fr/Tuberculist) assigned to them: 1 protein is involved 
in lipid metabolism, 8 in intermediary metabolism and respiration, 
6 in virulence, detoxification and adaptation, 9 in cell wall and cell 
processes, 13 are regulatory proteins, 13 are PE/PPE proteins and 34 
are still unknown or uncharacterized.

We looked at the predicted functional classes of the 34 unknown 
proteins and 13 proteins belonging to PE/PPE functional class. Of 34 
unknown proteins, functional classes of 33 proteins were predicted, 
with 19 involved in cell wall and cell processes, 8 in intermediary 
metabolism and respiration, 3 are regulatory proteins, one is involved 
in virulence, detoxification and adaptation, one in lipid metabolism 
and one in insertion seqs and phages. For PE/PPE proteins, functional 
classes of 12 proteins were predicted 10 of which are involved in cell wall 
and cell processes, and 2 in intermediary metabolism and respiration. 
In fact, most of proteins of unknown and PE/PPE classes are predicted 
to be involved in cell wall and cell processes. It is known that the cell 
wall of MTB with its unusually low permeability plays a key role in its 
virulence, contributes crucially to the persistence of the pathogen in 
the host and is thought to contribute to the intrinsic drug resistance 
of mycobacteria [13]. This indicates that these proteins are likely to be 
important for the specific lifestyle of the organ ism and adaptability of 
this pathogen in the host, and thus may be appropriate candidate drug 
targets.

Finally, we put the 84 proteins through a number of other screens 
to determine their suitability as drug targets. We tried to assess this list 
by looking at UniProt predicted targets and “validated” drug targets 
in MTB on the TDR targets website (http://tdrtargets.org/). These 
candidate drug tar-gets include 8 genes which were in the UniProt 
target list and 1 in TDR validated targets. Among these 84 MTB protein 
targets which showed no direct connection to human proteins, 57 were 
observed to have no paralogs within the pathogen. 3 proteins out of 
these 57 protein targets were found to be essential for MTB growth and 
one is required for its survival during infection. These 3 proteins are 
Probable conserved membrane protein Rv0227c or MT0237 (P96409), 
involved in cell wall and cell processes, L-lysine 6-monooxygenase 
mbtG (O05820) suspected to be involved in lipid metabolism and the 
uncharacterized protein Rv0102/MT0111 (P64689) predicted to be 
involved in cell wall and cell processes. The putative un-characterized 
protein MT0185 (Q7DAC1) is required for MTB survival during 
infection. Interestingly, the 3 genes Rv0227c, mbtG and Rv0102 
were previously identified as targets for drug development. The gene 
Rv0227c was qualified as a plausible target for drug design [42], mbtG 
was identified as an iron acquisition-related target [43], crucial for 
the survival within the host, and Rv0102 was identified to contribute 
actively to the MTB infection outcome [44].

Conclusions
Significant progress has been made in controlling TB using existing 

anti-tubercular drugs administrated for at least six months. This long 

duration of treatment contributes to the development of resistance 
and adding adverse effects of these drugs makes them prone to patient 
non-compliance. Further-more, as no new anti-tubercular drugs have 
been developed for over 20 years, it is increasingly important to pursue 
new and effective strategies to confront the challenge of TB in this 21st 
century. There is a need for the identification of novel and suitable drug 
targets within the bacterial pathogen that consider the host system in 
order to develop novel and effective therapeutics with anti-TB activity. 
However, the identification of novel drug targets for diseases and 
development of new drugs have been expensive and time-consuming, 
necessitating rational approaches and inexpensive technologies that 
shorten the length of time spent in drug discovery.

Understanding the host system and the complex interplay between 
pathogen and host may significantly enhance the identification of 
drug targets as these interactions are key factors in determining the 
outcome of the infection. Here, we used a map of protein-protein 
functional interactions between the human host and MTB, causative 
agent of TB. This map was obtained by integrating different genomic 
scale and microarray information and explored to filter the set of 881 
protein targets previously identified within the MTB protein-protein 
functional network generated using genomics and functional data. 
We explored the human-MTB protein-protein functional interaction 
map to elucidate targets that also consider the host system to prevent 
potential adverse reactions in the host. The flowchart in Figure 3 
summarizes MTB drug target filtration process, and the list of suitable 
targets (green boxes in the Figure) is in supplementary data. This has 
provided the opportunity to uncover putative protein targets for the 
development of novel and efficient anti-tubercular therapeutics to treat 
the disease.

