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Abstract

In this paper, the uses of Postextrasystolic potentiation (PESP) are introduced and briefly reviewed. These uses
were found to fall into three categories: 1) Actualized applications which are based on empiric studies; 2)
Hypothetical applications which are based on empiric data. 3) Hypothetical applications which are based on
speculation about the generalization of the know mechanism of PESP. It is clear that the PESP phenomenon
continues to provide fertile grounds for application in multiple areas of scientific investigations. Further research into
its mechanism and applications seems to clearly be warranted.

Keywords: Cardiac electrophysiology; Force-frequency relationship;
Postextrasystolic potentiation

Introduction
The phenomenon of postextrasystolic potentiation (PESP), the

increase in contractility of the myocardium of the beat following an
extrasystole, has been studied extensively since its first description over
a hundred years ago [1]. Throughout that period, investigators and
clinicians have sought to use the phenomenon for both diagnosis and
treatment [2]. Recent research has confirmed old uses while presenting
new ones. Consideration of these developments leads to the hypothesis
of additional uses. The purpose of this paper is to review and
introduce:

1. Actualized Applications of PESP Based on Empiric Studies.

2. Hypothetical Applications of PESP Based on Empiric Data.

3. Hypothetical Application of PESP Based on the Generalization of
the Mechanism of PESP.

The PESP phenomenon is made up of the following intervals: S1-S1
interval=basic drive interval, for example, 500 msec; S1-S2
interval=extrasystolic coupling interval (ESI), for example 200 msec;
S2-S3 interval=postextrasystolic interval (PESI), for example, with a
full “compensatory pause”,=800 msec (twice S1-S1). As can be seen in
the figure, the contractility is potentiated from 1000 units to 1500
units.

The standard method of assessing the degree of potentiation is to
calculate the ratio of contractility of the postextasystolic beat to the
basic beat. In the example, this is the ratio of dp/dt of the potentiated
beat to the basic beat: RP=1.5.

Until recently, the mechanism of PESP was largely unknown and
hypothetical. However, extensive research has clarified the excitation-
contraction elements behind the phenomenon, adding new impetus to
research on the phenomenon [3,4].

The fundamental mechanism of PESP is the time-related recovery of
uptake and release of activator calcium from the intracellular storage

site, the sarcoplasmic reticulum (SR). Any factor which affects the
uptake or release of this activator from this site will be manifested in
the degree of potentiation [5]. With an extrasystole (S2), there is
relatively more calcium taken up by the SR than is released, making it
such that the contractility of the following beat (postextrasystolic beat)
(S3) is increased relative to the basic beat (S1).

One feature of the PESP phenomenon which was recognized early is
that the shorter the S1-S2 (extrasystolic interval (ESI) or “coupling
interval”), the greater the degree of potentiation at S3, all other
intervals being equal. This is referred to as the “coupling interval
phenomenon” [2,6]. It is a fundamental feature of PESP. We will see
that it plays a significant role in the application of the phenomenon.
An example of the coupling interval phenomenon is: In the dog (using
Fractional shortening (end diastolic dimension-end systolic
dimension/end diastolic dimension) as the measure of contractility, at
a basic drive cycle (S1-S1) of 429 msec (HR=140), at S1-S2 of 350
msec, ratio potentiation=1.07; at a shorter CI, S1-S2 of 300 msec, ratio
potentiation=1.11; at an even shorter CI, S1-S2 of 250 msec, ratio
potentiation=1.33; at the shortest CI, S1-S2 of 200 msec, ratio
potentiation=1.67; r=0.95. This is a curvilinear inverse relationship:
y=0.00404X + 2.406 (X=Coupling interval (S1-S2)).

Actualized Applications of PESP Based on Empiric
Studies

Detecting myocardial contractile reserve
The PESP phenomenon was early thought to provide information

about myocardial reserve [2]. It was not until the recognition that the
phenomenon is a function of all three intervals making up the
response that this expectation was proven [6].

