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ABSTRACT
A tumor is an abnormal lump or growth of cells. Sometimes a tumor is made up of cells that aren't a threat to invade other 
tissues, this is considered benign. When the cells are abnormal and can grow uncontrollably and spread to other body 
parts, they are cancerous cells that mean the tumor is malignant. This spreading process is called metastasis. If the cells 
are not cancerous, the tumor is benign. A benign tumor is less problematic. Doctors may need to remove benign tumors 
through surgery. These tumors can grow very large, sometimes weighing pounds. They can also be dangerous. They can 
press on vital organs or block channels. Some benign tumors, such as intestinal polyps, are considered precancerous. 
They are removed to prevent them from becoming malignant. Benign tumors usually don't come back once removed. 
But if they do, they return to the same place. In this research, using the features recorded for tumor tissues such as 
mean radius and mean texture and other available features that are fully mentioned in the article, with the help of Light 
Gradient Boosting Machine (LGBM), random forest, extra tree, ada boost, and the ensemble method classified benign 
and malignant tumors with perfect accuracy.
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INTRODUCTION

Breast cancer is a kind of cancer that develops from a malignant 
tumor in the breast tissue's cells. A malignant tumor is a mass of 
cancer cells that may invade nearby tissues or travel throughout the 
body [1]. Breast cancer is an unchecked cell proliferation in the 
breast tissue. A lump or structural deformities may emerge when 
the number of cells divides quickly. Breast cancer, which occurs 
immediately after lung cancer, is women's second most common 
cause of mortality. Breast cancer is a fatal condition, and early 
identification may undoubtedly lower the fatality rate. The survival 
rate is 88 percent after five years of treatment and 80 percent 
after ten days of therapy, according to an examination of the most 
current data [2]. In addition to 60,290 new instances of non-
invasive (in situ) breast cancer, there are expected to be 231,840 
cases reported of invasive breast cancer among women in the 
United States in 2015 [3]. Other than lung cancer, breast cancer 
has the highest mortality rate for women in the United States. 
With 25% of all occurrences, breast cancer is the most common 
kind of cancer among women globally. It is more prevalent in 
industrialized nations and affects women almost 100 times more 

often than it does males [4]. The kind of breast cancer, the severity 
of the condition, and the patient's age all affect the outcome [5]. 
The industrialized world has reasonable survival rates, with 80% 
to 90% of english people in United states are alive for at least five 
years [6,7]. Males are more likely than females to get lung cancer, 
which accounts for 23% of all cancer fatalities and 17% of all new 
cancer cases. Among financially developing nations, breast cancer 
is currently one of women's leading causes of cancer-related deaths 
[8]. There has been a change from the previous ten years when 
cervical cancer was the leading cause of cancer-related mortality.

However, lung and cervical cancer both account for 11% of all female 
cancer fatalities in emerging nations, placing them at comparable 
levels in terms of mortality load. The overall cancer death rates are 
typically similar, even though overall cancer incidence rates in the 
developing world are half as high as those in the developed world 
for both sexes. Each year, 4500 new instances of breast cancer are 
identified in Portugal, and it is expected that 1600 women will pass 
away from the illness [9]. Mammography is the most efficient tool 
for detecting early breast cancer [10]. The creation of a classifier is 
a critical phase in the design of a Computer Aided Design (CAD) 
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bootstrap aggregation. To put it simply, it takes a random selection 
of data without replacing it. So, nodes are divided at random 
rather than using the optimal splits. Randomness in the extra tree 
classifier thus derives from the data's random splits rather than 
bootstrap aggregation.

Ensemble: Using a variety of modeling techniques or training data 
sets, ensemble modeling is the process of building numerous varied 
models to predict a result. The ensemble model then combines 
each base model's forecast into a single overall prediction for the 
unobserved data.