A total of 606 targets out of 881 have shown no evidence of 
interacting directly with human proteins. We performed functional 
and statistical analyses in which uncharacterized proteins were 
removed, resulting in a list of 400 protein targets with functional 
annotations and no functional connections with human proteins. The 
biological process analysis of these targets have suggested that these 
proteins are likely to be important for the intracellular lifestyle of MTB, 
its adaptability and survival in the host by allowing the pathogen to 
acquire nutrients and to modulate the host response. No paralogs 
were observed within MTB for 206 out of 400 putative targets. We 
further filtered the possible targets based on other criteria, including 
essentiality for MTB growth and survival during infection. We have 
a final list of 67 potentially suitable candidates, some of which were 
previously identified. Novel identified targets and their suitability are 
results o f the integrative approach used through human or host, MTB 
and Human-MTB functional networks, and other functional analyses 
performed. This model provides a simple framework that can be used 
in drug target identification in order to produce a list of putative targets 
very rapidly at low cost.

Authors’ contributions
NJM conceived the study, supervised and provided support on 

all aspects of the study. GKM performs all analysis and programming 
tasks, and wrote the paper. HAR contributed helpful suggestions for 
the analysis. All authors read and approved the final manuscript and 
NJM approved the production of the paper.

Acknowledgements 

The authors especially wish to thank authors of freely available biological 
databases for making their data available to the scientific community. This work has 
been supported by the Claude Leon Foundation Postdoctoral Fellowship and the 



Citation: Mulder NJ, Mazandu GK, Rapano HA (2013) Using Host-Pathogen Functional Interactions for Filtering Potential Drug Targets in 
Mycobacterium tuberculosis. J Mycobac Dis 3: 126. doi:10.4172/2161-1068.1000126

Page 8 of 8

Volume 3 • Issue 1 • 1000126
J Mycobac Dis
ISSN: 2161-1068 MDTL, an open access journal

National Research Foundation (NRF) in South Africa through the Computational 
Biology (CBIO) research group at the Institute of Infectious Disease and Molecular 
Medicine, University of Cape Town.

References

1. Mazandu GK, Mulder NJ (2012) Enhancing drug target identification in 
Mycobacterium tuberculosis. In: NOVA Publishers, Tuberculosis: Risk Factors,
Drug Resistance and Treatment. 

2. Mazandu GK, Mulder NJ (2011) Using the underlying biological organization
of the Mycobacterium tuberculosis functional network for protein function
prediction. Infection, Genetics and Evolution 12(5): 922-932. 

3. Golden MP, Vikram HR (2005) Extrapulmonary tuberculosis: an overview. Am
Fam Physician 72: 1761-1768.

4. Potter B, Rindfleisch K, Kraus CK (2005) Management of active tuberculosis. 
Am Fam Physician 72: 2225-2232.

5. Chen P, Gearhart J, Protopopova M, Einck L, Nacy CA (2006) Synergistic
interactions of SQ109, a new ethylene diamine, with front-line antitubercular
drugs in vitro. J Antimicrob Chemother 58: 332-337.

6. Wells CD, Cegielski JP, Nelson LJ, Laserson KF, Holtz TH, et al. (2007) HIV
infection and multidrug-resistant tuberculosis: the perfect storm. J Infect Dis
196 Suppl 1: S86-S107.

7. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, et al. (2010)
How to improve R&D productivity: the pharmaceutical industry’s grand
challenge. Nat Rev Drug Discov 9: 203-214.

8. Mazandu GK, Opap K, Mulder NJ (2011) Contribution of microarray data to the 
advancement of knowledge on the Mycobacterium tuber-culosis interactome:
Use of the random partial least squares approach. Infection, Genetics and
Evolution 11(4): 725-733. 

9. Mazandu GK, Mulder NJ (2011) Scoring protein relationships in functional
interaction networks predicted from sequence data. PLoS One 6: e18607.

