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Abstract
Aquatic ecosystems are continuously contaminated by manufactured pharmaceutical and personal care 

products (PPCPs). Non-regulated, multi-purpose PPCP contaminants enter aquatic systems through sewage/
wastewater treatment plants after consumption and use by humans and animals. These micro-pollutants receive 
increased attention worldwidesince significant levels of contamination have been found in various environmental 
compartments and organisms. Highly sophisticated equipment such as liquid chromatography-mass spectrometry 
(LC-MS) and gas chromatography-mass spectrometry (GC-MS) are reliable ways to determine PPCPs at sub-ppb 
levels from air, waters, sediments, effluents, aquatic organisms and human body fluids. Although the consequences 
of these pollutants are gradually becoming visible, their potential impacts on aquatic ecosystems and organisms are 
poorly known. Some studies have suggested that PPCPs are persistent and have bioaccumulation potential leading 
to ecological effects and abnormalities in fish. Other findings illustrate that PPCPs can impair swimming behavior in 
fathead minnow (Pimephales promelas), interfere with thyroid axis in the zebra fish (Danio rerio), or form adducts 
with hemoglobin and/or suitable protein breakdown PPCPs products. Thus, this review focuses on PPCPs emerging 
contaminants concern with regards to sources, occurrences, analytical methods, fate and biological transformation. 

Keywords: PPCPs; Micro-pollutants; Emerging contaminants;
Biomarkers; Aquatic organisms; LC-MS and GC-MS

Introduction
In modern life, one of the most important issues in the world is 

the exposure to man-made chemicals that cause interference of regular 
activities such as reproduction and development of different organisms 
in the environment [1,2]. Some of them are hazardous and present 
potential or actual threat to human health, wildlife, aquatic organisms 
and/or soundings [2]. Newer analytical techniques have made it 
possible to identify these compounds at extremely low level of the order 
of sub-ng/g. These are frequently detected in different environmental 
compartments including surface waters, wastewaters, air, wildlife 
and fish, and had not been recognized previously at such low levels. 
These compounds are often referred to as “emerging contaminants” 
(ECs) because adequate information associated with their presence, 
occurrence, fate, transport and mechanisms are not available to assess 
their risk to human health and the ecosystem [3]. ECs are used daily 
in homes, farms, businesses and industry as detergents, fragrances, 
prescription and non-prescription drugs, disinfectants, and pesticides 
etc. Some ECs have been commonly found in water resources around 
the world and across the USA [4-6]. 

PPCPs as Endocrine Disruptors
Emerging evidence from wildlife and laboratory studies indicates 

that some chemicals may interfere with the endocrine system. 
Compounds identified include pesticides, polychlorinated biphenyls, 
dioxins, furans, alkyl phenols, and steroid hormones. These chemicals 
are routed to ecosystems through wastewater treatment plants. Several 
studies reported that many ECs present in municipal wastewater 
effluent can act as endocrine disruptors at concentrations capable of 
inducing fish feminization [7,8]. The feminization has been linked 
to exposure to compounds that mimic estrogen activity. However, 
it has also been determined that thousands of the compounds have 
the potential to interact with components of the endocrine system, 
altering the natural action of hormones [9,10] in both freshwater and 
marine fish species [4,8,11-13]. The occurrence of some ECs correlates 

with ecological effects and sexual abnormalities in fish [14-16]. In 
other studies, complex mixtures of ECs at environmentally relevant 
concentrations were reported to inhibit the growth of human embryonic 
cells [17,18]. Other evidence suggests that some ECs are persistent in 
the environment and survive through conventional water treatment 
plant and ultimately reaching the aquatic organisms [18]. Overall, an 
important concern, posed by ECs, is the interference of reproduction 
and development of aquatic organisms and wildlife [1,2,19]. 