While it was at first appreciated that the augmentation of
contractility occurred in the normal myocardium, it was soon found
that such a response also occurs in some dysfunctional myocardium
[2]. The most common application of this aspect of PESP has been in
predicting the improvement of depressed function accompanying
myocardial ischemia following revascularization [7].
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More specifically, recent research has shown that ischemic
myopathy falls into three categories: stunned myocardium, hibernating
myocardium and necrotic myocardium [8-20]. Stunned myocardium
refers to myocardial segments which have suffered low coronary
perfusion leading to ischemia in the past but are now receiving normal
perfusion. Hibernating myocardium refers to those myocardial
segments which continue to suffer ischemia and respond by down
regulation of function. There appears to be a continuum from stunning
to hibernation [14]. PESP occurs in both forms of ischemia and
predicts future recovery of function following re-perfusion [7,14].
Necrotic myocardium, being dead, fails to produce force in both a
normal beat and after an extrasystole. This is often called “dyskinetic”
myocardium, indicating that, instead of contracting and thus
shortening, it actually bulges out [20].

Predicting prognosis in ischemic heart disease
In recent studies, Scognamiglio et al. were able to predict the return

of contractile function following a myocardial infarction by exploiting
the coupling interval phenomenon of PESP (introducing an
extrasystole at varying coupling intervals [S1-S2]). Myocardial
segments which potentiated at longer coupling intervals (S1-S2)
recovered spontaneously, thereby predicting a better prognosis than if
a shorter interval was required for potentiation [21,22]. This test
appears to provide a dynamic test which can be used to uncover the
potential of recovery of dysfunctional myocardium.

Approaching the post-MI prognosis from another perspective,
Sinnecker et al. [23,24] measured PESP of arterial blood pressure using
a non-invasive photoplethysmographic device in 941 patients who
survived the acute phase of an MI. They correlated the presence of
what they thought to be PESP to all-cause 5 yrs mortality. PESP was
defined as an increase in postextrasystolic pulse pressure of 3% or
more compared with the mean of subsequent beats. The authors found
a significantly higher mortality risk in patients in whom PESP was
present compared with patients in whom PESP was absent, which is a
counter-intuitive result. This measure of PESP remained a significant
risk predictor after adjusting for left ventricular ejection fraction, the
amount of ventricular premature beats and GRACE (Global Registry
of Acute Coronary Events) score. The mechanism of how PESP is
correlated with a worse prognosis was not made clear. However, there
are several methodological problems with the studies [4]. The most
important criticism is that the intervals making up the PESP response
could not be controlled [6]. Another problem with the studies is that
the PESP response was gauged by comparison of the first
postextrasystolic beat to the subsequent beats. This is a non-standard
way of assessing PESP. What they appear to actually be measuring is
not the value of PESP but the decay of PESP, which would be
equivalent to what has been designated the Recirculated Fraction (RF),
a measure of the amount of activator calcium which is re-circulated
from one beat to another [25]. This is a decaying exponential function
and not the straight-line inverse function seen in the coupling
phenomenon. Such a finding as they report would be consistent with a
poorer prognosis because a reported “potentiation” would actually
represent an increased rate of decay of RF, and thus would predict a
poorer prognosis [25].

PESP and heart rate turbulence
Several recent studies have reported a relationship between PESP

and heart rate turbulence, a parameter which gives some information
about the prognosis of patients with idiopathic dilated cardiomyopathy

[26-31]. Decreased heart rate turbulence is associated with a poor
prognosis. It was found that pronounced PESP suppressed the typical
baroreflex regulation pattern of heart rate variability in hearts with LV
dysfunction. Again, these results might suggest that PESP actually
indicates a poor prognosis, but it should be noted that the studies, by
design, evaluated postextrasystolic potentiation of arterial blood
pressure, rather than ventricular contractility because this is the
physiologic effect which is thought to affect the baroreflex response.
How these results are correlated with PESP of ventricular function is at
present unexamined. Further studies clearly appear to be warranted.