Data preparation: Breast tissues [31] of 569 women were examined. 
The tissues had different characteristics, which determined whether 
breast cancer was benign or malignant based on the characteristics 
of the examined tissues. 'mean radius', 'mean texture', 'mean 
perimeter', 'mean area', 'mean smoothness', 'mean compactness', 
'mean concavity', 'mean concave points', 'mean symmetry', 'mean 
fractal dimension', 'radius error', 'texture error', 'perimeter error', 
'area error', 'smoothness error', 'compactness error', 'concavity 
error', 'concave points error', 'symmetry error', 'fractal dimension 
error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 
'worst smoothness', 'worst compactness', 'worst concavity', 'worst 
concave points', 'worst symmetry', 'worst fractal dimension', 'Benign 
and malignant tissue, benign tissue is marked with 0 and malignant 
tissue with 1'

Evolution process: A resampling technique called 10-fold cross-
validation [32,33] evaluates and trains a model utilizing a variety 
of input bits throughout many rounds. Use it to test how well a 
forecasting model will perform in the actual world. The remaining 
455 people are employed as training sets, leaving just 114 for 
validation and testing.

RESULTS AND DISCUSSION

Classification report

A classification report is used to evaluate the algorithm's accuracy 
in making predictions. Which of the predictions were accurate and 
which were incorrect? True-Positive (TP), False-Positive (FP), True-
Negative (TN), and False-Negative (FN) are all measures that may 
be used to predict the outcome of a test.

Precision, F1, and recall need an understanding of TP, FP, TN, and 
FN by giving a simple example and we explain what they are:

• True-Positive (TP): People that are sick are accurately labeled 
as such.

• False-Positive (FP): People who are well are mistakenly labeled 
as sick.

• True-Negative (TN): Ones in good health are rightly labeled 
"healthy."

• False-Negative (FN): Those who are unwell are mistaken for 
those who are healthy.

We now define precision, F1, and recall as follows:

Precision=TP/(TP+FP) (Equation 1)

Recall=TP/(TP+FN) (Equation 2)
(Precision*Recall)F1=2*
(Precision+Recall)  (Equation 3)

A total of 569 tissues were used, 445 were used to train the 
algorithms, and 114 were tested and validated. Out of these 

system. A classifier must be able to combine the supplied input 
feature data and provide an accurate assessment. Back Propagation 
Neural (BPN) networks and Linear Discriminants (LDA) are two 
popular classifiers for CAD that is effective in lesion classification 
tasks [11-28].

MATERIALS AND METHODS

Research algorithms

Random forest classifier: Ensemble learning methods (such as 
random forest, bagging, and boosting) are gaining popularity as 
they're more reliable and resistant to noise than single classifiers. 
Classifier ensembles are built on the fundamental idea that a group 
of classifiers performs better classifications than a single classifier. 
Breiman [29] proposed a novel and effective classifier called a 
random forest, which has numerous benefits for remote sensing 
applications includes:

a) It performs well on substantial data sets.

b) It can manage hundreds of inputs without deleting any of them.

c) It assesses which factors are relevant in categorization.

Ada boost classifier: The ada boost method produces robust 
classifiers from poor ones. The ada boost ensemble classifier 
includes the weak classifiers as a member. Ada boost develops a 
committee of member weak classifiers by adaptively modifying the 
weights at each cycle. Training samples with incorrect classifications 
by a current weak classifier have their consequences raised, while 
training samples with accurate classifications by a current weak 
classifier have their weights dropped. Ada boost is an excellent 
approach for creating ensemble classifiers, although it doesn't 
always produce classifiers with the most minor generalization 
average error. The ada boost algorithm performs well due to its 
capacity to provide growing variety. It comprises a variety of weak 
classifiers to enhance the performance of the final ensemble. 
The ada boost method is used by Viola and Jones [30] to choose 
a small number of crucial visual characteristics from a vast pool 
of alternative features. Ada boost offers a strong constraint on 
generalization performance and an efficient learning technique. 
They employed the Ada boost method to find a limited number 
of high-quality features with substantial variation. The Ada boost 
approach improves performance by limiting the weak learner to 
a collection of classification functions that each rely on a single 
element. They use single threshold features, weak classifiers that 
may be compared to single node decision trees.

Light gradient boosting machine classifier: Think again if you 
believed XG-boost to be the most significant algorithm available. 
Another boosting algorithm known as Light Glioblastoma 
Multiforme (GBM) has shown to be quicker and sometimes more 
accurate than XG-boost. Gradient-based One-Side Sampling 
(GOSS) is a particular method that Light GBM employs to filter 
out the data instances and determine a split value. This is distinct 
from XG-boost, which determines the optimal split using pre-
sorted and histogram-based methods.