Release of PPCPs into the Environment
Pharmaceuticals and personal care products (PPCPs) are a major 

class of ECs commonly used in human and animal applications. PPCPs 
are many chemical compounds with a variety of chemical structures, 
conformations, functional groups, polarities and characteristics. 
PPCPs include prescription and non-prescription drugs together with 
fragrances, cosmetic ingredients, diagnostic agents, biopharmaceuticals, 
and growth enhancing constituents used in livestock operations. 
Tons of these chemicals are produced annually worldwide [20]. After 
consumption, PPCPs are released into ecosystems via urine, feces or 
residues as either parent compounds or their metabolites. PPCPs enter 
the environmental system through effluent discharge from wastewater/ 
sewage treatment plants, inappropriate disposal of expired or unused 
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drugs, shower drain, residues from drug manufacturing companies, 
nursing homes and hospital facilities. 

Wastewater treatment plants are not generally designed to eliminate 
the PPCPs because they are non-regulated water pollutants [21]. Based 
on the process design of the treatment plants, the elimination rates of 
drugs range from <10% (e. g. atenolol and carbamazepine) to almost 
complete removal (e. g. propranolol) [22]. As these compounds are 
continuously released into aquatic systems, the effluents from the 
wastewater treatment plants are considered as the main routes of human 
pharmaceuticals into the environment [23], reaching concentrations of 
ng/L to μg/L [24]. Aquatic organisms are consistently exposed to these 
non-regulated PPCPs, as environmental contaminants. 

Most PPCPs/ECs ultimately end up in the aquatic environment. 
Consequently, these compounds frequently appear in ecosystems and 
are frequently detected in different environmental compartments and 
organisms at different concentration levels [25]. PPCPs have been 
frequently detected in different environmental matrices such as air, 
waters, sediments, sewage sludge, humans and fish [26-45]. The high rate 
of occurrence of PPCPs is due to the fact that they are easily dissolved in 
aquatic environment and do not evaporate at normal temperature and 
pressures. Moreover some PPCPs appear to show low biodegradation 
rate and high lipophilicity, and have high bioaccumulation potential as 
environmental contaminants [21]. Several studies have been published 
that further discuss the sources of PPCPs and their transportation from 
personal usages to waters and aquatic organisms [3,18, 21,22-27]. 

Until recently, many around the world were unaware that a 
new environmental health concern had emerged. Now, regulatory 
authorities, health agencies, and professional organizations, all over the 
globe are informed of the growing PPCP problem which drives research 
on the presence, occurrence, fate of the PPCPs and metabolites [26,27]. 
Today, the U. S. Environmental Protection Agency (EPA) and other 
organizations are working together to improve its understanding of a 
number of ECs, particularly PPCPs. 

Occurrences and Effects of PPCPs on Organisms 
 PPCPs and their metabolites have been detected in aquatic and 

terrestrial organisms [28,29], surface water [30], air [31], sewage 
effluent [32], lake Michigan water and sediments [33], industrial 
sewage sludge [34], municipal effluents [35], marine sediments [36], 
marine mammals [37], effluent-dominated river water fish [38,39], 
Pecan Creek fish [40] and German fish specimen bank [41], fish-
eating birds and fish [42], receiving marine waters and marine bivalves 
[43]. PPCPs and metabolites have also been identified in human milk 
[44], and human blood [45]. More importantly, multiple studies have 
indicated that PPCPs are not only accumulated but also subsequently 
metabolized to reactive intermediates that form covalently-bound 
protein adducts in human [46] and aquatic organisms such as fish 
[47,48]. 

Studies indicate that many PPCPs are environmentally persistent, 
bioactive, and have bioaccumulation potential [49-52]. For example, 
the PPCPs known astriclosan (TCS), an antimicrobial agent, has 
been widely used in dental care products, disinfectants, hand soaps, 
footwear, skin care creams and textiles. TCS and its methyl metabolites 
were detected in surface waters [53], biosolids [54], fish [55], and algae 
[56]. Still, the fate and chemistry of TCS are not fully understood. 
TCS is quite stable to hydrolysis; however its photolysis was identified 
as one of the major pathways of degradation in surface waters [57]. 
Other research groups have shown that TCS in surface water may 
be toxic to certain algae species. Specifically, Orvos et al. [58] found 