Control of ventricular rate during atrial fibrillation
Coupled pacing (CP), a method for controlling ventricular rate

during atrial fibrillation (AF), consists of a single electrical stimulation
applied to the ventricle after each spontaneous activation. Because of
retrograde conduction to the AV node, the manifest ventricular rate
decreases and CP results in a mechanical contraction rate
approximately one-half the rate during AF. In a canine model of AF,
CP improved cardiac function and only moderately increased
myocardial oxygen consumption, thus increasing cardiac efficiency
[32]. A study in human patients confirmed that the technique reduced
the mechanical contraction rate. The effect on contractility was not
reported [33].

In several studies in canines with chronic atrial fibrillation, coupled
pacing was shown to improve left ventricular contractility. In one
study, a dual chamber pacemaker was programmed in its dual chamber
synchronous pacing (DDD) mode to apply coupled pacing. The AV
interval of the ventricular pacemaker was adjusted to alter the coupled
pacing time delay to intervals ranging from 160 to 220 msec. After
sustained coupled pacing had been applied for 3 to 4 weeks, left
ventricular volumes and contractile rate were significantly reduced and
returned towards the values measured prior to the induction of
persistent AF [34]. It is unclear what the mechanism behind the
improvement is. Tracings suggest a combination of effects: The first is
PESP. An additional beneficial effect is due to “concealed conduction”
of the triggered systole back into the AV node, making it refractory for
further forward propagation of the fibrillatory impulse. What one sees,
then, is regular 1:1 ventricular pacing where the AF waves do not
conduct to the ventricle. How much the improved ventricular
mechanics are due to this regularization of RR intervals [35] rather
than PESP was unclear. In a follow-up study, the same investigators
developed a more elaborate biventricular pacing protocol which
confirmed that the beneficial effect was due to PESP [36]. Again, they
demonstrated an increase in ejection fraction. It seems possible that
such a technique might be applicable in the clinical setting with the use
of biventricular pacing.

PESP and PVC cardiomyopathy
A recent retrospective study reported that, in presumed PVC-

induced cardiomyopathy, the presence of potentiation of post-PVC
systolic blood pressure was a marker for subsequent recovery of LV
ejection fraction after ablation [37,38]. One might initially suspect that
the investigators have merely fortuitously detected those ventricles
with early coupling interval PVCs, leading to potentiation. While these
investigators did not specifically address the relationship of
cardiomyopathy to coupling interval of the PVC, other studies have
not found such an association [39-41]. Follow-up studies will want to
address the association of coupling interval of the PVC with
potentiation and recovery post-ablation.
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The finding that PESP predicted recovery from cardiomyopathy
post-ablation might suggest that the mechanism of PVC
cardiomyopathy is not related to the EC-coupling elements which
affect PESP (uptake and release of calcium by and from the SR).
However, this result appears to conflict with those studies previously
reported which suggest abnormalities in EC-coupling in tachycardia-
mediated cardiomyopathy [42-44]. Alternatively, the presence of PESP
might indicate an early compensatory phase of the development of the
cardiomyopathy before the development of the failure phase. This
would be consistent with the natural history of rapid pacing induced
dilated cardiomyopathy and heart failure [45].

If confirmed, this study would have great significance because of the
wide-spread nature of PVCs in the population. Coupling this study
with the technique of prospective induction of PESP [46,47] might
develop into a meaningful diagnostic test for the selection of patients
with PVCs and cardiomyopathy who should be considered for
ablation.

