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High throughput, next-generation sequencing techniques have 
been widely used for gene expression profiling and the study of 
signal transduction pathways due to their superior advantages over 
microarray technology, which requires previous genomic sequence 
or expressed sequence tag information [1]. Whole-transcriptome 
shotgun sequencing is known as RNA sequencing (RNA-seq) [2], 
which is a technology that employed the capabilities of next-generation 
sequencing to reveal a snapshot of the presence and quantity of 
transcripts in a transcriptome at a given time [3]. RNA-seq can help 
to capture and annotate the transcriptome [4], and to discover novel 
transcribed regions in the genomes of non-model aquatic animals [4-
6]. It has also been proven to be a sufficient tool to capture the genes 
and pathways involved in many biological processes of aquatic animals 
[7-9]. Therefore, the use of RNA-seq has attracted the attention of 
aquaculture researchers in many areas of research, and successful 
example studies have been reported in many economical aquaculture 
species [10-13].

Selective Breeding and Resource Conservation
RNA-seq studies are mainly focusing on SNP discovery as an 

effective tool. Studies have been done in channel catfish and blue catfish 
[14], common carp [15], and rainbow trout [12]. For instance, growth-
rate related SNP markers in rainbow trout were identified by RNA-seq, 
which proved that RNA-seq is a fast and effective means for identifying 
SNPs, and can be used for marker development in non-model species 
lacking complete and well-annotated genome reference sequences [12]. 
RNA-seq based approach was used to develop molecular resources for 
Villosa lienosa, [13]. And in the study, 23,742 unigene were captured 
by BLAST against the National Center for Biotechnology Information 
non-redundant database and 36,582 microsatellites with sufficient 
flanking sequence for primer designing were identified for V. lienosa, 
indicating that RNA-seq is a powerful tool for rapid development of 
molecular resources in non-model species too.

Disease Resistance and Immunology
The main use of RNA-seq in economical aquaculture species 

are focusing on finding the immune related genes or pathways by 
comparison of the whole transcriptome following pathogen challenge 
[8,11,16,17], and clarifying the host immune mechanisms underlying 
vaccine protection [18,19]. For instance, RNA-seq analysis of mucosal 
immune responses revealed signatures of intestinal barrier disruption 
and pathogen entry following Edwardsiella ictaluri infection in channel 
catfish [11]. 454 pyrosequencing-based RNA-Seq results revealed that 
apoptosis, mitogen-activated protein kinase signaling, toll-like receptor 
signaling, Wnt signaling and antigen processing and presentation 
pathways functioned importantly in defending against White Spot 
Syndrome Virus in white shrimp [10]. Similar studies were conducted 
in Vibrio harveyi challenged Asian seabass [8] and Japanese sea bass 
[17], white shrimp with Taura syndrome virus [20], and Chinese shrimp 
challenged with White Spot Syndrome Virus [21]. In zebrafish, RNA-
seq was utilized to investigate the expression patterns of immunization-
related genes immunized with vaccines against E. tarda [19], as well as 
in European sea bass with vaccines against V. anguillarum [18].

Stress Physiology and Toxicology
To understand the complex molecular biological process of stress 

physiology or toxicology at whole transcriptome level, RNA-seq 
would be a practical and efficient technology to obtain the overall and 
relatively complete genes and pathways involved into the corresponding 
physiological response. RNA-seq showed that 604 genes were involved 
in heat stress-response pathways in V. lienosa [13]. Similar work was also 
conducted to determine the heat stress-induced gene expression profile 
in channel catfish [22], zebrafish [23] and rainbow trout [7]. RNA-seq 
was also employed to understand the mechanism of osmoregulation 
in Asian seabass [8], Amur ide [9], and Chinese mitten crab [24]. For 
instance, protein ubiquitination, ubiquinone biosynthesis, oxidative 
phosphorylation, mitochondrial dysfunction EIF2 signaling, IGF-1 
signaling, and amino acid metabolism were found to be the top stress-
related pathways in the Chinese mitten crab after ambient salinity 
challenge revealed by RNA-seq [24]. Similar studies were reported in 
white shrimp exposed to nitrite [25]. For the use of RNA-seq in aquatic 
toxicology, the transcriptomic response to polychlorinated biphenyl 
(PCB) exposure in embryos and larvae of Atlantic killifish was studied 
[26]. Similarly, the toxicological effects of perfluorooctane sulfonate on 
Oryzias melastigma embryos were detected by RNA-seq [27].

Developmental Biology
177 genes were found to play key roles in the development process, 

revealed by RNA-Seq used to analyze the transcriptome profiles of 
four early developmental stages of zebrafish [28]. In channel catfish, 
to understand the male-heterogametic sex determination mechanism, 
RNA-seq was used to investigate the whole transcriptome of testis 
[16]. In this study, 5,450 genes were found preferentially expressed in 
the testis, and many of these genes were involved in gonadogenesis, 
spermatogenesis, testicular determination, gametogenesis, gonad 
differentiation, and possibly sex determination [16].

Overall, transcriptome analysis (RNA-seq) is a powerful tool 
that can lead to a better understanding of the underlying pathways 
and mechanisms of many scientific questions related to aquaculture. 
Although RNA-seq has been used in various research fields in 
various aquatic animals, including fish, crustaceans, and mollusk, the 
applications of RNA-seq are currently still limited to a few aquaculture 
species, and some of these studies are limited to model animals, such 
as zebrafish. Additionally, the scope of RNA-seq applications must 
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extend to other important research fields, such as aquaculture nutrition 
physiology, which plays important roles in aquaculture. Furthermore, 
most available studies using RNA-seq technology have reported overall 
gene and pathway responses for a few biological processes, but the 
detailed functions or responses of crucial gene or pathway have not been 
fully studied, therefore, further functional studies should be conducted 
to validate the results and hypothesis obtained from RNA-seq.
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