no observer-effect concentration (72-h growth) at 500 ng/L for algae 
Scenedesmus subspicatus while Wilson [59] reported that TCS may 
cause significant increase in Synedra algae and a substantial reduction 
of the rare genus Chlamydomonas algae at 15 ng/L and 150 ng/L. Levy 
et al. [60] demonstrated that TCS can block bacterial lipid biosynthesis 
inhibiting the enzyme enoyl-acyl carrier protein reductase, which 
leads to a possible development of bacterial resistance to TCS. Recent 
studies have shown that TCS impaired swimming behavior and altered 
expression of excitation-contraction coupling proteins in fathead 
minnow (Pimephales promelas) [61] and interfered with thyroid axis in 
the zebra fish (Danio rerio) [62]. 

Analytical Methods
Modern equipment has made it made possible to detect PPCPs 

from different matrices at sub-ng/g levels. The main advances in 
PPCPs analysis have been made using liquid chromatography-mass 
spectrometry (LC-MS) and gas chromatography-mass spectrometry 
(GC-MS) techniques. Pharmaceuticals comprised of polar compounds 
are easily dissolved in water or polar solvents, which is special advantage 
for LC-MS analysis. Employing isocratic or gradient elution in LC 
method, complex composites/mixtures of sample can be separated 
using different polarities (polar or medium polar or mixed polar) 
mobile phases with an analytical column such as C18. The separated 
compounds are characterized with MS detection. LC - tandem mass 
spectrometry (LC-MS/MS) with positive- and or negative modes 
of operations using electrospray ionization (ESI) and atmospheric 
pressure chemical ionization (APCI) are able to detect PPCPs up to 
sub-ppb level. The presence of unknown compounds are confirmed 
and identified by comparing the mass signals and retention times of 
unknown samples to known standards. 

On the other hand, personal care products (PCPs) are relatively 
non-polar and are more easily dissolved and extracted in relatively 
non-polar organic solvents. After cleaned up, the samples are analyzed 
by GC- MS/MS or - selected ion monitoring (SIM) modes with election 
ionization (EI) or negative ion chemical ionization (NICI) based on 
sample nature. The GC-MS/MS or GC-SIM-MS methods are capable 
of detecting PPCPs down to sub-ng/g levels. The presence of unknown 
compounds are characterized establishing over 80% to 99% agreement 
with standard compounds of the respective samples [40,63]. Examples 
of some analyses performed by LC-MS and GC-MS are illustrated 
below. 

Analysis of PPCPs by LC-MS and GC-MS
Many researchers have reported the identification and analysis of 

emerging PPCPs contaminants [39,42,64]. Our research group [39,64] 
developed LC-MS/MS methods for determination of pharmaceuticals 
and metabolites from environmental fish. Specifically, non-linear 
gradient elution of water and methanol solvents consisting of 0. 1% 
(v/v) formic acid in water and 100% methanol are passed through 
a C18 analytical column at a flow rate 350 µL/min to achieve the 
separation of the complex mixture of PPCPs. An auto-sampler is used 
to inject 10 µL sample solution. Column effluents are monitored by 
MS/MS equipped with an electrospray interface (ESI). Figure 1 displays 
chromatographic separation of 25 target pharmaceutical drugs and 
metabolites, 5 surrogates and 2 internal standards that were spiked to 
the clean fish tissues by LC-MS/MS using electrospray ionization (ESI) 
positive (+) and negative (-) modes. 