Force-frequency pacing: paired pacing and non-excitatory
stimulation (NES) to treat myocardial dysfunction paired-
pacing

Since the mid-20th century, there has been considerable interest in
the utilization of PESP for the treatment of heart failure by the
application of PESP as repetitive coupled extrasystoles programmed to
occur following each basic beat, called “coupled pacing” or “paired
pacing” [2]. Since that report, there have appeared several preliminary
studies reporting the application of the technique to patients with
heart failure [48-51]. Prior to these reports, the major concerns of
applying paired pacing were: (i) the difficulty of weaning the failing
ventricle from paired pacing, (ii) the increase in oxygen consumption,
(iii) the increased risk of the development of ventricular arrhythmias,
and (iv) the risk of increasing ventricular failure. None of these
problems was manifest in these studies. All of the investigations
showed that paired pacing improved left ventricular hemodynamics
and increased contractility. Furthermore, myocardial oxygen
consumption was not increased [48]. No adverse effects were reported,
although the studies were preliminary and of short-term duration.
Close examination of the protocols of the studies reveals that there are
possibilities of enhancing the results with creative programming of the
intervals involved. The results are certainly promising enough to
warrant further study. Also, given what has been found in the
application of PESP in various etiologies of cardiomyopathy, it is clear
that the careful selection of the appropriate patients for these studies is
increasingly important.

Non-excitatory stimulation (NES)
Electrical stimulation of the myocardium during the refractory

period can also result in an increase in contractility [2,52]. The change
in contractility is a function of the amplitude and polarity of the
stimulation and the location of the stimulating electrodes [53-55]. The
stimulation is not conducting, it does not depolarize the myocardium,
and is referred to as “non-excitatory stimulation” (NES). Over the
course of the last few years there have been multiple studies of an
implantable device which applies NES to the ventricles [56-100]. The
proprietary device is called “OPTIMIZER” and the result is referred to
as “Cardiac Contractility Modulation,” or CCM. The device has been
shown to improve functional capacity, quality of life and parameters of
myocardial contractility. Beneficial effects have been reported on
morbidity and mortality in heart failure patients [95,97,98]. Chronic

changes accruing to CCM include reversion from fetal to adult gene
expression profiles in the heart, improved calcium handling,
restorative ventricular remodeling, and improved cardiac function
[88]. The 2016 ESC/HFA guidelines considers CCM to be worthy of
consideration in selected patients with heart failure. This is based on a
demonstrated improvement in exercise tolerance and quality of life
[86].

While there have been multiple studies to determine the
mechanism(s) of action of the CCM device, at present, it has not been
conclusively shown that the effective function of the device is
substantially different from what would be expected from PESP with
the CI phenomenon carried to the extreme of introducing the extra
stimulus within the refractory period. Basic studies have shown that
the experimental permutations which affect the features of EC-
coupling known to be associated with PESP affect NES similarly, and
in the same direction. That is, the augmentation by NES is abolished by
caffeine and by decreasing the inflow of calcium via sodium/calcium
exchange (NCX); it is blunted by exposure to ryanodine and by the
calcium channel blocker, verapamil [59,64,66,75,83]. Clearly, NES
leads to improved SR calcium uptake, as does PESP. To clearly
distinguish the two, more basic studies with direct comparisons of all
of the intervals involved will be required. Some of the proprietary data
about the OPTIMIZER will have to be shared for such studies to be
carried out. It seems important for these studies to be undertaken
because of the voluminous literature about PESP which would be
available when extending the clinical application of NES [92].

Hypothetical Applications of PESP Based on Empiric
Data

PESP of atria to augment pre-load
A recent study demonstrated PESP of the atria with paired pacing

which resulted in an augmentation of LV systolic performance by
affecting an increase in LV preload [99]. The presence of PESP is not
surprising given the extensive presence of sarcoplasmic reticulum in
atrial myocytes [100]. One might expect that this atrial PESP might be
programmable in a pacing device for beneficial augmentation of
ventricular function.