10.	Mazandu GK, Mulder NJ (2011) Generation and Analysis of Large-Scale
Data-Driven Mycobacterium tuberculosis Functional Networks for Drug Target
Identification. Adv Bioinformatics 2011: 801478.

11.	von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, et al. (2005) STRING: 
known and predicted protein-protein associations, integrated and transferred
across organisms. Nucleic Acids Res 33: D433-D437.

12.	Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING
8--a global view on proteins and their functional interactions in 630 organisms.
Nucleic Acids Res 37: D412-D416.

13.	Mazandu GK, Mulder NJ (2012) Function Prediction and Analysis of
Mycobacterium tuberculosis Hypothetical Proteins. Int J Mol Sci 13: 7283-7302.

14.	Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction 
network. Mol Syst Biol 5: 260.

15.	Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, et al. (2011) Reactome: a
database of reactions, pathways and biological processes. Nucleic Acids Res
39: D691-D697.

16.	Rapanoel HA, Mazandu GK, Mulder NJ (2013) Predicting and Analyzing
Interactions between Mycobacterium tuberculosis and its human host. PLoS
One 8: e67472.

17.	Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, et al. (2000) Protein
interaction mapping in C. elegans using proteins involved in vulval development. 
Science 287: 116-122.

18.	Snyder EE, Kampanya N, Lu J, Nordberg EK, Karur HR, et al. (2007) PATRIC: 
the VBI PathoSystems Resource Integration Center. Nucleic Acids Res 35:
D401-D406.

19.	Kumar R, Nanduri B (2010) HPIDB--a unified resource for host-pathogen 
interactions. BMC Bioinformatics 11 Suppl 6: S16.

20.	Xenarios I, Salwínski L, Duan XJ, Higney P, Kim SM, et al. (2002) DIP, the
Database of Interacting Proteins: a research tool for studying cellular networks 
of protein interactions. Nucleic Acids Res 30: 303-305.

21.	Pruess M, Kersey P, Apweiler R (2005) The Integr8 project--a resource for
genomic and proteomic data. In Silico Biol 5: 179-185.

22.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. J Mol Biol 215: 403-410.

23.	Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped 
BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25: 3389-3402.

24.	Mazandu GK, Mulder NJ (2012) A topology-based metric for measuring term
similarity in the gene ontology. Adv Bioinformatics 2012: 975783.

25.	Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. 
Nat Genet 25: 25-29.

26.	Gene Ontology Consortium (2010) The Gene Ontology in 2010: extensions and 
refinements. Nucleic Acids Res 38: D331-D335.

27.	Jain S, Bader GD (2010) An improved method for scoring protein-protein
interactions using semantic similarity within the gene ontology. BMC
Bioinformatics 11: 562.

28.	Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, et al. (2003) The
Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-
PROT, TrEMBL, and InterPro. Genome Res 13: 662-672.

29.	Blondel VD, Guillaume JL, Lambiotte R, Lefebvreet E (2008) Fast unfolding of
communities in large networks. J Stat Mech 10008: 1-12. 

30.	Lee J, Hartman M, Kornfeld H (2009) Macrophage apoptosis in tuberculosis.
Yonsei Med J 50: 1-11.

31.	Loeuillet C, Martinon F, Perez C, Munoz M, Thome M, et al. (2006)
Mycobacterium tuberculosis subverts innate immunity to evade specific 
effectors. J Immunol 177: 6245-6255.

32.	Schaible UE, Kaufmann SH (2005) A nutritive view on the host-pathogen
interplay. Trends Microbiol 13: 373-380.

33.	Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb)
84: 110-130.

34.	Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. (2012) Ensembl 2012.
Nucleic Acids Res 40: D84-D90.

35.	Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival 
during infection. Proc Natl Acad Sci U S A 100: 12989-12994.

36.	Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial
growth defined by high density mutagenesis. Mol Microbiol 48: 77-84.

37.	Robinson A, Brzoska AJ, Turner KM, Withers R, Harry EJ, et al. (2010) Essential 
biological processes of an emerging pathogen: DNA replication, transcription,
and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 74: 273-297.

38.	van Crevel R, Ottenhoff TH, van der Meer JW (2002) Innate immunity to
Mycobacterium tuberculosis. Clin Microbiol Rev 15: 294-309.