Employing the extraction protocol and LC-MS/MS method [64] 
all target compounds were analyzed from environmental fish samples 
that were obtained from the Pecan Creek, Denton, Texas, downstream 
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from the effluent discharge. The presence and characterization of the 
target analytes were confirmed based on comparison of retention time 
and relative intensities of fragment ions observed from spiked and 
environmental fish specimens. Four pharmaceutical compounds were 
detected over method detection limits (MDLs). Figure 2 displays a 
typical LC-MS/MS ion chromatogram for identification and determined 
the concentration of dyphenhydramine (0. 66-1. 32 ng/g) ,diltiazem 
(0. 11-0. 27 ng/g), carbamazepine (0. 83-1. 44 ng/g), norfluoxetine 
(3. 49-5. 114 ng/g) drugs [64]. Method performance associated with 
method detection limits (MDLs), limit of detection (LOD) and limit 
of quantitation (LOQ) of 25 target compounds were compared and 
illustrated in Table 1. It was estimated that MDLs were approximately 
3 to 10 times higher than LOD for a majority of the target analytes. 
In the LC-ESI-MS/MS analyses, matrix influences played a critical role 
that was essential to consider. These matrix effects are caused by co-
extracted constituents that affect analyte ionization using either ESI 
positive or negative modes [42]. An approach, developed by our group 
[64] was used to measure the matrix influence for extraction solvents 
that promoted recoveries. The matrix effect in analyzing the samples 
that influence mass signal generation, matrix-match calibration curve 
was proven to be excellent method that minimized the matrix effect in 
quantitation of analytes from the environmental samples such as fish 
[64]. 

GC-MS is a highly efficient tool widely used to analyze semi-
volatile and volatile organic personal care products at extremely low 
levels from environmental samples. Sample nature and complexity are 
critical considerations in choosing the GC-MS techniques. Extraction/
pre-concentration and clean-up steps are required in preparation 
of samples for GC-MS examination. As fish samples are complex 
matrices containing lipids, fat etc. , a wide range of extraction and 
clean-up techniques are needed to handle the samples prior to analysis 
[40,63,65-68]. Extraction methodologies include Soxhlet extraction, 
microwave assisted extraction, ultrasound-solid liquid extraction, and 
pressurized liquid extraction (PLE) and clean-up approaches are silica 
gel, florisil, and/or gel permeation chromatography (GPC) [40,63,65-
68]. Figure 3 shows a schematic diagram of fish sample extraction, pre-
concentration and clean-up protocols for GC-MS analysis [63]. 

Our research group developed GC-SIM-MS and GC-MS/MS 

Figure 1: LC-MS/MS total ion chromatogram resulting from analysis of clean 
tissue spiked with a mixture of pharmaceutical standards. Peak identifica-
tions are as follows: (1) acetaminophen-d4, (2) acetaminophen, (3) ateno-
lol, (4) cimetidine, (5) codeine, (6) 1,7-dimethylxanthine, (7) lincomycin, (8) 
trimethoprim, (9) thiabendazole, (10) caffeine, (11) sulfamethoxazole, (12) 
7-aminoflunitrazepam-d7 (+IS), (13) metoprolol, (14) propranolol, (15) diphen-
hydramine-d3, (16) diphenhydramine, (17) diltiazem, (18) carbamazepine-d10, 
(19) carbamazepine, (20) tylosin, (21) fluoxetine-d6, (22) fluoxetine, (23) nor-
fluoxetine, (24) sertraline, (25) erythromycin, (26) clofibric acid, (27) warfarin, 
(28) miconazole, (29) ibuprofen-13C3, (30) ibuprofen, (31) meclofenamic acid 
(-IS), and (32) gemfibrozil. (Reproduced with permission from (64), © American 
Chemical Society).

 

Figure 2: LC-MS/MS reconstituted ion chromatograms displaying analyte-spe-
cific quantitation and qualifier ions monitored for (A) a tissue extract from a fish 
(Lepomis sp.) collected in Pecan Creek and (B) an extract from clean’ tissue 
spiked with known amounts of diphenhydramine (1.6 ng/g), diltiazem (2.4 ng/g), 
carbamazepine (16 ng/g), and norfluoxetine (80 ng/g). The higher m/z fragment 
is more intense in all cases. (Reproduced with permission from (64), © Ameri-
can Chemical Society).
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Figure3:  A simplified schematic diagram of the experimental procedure used 
for extraction and analysis of nitromusks, antimicrobial agent and antihistamine 
from edible fish fillets. (Reproduced with permission from (63), © Elsevier).
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Analyte Linear range,a 
(ng/g) LOD,b(ng/g) LOQc (ng/g) MDLd (ng/g)