Use of LV PESP to augment the treatment of heart failure
with preserved ejection fraction (HFpEF)

In HFpEF, systolic function is normal but there is increased diastolic
pressure during relaxation. The ventricle become stiff and cannot relax.
The filling pressure increases even further during exercise, causing the
symptoms of heart failure. Medications that help improve outcomes in
systolic heart failure have unfortunately not worked in HFpEF. Thus,
the treatment remains largely empiric. On the other hand, the issue of
ventricular relaxation following an extrasystole is fraught with
confusion [2]. One recent study, however, looked at this issue in more
detail and showed that failing hearts showed potentiated relaxation
following an extrasystole, compared to a non-failing heart [101]. This
finding seems to warrant further investigations, particularly to
determine if this might be a factor to be exploited in the application of
the devices being tested to treat heart failure. This result could have
significant bearing on the utilization of a Force-frequency device
(paired-pacing, NES) on heart failure with preserved ejection fraction
(HFpEF) [102].
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Use of LV PESP to predict the response to force-frequency
pacing in myocardial dysfunction

As noted under new uses of PESP, Force-frequency pacing (Paired
pacing and non-excitatory stimulation (NES)) have been shown to
augment contractility in myocardial dysfunction [48-100]. However,
recent studies have shown that some cardiomyopathies do not respond
to PESP with augmentation of contractility. In other words, there is no
PESP. So it would be important to know which cardiomyopathies do,
and which do not, show PESP following an extrasystole.

Table 1 lists non-ischemic cardiomyopathies which have been
reported to respond to an extrasystole with PESP. To this list could be
added ischemic cardiomyopathy when the myocardium is either
stunned or hibernating. From these results, it would appear that these
cardiomyopathies might be expected to benefit from Force-frequency
pacing (Paired pacing or NES).

Cause of CM Response to PESP Reference

Autonomic Nervous System Dysfunction Abn Autonomic NS Present [103-105]

Taurine Depletion Decr. Actin/myosin Present [106]

Chagas disease Microvasc. Abn Present [107-109]

Calcium Overload Incr.SERCA2A Incr.RF [110]

Table 1: Non-ischemic cardiomyopathies which have been reported to respond to an extrasystole with PESP. Abn: Abnormal; Incr: Increased; NS:
Nervous System; Microvasc: Microvascular; RF: Recirculated Fraction.

Table 2 lists cardiomyopathies which have been reported to fail to
augment contractility following an extrasystole or responded with
decreased function. Again, theoretically, these cardiomyopathies would
not be expected to respond optimally to Force-frequency pacing. These
results do not necessarily mean that these cardiomyopathies will not

respond at all to Force-frequency pacing, since the context of the study
in which PESP was tested was not controlled. These results may merely
mean that the degree of myocardial dysfunction has progressed
beyond the threshold where PESP was operative, as has been reported
with prolonged hibernation in ischemic cardiomyopathy [8,9].

Cause of CM Response to PESP Reference

Bartter’s Syndrome Abn Ca homeostasis Absent [111,112]

Profound Catecholamine Stimulation: Takotsubu SR Ca depletion Absent [113,114]

Carnitine deficient cardiomyopathy Abn. Mito, SR Absent [115]

Cyclopiazonic acid cardiomyopathy Abn. SR Ca uptake Decr.RF [116,117]

Tachycardia- induced cardiomyopathy Abn.SR uptake/release Abn MRC [42-44]

Doxorubicin cardiomyopathy Abn. SR release Absent [118,119]

Hypertrophic cardiomyopathy Decr. SERCA2A Decr RF [120-122]

Cyclosporine Incr.Ca release Decr PESP [123]

Table 2: List of cardiomyopathies which have been reported to fail to augment contractility following an extrasystole or responded with decreased
function. Abn: Abnormal; Incr: Increased; Decr: Decreased; Mito: Mitochondria; Microvasc: Microvascular; RF: Recirculated Fraction; SR:
Sarcoplasmic Reticulum; MRC: Mechanical Restitution of Contractility.