39.	Herbst S, Schaible UE, Schneider BE (2011) Interferon gamma activated
macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS One
6: e19105.

40.	Kumar D, Rao KV (2011) Regulation between survival, persistence, and
elimination of intracellular mycobacteria: a nested equilibrium of delicate
balances. Microbes Infect 13: 121-133.

41.	Tversky A (1977) Features of similarity. Psychological Review 84(4): 327-352. 

42.	Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R (2011) Comparative
genomics of cell envelope components in mycobacteria. PLoS One 6: e19280.

43.	Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A (2008) Whole genome
identification of Mycobacterium tuberculosis vaccine candidates by 
comprehensive data mining and bioinformatic analyses. BMC Med Genomics
1: 18.

44.	Dubnau E, Fontán P, Manganelli R, Soares-Appel S, Smith I (2002)
Mycobacterium tuberculosis genes induced during infection of human
macrophages. Infect Immun 70: 2787-2795.

http://www.ncbi.nlm.nih.gov/pubmed/16300038
http://www.ncbi.nlm.nih.gov/pubmed/16342845
http://www.ncbi.nlm.nih.gov/pubmed/16751637
http://www.ncbi.nlm.nih.gov/pubmed/17624830
http://www.ncbi.nlm.nih.gov/pubmed/20168317
http://www.ncbi.nlm.nih.gov/pubmed/21526183
http://www.ncbi.nlm.nih.gov/pubmed/22190924
http://www.ncbi.nlm.nih.gov/pubmed/15608232
http://www.ncbi.nlm.nih.gov/pubmed/18940858
http://www.ncbi.nlm.nih.gov/pubmed/22837694
http://www.ncbi.nlm.nih.gov/pubmed/19357639
http://www.ncbi.nlm.nih.gov/pubmed/21067998
http://www.ncbi.nlm.nih.gov/pubmed/23844013
http://www.ncbi.nlm.nih.gov/pubmed/10615043
http://www.ncbi.nlm.nih.gov/pubmed/17142235
http://www.ncbi.nlm.nih.gov/pubmed/20946599
http://www.ncbi.nlm.nih.gov/pubmed/11752321
http://www.ncbi.nlm.nih.gov/pubmed/15972013
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/9254694
http://www.ncbi.nlm.nih.gov/pubmed/22666244
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://www.ncbi.nlm.nih.gov/pubmed/19920128
http://www.ncbi.nlm.nih.gov/pubmed/21078182
http://www.ncbi.nlm.nih.gov/pubmed/12654719
http://www.ncbi.nlm.nih.gov/pubmed/19259342
http://www.ncbi.nlm.nih.gov/pubmed/17056554
http://www.ncbi.nlm.nih.gov/pubmed/15993074
http://www.ncbi.nlm.nih.gov/pubmed/14670352
http://www.ncbi.nlm.nih.gov/pubmed/22086963
http://www.ncbi.nlm.nih.gov/pubmed/14569030
http://www.ncbi.nlm.nih.gov/pubmed/12657046
http://www.ncbi.nlm.nih.gov/pubmed/20508250
http://www.ncbi.nlm.nih.gov/pubmed/11932234
http://www.ncbi.nlm.nih.gov/pubmed/21559306
http://www.ncbi.nlm.nih.gov/pubmed/20971210
http://www.ncbi.nlm.nih.gov/pubmed/21573108
http://www.ncbi.nlm.nih.gov/pubmed/18505592
http://www.ncbi.nlm.nih.gov/pubmed/12010964

	Title

	Abstract
	Corresponding author
	Keywords
	Introduction
	Method and Materials
	Building unified human and MTB intra-species functionalnetworks
	Building a unified Human-MTB inter-species functionalnetwork
	Functional and statistical analysis

	Results and Discussions
	Comparing functional similarity scores between predictedand random Human-MTB interacting proteins
	Clustering interacting proteins and enrichment analysis
	Predicted interactions and drug targets

	Conclusions
	Authors’ contributions
	Acknowledgements
	Figure 1

	Figure 2

	Figure 3

	Table 1

	Table 2

	Table 3

	References