Acetaminophen 3.12 - 400 0.30 0.99 4.40

Atenolol 1.25 - 160 0.48 1.62 1.48

Cimetidine 0.625 - 80 0.24 0.81 1.04
Codeine 4.60 - 600 1.07 3.55 6.11
1,7-dimethylxanthine 0.625 - 80 0.17 0.58 1.02
Lincomycin 3.12 - 400 0.63 2.09 5.53
Trimethoprim 1.25 - 160 0.79 2.63 2.15
Thiabendazole 1.25 - 160 0.14 0.47 2.63
Caffeine 3.12 - 400 0.34 1.15 3.93
Sulfamethoxazole 1.25 - 160 0.23 0.76 2.29
Metoprolol 1.25 - 160 0.25 0.85 2.50
Propranolol 0.625 - 80 0.01 0.03 1.07
Diphenhydramine 0.0625 - 8 0.01 0.03 0.05
Diltiazem 0.09 - 12 0.04 0.13 0.12
Carbamazepine 0.625 - 80 0.03 0.12 0.54
Tylosin 3.12 - 400 1.18 3.93 5.02
Fluoxetine 4.69 - 600 0.76 2.54 6.73
Norfluoxetine 3.12 - 400 0.32 1.08 2.90
Sertraline 3.12 - 400 0.21 0.71 3.57
Erythromycin 3.12 - 400 0.85 2.84 6.42
Clofabric acid 1.25 - 160 0.10 0.32 2.69
Warfarin 0.625 - 80 0.09 0.29 0.86
Miconazole 3.12 - 400 0.39 1.32 10.8
Ibuprofen 25 - 3200 3.14 10.4 45.9
Gemfibrozil 3.12 - 400 0.25 0.85 6.68

Table 1: Investigated linear range, LOD, LOQ, and MDL for target analytes in fish 
muscle tissuea.
aclean tissues employed in the determination of these parameters were extracted 
using a 1:1 mixture of 0.1 M acetic acid (pH 4) and methanol.  bLOD, calculated as3 
times the standard deviation in the background signal observed for the replicate 
analysis of a tissue blank. cLOQ, calculated as 10 times the standard deviation in 
the background signal observed for the replicate analysis of a tissue blank, d MDL, 
determined by multiplying the one-sided Student’s t–statistics at 99% confidence 
limit times the standard deviation observed for eight replicate analyses of a matrix 
spike (spiking level ≤ 10 x MDL). (SOURCE Reproduced with permission from 
reference 64, Copyright© American Chemical Society).

methods [40,41] for PPCPs analysis from fish and other environmental 
samples following U. S. EPA protocols. For example, Mottaleb et al. 
[40] detected the presences of PCPs in environmental fish collected 
from Pecan Creek and Clear Creek streams, Denton, TX, USA. Figure 
4 represents a GC-SIM-MS total ion chromatogram for standard 
solution displaying the separation of compounds that were targeted in 
the environmental fish collected from the Pecan Creek, Denton, Texas. 

Employing the extraction protocols illustrated (Figure 3) [63],we 
recently reported the concentration of four frequently observed PPCPs 
in edible fish fillets obtained from grocery stores by GC-SIM-MS [63]. 
In this investigation, the presence of the target compounds in fish 
extracts was confirmed based on similar mass spectral features and 
retention times compared to pure standards. Mass spectral features and 
retention times of the target compounds obtained from the fish extracts 
were used for characterization by comparing with the authentic 
standards. Figure 5 is a GC-SIM-MS ion chromatogram for (A) a 
standard solution containing, 100 pg/µL of triclosan, an antimicrobial 
agent and (B) a Whiting (genus Merlangius) fillet extract. Individual 
identities of the compounds extracted from the grocery store fish fillet 
were characterized based on comparison of the relative ion abundance 
ratios between the quantification and the qualifier ions mass signals. 
The presence of target compounds in the fish fillet extracts was 
confirmed when the difference of the relative abundance ratio was less 
than or equal to approximately ± 20%, or an agreement of the relative 

abundance ratio of 80% or over. Figure 5 compares typical mass spectra 
derived from the ion chromatogram. These spectra show an excellent 
agreement of the mass spectral features/mass signals with a variation 
of about ± 10%. When similar agreement of ion relative abundance 
ratio and retention features were observed, then the presence, 
characterization and quantification of other compounds in the different 
fish samples were established. Table 2 shows the concentrations of the 
compounds that were characterized and quantified in grocery stores 
fish species. The values of detected compounds from grocery store 
samples are approximately 1 to 3 orders of magnitude lower than the 
fish that were collected from the environmental sites [39-42,64]. 