Extra tree classifier: Similar to Random forest classifier, it is a form 
of ensemble learning approach that combines the outcomes of 
many de-correlated decision trees. The extra tree often performs 
as well as or better than the random forest. Between random forest 
and extra tree classifier, the following is the main distinction in 
contrast to the random forest; extra tree classifier does not use 
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Figure 4 displays the Classification Report for Ada Boost Classifier 
for predicting malignant and benign tissue. The Precision and F1 
evaluation criteria are less critical in medical issues than the recall 
assessment criterion. The diagnosis of malignant is 100% accurate 
and benign 93% correct for tissues (Figure 4).

A total of 569 tissues were used, 445 were used to train the 
algorithms, and 114 were tested and validated. Out of these 114 
tissues, 71 were malignant, and 43 were benign. Out of the 71 
malignant tissues, 69 were diagnosed correctly (Figure 5). Out of 
43 benign tissues, 41 were diagnosed correctly.

Figure 6 displays the classification report for light GBM classifier 
for predicting malignant and benign tissue. The Precision and F1 
evaluation criteria are less critical in medical issues than the recall 
assessment criterion. The diagnosis of malignant is 97.2% accurate 
and benign 95.3% correct for tissues (Figure 6).

A total of 569 tissues were used, 445 were used to train the 
algorithms, and 114 were tested and validated. Out of these 114 
tissues, 71 were malignant, and 43 were benign. Out of the 71 
malignant tissues, 69 were diagnosed correctly. Out of 43 benign 

114 tissues, 71 were malignant, and 43 were benign. Out of 71 
malignant tissues, 70 were diagnosed correctly. Out of 43 benign 
tissues, 42 were diagnosed correctly (Figure 1).

The recall is more critical if missed instances (False-Negatives) cost 
more than false alarms (False-Positive). The fundamental goal is 
to identify answers to these problems. When false positives (false 
alarms) cost more than missed instances, precision becomes more 
critical (False-Negatives). Figure 2 displays the classification report 
for random forest classifier for predicting malignant and benign 
tissue. The precision and F1 evaluation criteria are less critical in 
medical issues than the recall assessment criterion. The diagnosis 
of malignant is 98.6% accurate and benign 97.7% correct for 
tissues (Figure 2).

A total of 569 tissues were used, 445 were used to train the 
algorithms, and 114 were tested and validated. Out of these 114 
tissues, 71 were malignant, and 43 were benign. 71 malignant 
tissues, 71 were diagnosed correctly. Out of 43 benign tissues, 40 
were diagnosed correctly (Figure 3).

Figure 1: Confusion matrix for random forest classifier for predicting 
malignant and benign tissue.

Figure 2: Classification report for random forest classifier for predicting 
malignant and benign tissue.

Figure 3: Confusion matrix for ada boost classifier for predicting 
malignant and benign tissue.

Figure 4: Classification report for ada boost classifier for predicting 
malignant and benign tissue.

Figure 5: Confusion matrix for light-GBM classifier for predicting 
malignant and benign tissue.

Figure 6: Classification report for light-GBM classifier for predicting 
malignant and benign tissue.
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Figure 11 shows that the algorithm proposed by Ensemble (Light 
GBM, rf, et, ada) is able to detect benign and malignant breast 
tissue within 35 seconds. Also, Figures 10 and 11 show the high 
accuracy of the proposed method Ensemble (Light GBM, rf, et, 
ada) in the diagnosis of benign and malignant breast tissue (Figure 11).

CONCLUSION

This research looked back at 569 pieces of cancerous and healthy 
tissue. All cancerous and healthy tissue was predicted using 
algorithms called Extra tree, random forest classifier, ada boost 
classifier, and light gradient boosting machine, ensemble (Light 
GBM, rf, et, ada). Ensemble (Light GBM, rf, et, ada) was able to 
correctly identify 71 out of 71 cancerous tissues. The Ensemble 
(Light GBM, rf, et, ada) algorithm was the only one able to 
diagnose all malignant tumors correctly. In medical science, it's 
essential to figure out what's wrong with a sick person as a patient. 
If a healthy person is told they are sick, it doesn't matter as much 
as if a sick person is told they are healthy. Ensemble (Light GBM, 
rf, et, ada) predict a healthy person for a patient. This is the 
algorithm's weakness, and neither machine learning algorithms 
nor the best doctors have ever been able to diagnose diseases with 
100% accuracy.
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