Furthermore, from these results, it is clear that abnormal handling
of calcium by the SR is the prominent EC-coupling element associated
with the loss of PESP. These studies, do not, however, conclusively rule
out other elements of EC-coupling being affected in the
cardiomyopathy, since more rigorously detailed investigations would
be required for such a conclusion.

Use of LV PESP to guide cancer therapy
Cardiovascular disease represents the main competing cause of

death in cancer survivors [124]. Moreover, one of the major causes of
cardiovascular mortality in cancer survivors is left ventricular
dysfunction secondary to the treatment of the cancer with

anthracycline drugs, one of which is doxorubicin [125]. The standard
method of monitoring the cancer treatment with doxorubicin is to
follow the echocardiogram for evidence of myocardial dysfunction
prior to and during the course of therapy [126].

We have seen earlier (Table 2) that the cardiomyopathy associated
with doxorubicin does not respond to PESP, which is thought to be due
to abnormal release of calcium from the SR. However, anthracycline
cardio toxicity is strongly dose-related [125] and the conditions of
these studies of PESP with doxorubicin cardiomyopathy were not
strictly correlated with the clinical situation. Presumably, the absent
PESP response is that which develops after a full course of therapy,
after the full-blown cardio toxicity has become manifest. One might
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hypothesize that the PESP response could be studied at earlier stages of
treatment to predict early cardiomyopathy before the condition
becomes irreversible.

Additionally, again theoretically, one could perhaps implant one of
the Force-frequency pacemakers before there is the loss of PESP. This
might delay the onset of cardiomyopathy and possibly even allow the
use of higher doses of anthracycline.

Use of LV PESP to predict the degree of obstruction in
hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most common
hereditary disease of the heart [127]. The disease is characterized by
excessive thickening of the left ventricular myocardium. There are two
types of HCM: a more common, obstructive type in which there is left
ventricular outflow obstruction (HOCM) and a less common, non-
obstructive type (HNCM). The obstruction can be reliably quantified
using Doppler echocardiography by determining the increased systolic
flow velocities in the left ventricular outflow tract or by calculating the
pressure gradients at catheterization. Provocation of obstruction is
mandatory and can be induced by postextrasystolic potentiation,
which is known as the “Brockenbrough sign” [128].

One might reliably speculate that, since there is an indirect
relationship between the coupling interval and the PESP, varying the
coupling interval of the extrasystole (S1-S2) would result in a variable
and predictable degree of obstruction. The curve generated by such a
technique might provide information regarding the degree of
obstruction as well as provide information about prognosis and
indications for surgical or ablative therapy.

Hypothetical Application of PESP Based on the
Generalization of the Mechanism of PESP

Use of PESP and other pacing modalities to augment the
function of other organs or systems

Building on the observations that the potentiation associated with
PESP, including other patterns of electrical stimulation, as well as Non-
excitatory Stimulation (NES), leads to the modulation of the
intracellular calcium which produces the functional output, recently
there have appeared several proposals which seek to exploit this
phenomenon in systems other than the cardiovascular system. The
systems to be augmented include the neurological system [129], the
endocrine system (blood glucose level control) [130], intracellular
calcium control [131], gastrointestinal system (gastrointestinal motility
stimulation) [132] and genetic system (modify gene expression [133]).
Even non-biological systems have come to be considered to be
potentially enhanced by modifying the electrical stimulation pattern
(touch detector for a digitizer [134]). There are at present no specific
empiric data to support such applications Future studies to confirm or
deny these hypothetical applications of the force-frequency
relationship appear to be warranted.

Conclusion
In this paper, the uses of PESP have been introduced and reviewed.

These uses were found to fall into the two categories of: actualized
applications derived from empiric studies which support the
application and hypothetical applications which are derived from the
application of the phenomenon in empiric studies. Further research

into the mechanism and applications of PESP seems to clearly be
warranted because of the recent observations of successful applications
in clinical medicine.
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