Biological Transformation and Effects of PPCPs
Biotransformation of any chemicals is a critical consideration 

because the compounds get metabolized in biological system forming 
different species or breakdown products that may induce numerous 
issues over the period of time. The effects of PPCPs differ from those 
of conventional pollutants because drugs are intentionally designed 
to interact with cellular receptors at low concentrations and to cause 
specific biological effects. Unintended adverse effects can also occur 
from interaction with non-target receptors. Environmental toxicology 
focuses on acute effects of exposure rather than chronic effects. Effects 
on aquatic life are a major concern because aquatic organisms receive 
more exposure risks than do human, and are exposed with continual 
and multi-generational basis with higher concentrations of PPCPs in 
untreated water possible low dose effects. The risks posed to aquatic 
organisms by trace level concentration of the PPCPs are largely 
unknown. Some of the known potential impacts on organisms include 
delayed development in fish, delayed metamorphosis in frogs, and a 
variety of reactions including altered behavior and reproduction [1,2]. 
Overall, the behavior and fate of pharmaceuticals and their metabolites 
in the aquatic environment and organism are not well established. The 
low volatility and increase polarity of pharmaceuticals indicates that 
distribution in the environment occurs primarily through aqueous 
transport, but also via food chain dispersal. Recent studies have indicated 
that many pharmaceuticals and metabolites are environmentally 
persistent, bioactive, and have potential for bioaccumulation [49,50]. 
Acute aquatic toxicities of drugs and metabolites were examined on 
marine bacterium (Vibrio fischeri), a freshwater invertebrate (Daphnia 
magna), and the Japanese medaka fish (Oryzia slatipes) by Kim et 
al. [69]. They demonstrated that Daphnia was the most susceptible 
among the tested organisms. Correa and Hoffmann [70] studied the 
variation of magnitude of response effect of drugs d-amphetamine, 
sodium pentobarbital, diazepam, β-carboline, and saline before and 
after inducing into of knife-fish (Gymnotus carapo). They concluded a 
reduction of the degree of alertness by the barbiturate and a decrease 
in emotionality and/or stress by the benzodiazepine with the novelty 
response. Brandao et al. [71] evaluated the biochemical and behavioral 
effects of neuro-active anticonvulsant drugs (diazepam, carbamazepine, 
and phenytoin) on pumpkin-seed sunfish (Lepomis gibbosus) and 
showed behavioral changes of sunfish through oxidative stress 
parameters such as glutathione reductase, glutathione S-transferases, 
catalase and lipid peroxidation. 

Mottaleb et al. [47,72,73] investigated the biotransformation and 
toxicokinetics of PPCPs known as nitro musks fragrance ingredients, 
musk xylene (MX), and musk ketone (MK) using trout fish as 
model. The fish were exposed to nitro musks compounds. Details 
regarding fish exposure, extraction, and analysis of breakdown 
product or metabolites have been reported [47,72,73]. Previously we 
demonstrated the formation of amine (cysteine - hemoglobin) adducts 
through enzymatic biotransformation reaction between MX/MK and 
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trout [47,74]. The reduction of a nitro-group in MX and MK led to the 
formation of amine adducts of hemoglobin that could be suitable as a 
biochemical endpoint useful for exposure monitoring and assessment 
of potential hazards resulting from MX and MK compounds [47,72-
74]. 

Recently our group [48] also reported that the bound metabolites 
obtained from liver proteins may be used as indicators of internal 
exposure to chemical carcinogens. Table 3 illustrates the relationship 
between exposure time and the uptake of different dosages of MX and 
MK compounds over a period of 7 days. The metabolites of nitro musks 
or other related nitroarenes, bound to the cysteine sulfhydryl group 
(– SH) of proteins in liver as biomarkers of exposure, could potentially 
be used to assess continuous exposure over a longer time range, and 
thus, may be better suited for risk assessment than quantitation of 
urinary metabolites [75]. The biological transformation processes of 
MX and MK to their corresponding amine metabolites, with cysteine 
containing proteins in the liver results in adducts formation are shown 
in Figure 6. Nitroarenes are enzymatically reduced to nitroso reactive 
intermediates, nitrosoarenes, capable of covalently binding with the 
– SH group of cysteine amino acids in proteins to form an acid/base 
labile sulfonamide adducts that hydrolyzes to aromatic amines in the 
presence of aqueous base [76]. The aromatic amines were considered to 
be good dosimeters for the target tissue [77]. 

Spike recovery studies and limit of detection (LOD) measurements 
of 2-amino-MX, 4-amino-MX and 2-amino MK metabolites were 
accomplished as 95-114% with relative standard deviation <10% and 
0. 91-3. 8 ng/g, respectively. Table 4 illustrated the concentration of 
metabolites observed in the trout liver [48]. The half-lives of 2-AMX, 
2-AMK and 4-AMX metabolites were estimated to be 2 - 9 days in 
the trout liver based on the assumption of first-order kinetics. The 
individual values of the elimination rate constants and the half-lives of 
the 2-AMX, 2-AMK and 4-AMX metabolites in the fish liver suggested 
that the toxico kinetics are more complex than a simple first-order 
reaction because additional internal biological processes transpire in 
the living organisms. Nitromusks (MX and or MK) were identified as 
inducers of hepatic cytochrome P450 2B enzymes and P450 1A1 and 
1A2 isoenzymes [78,79] and are non-genotoxic [80,81]. Although the 
non-genotoxic carcinogenesis is not fully understood, it is believed 
that a non-genotoxic mechanism, such as increased cell proliferation, 
might be responsible for the increase in the liver tumors [82]. In our 
investigation [48], the MX and or MK-cysteine-protein adducts in 
fish liver were used to monitor nitromusks hazards as biomarkers of 
exposure. 

Conclusions 
PPCPs are increasingly being used in human and animal 

applications for numerous purposes. The ultimate fates of these 
chemicals are in aquatic systems, where organisms get exposed over 
an extended period of time through wastewater treatment plants and 
other sources. Continuous loading of the parent compounds and 
metabolites of PPCPs will reach harmful concentrations that adversely 
affect the freedom of aquatic creatures. Thus, periodic measurements 
of exposure level of those compounds are very important. Modern 
analytical techniques such as LC-MS and GC-MS have made it possible 
to detect extremely low levels of those chemicals. 

To address the challenge of PPCPs as emerging contaminants, 
regulatory authorities or agencies or health care professionals need 
to work collectively. An important and effective way aspect to reduce 
the load of PPCPs and their metabolites in wastewaters and surface 

 

 

  

 

Figure 4: GC-SIM-MS representative total ion chromatogram for a 
calibration standard. Peak identifications are as follows: (1) m-toluamide, (2) 
benzophenone, (3) benzophenone-d10, (4) celestolide, (5) pentachloronitro 
benzene, (6) phenanthrene-d10, (7) p-n-octylphenol, (8) galaxolide, (9) tonalide, 
(10) musk xylene, (11) p-n-nonylphenol, (12) [13C6]p-n-nonylphenol, (13) 
4-methylbenxylidine camphor, (14) 2,2’- dinitrobiphenyl, (15) musk ketone, (16) 
triclosan, (17) mirex, and (18) octocrylene. (Reproduced with permission from 
(40), 2009, © Elsevier).

 

 

Figure 5: (i) Representative GC-SIM-MS ion chromatograms for (A) a standard 
solution containing, 100 pg/µl of triclosan and (B) a Whiting (genus Merlangius) 
fillet extract (left). (5 ii) Typical GC-SIM-MS mass spectra for (A) standard 
triclosanand (B) Whiting fillet extract solution derived by selecting the data file 
from Fig. 5 (i) (A), retention time 21.28 min and Fig. 5 (i) (B), retention time 21.29 
min, respectively (right). (Reproduced with permission from (63), © Elsevier).

 

Table 2: Concentration of target analytes in fish fillets received from local grocery 
stores, Maryville, Missouri, USAand their comparison with environmental fish 
samples.
nd – not detected. (Source:Reproduced with permission from (63), © Elsevier).

Name of fish
Concentration of analytes in edible fish fillets (ng g-1)

HHCB AHTN DPH MK TCS

Tilapia 0.876 0.813 0.679 nd 4.122

Catfish 0.276 0.429 0.939 nd 2.086

Swai 0.336 0.190 0.189 nd 1.782

Flounder 0.892 0.904 1.182 nd 7.472

Salmon 0.250 0.068 1.037 nd 0.942

Whiting 0.263 0.431 0.503 nd 3.699

Pollock 0.163 0.304 0.692 nd 1.011

Yellow fin 
Tuna 0.343 0.269 0.811 nd 2.292
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Exposure time, 
Day

MX exposure MK exposure

MX conc. (mg/
mL)

Fish wet 
weight, (g)

Liver wet 
weigh, (g)

MX dose /
trout, (mg)

Average 
dosing level, 

(mg/g)

MK conc. (mg/
mL)

Fish wet 
weigh, (g)

Liver wet 
weigh, (g)

MK dose /
trout, (mg)

Average dosing level, 
(mg/g)

1- Day

10

202 0.75 2.0
0.01

10

257 0.88 2.6
0.01

256 0.87 2.5 237 0.77 2.4

165 0.50 1.6 222† NC 2.2

30

180 0.75 5.4

0.03 30

199 0.70 6.0

0.03256 0.92 7.5 230 0.76 6.9

280‡ 1.41 8.4 212 0.69 6.3

100

236 0.76 24.0

0.10 100

272 1.26 27.0

0.10264 0.92 26.0 271 1.26 27.0

204 0.74 20.0 197 0.78 20.0

300

250 0.88 75.0

0.30 300

190 0.70 57.0

0.30310 1.52 90.0 270 1.18 81.0

227 0.71 69.0 250 1.00 75.0

Control

206 0.76 0.20 mL, exposed with salmon oil only

304 1.52 0.30 mL, exposed with salmon oil only

184 0.70 0.18 mL, exposed with salmon oil only

3-Days

30

208 0.79 6.3

0.03 30

278 1.22 8.4

0.03244 0.81 7.2 156 0.46 4.5

193 0.71 6.0 196 0.68 6.0

Control

253 0.89 0.25 mL, exposed with salmon oil only

272 1.23 0.27 mL, exposed with salmon oil only

233 0.75 0.23 mL, exposed with salmon oil only

7-Days

30

212‡ 0.71 6.3

0.03 30

121 0.30 3.6

0.03230 0.76 6.9 241 0.88 7.2

204 0.74 6.0 167 0.53 5.1

Control

273 1.12 0.27 mL, exposed with salmon oil only

305 1.45 0.30 mL, exposed with salmon oil only

250 0.89 0.25 mL, exposed with salmon oil only

†Trout was found dead and the liver sample was not collected (NC).  ‡Trout was found sick (not equilibrium condition) and the collected liver specimen was not used in 
this study for composite preparation.  All control liver samples were mixed together to make one control composite specimen. The collected MX and or MK exposed liver 
samples were composited mixing three liver for each dosing level with exception of sick or dead fish liver. (Source: Reproduced with permission from (48), 2012, © Elsevier).

Table 3: In vivo trout exposure dosing schedule with nitro musk compounds and salmon oil vehicle.

 Exposure period (Day) Exposure level MX or MK (mg/g)
Nitro musk metabolites (ng/g)

2-AMX 4-AMX 2-AMK 

1-Day

0.01 94.0 2404.4 115.4
0.03 492.0 12588.5 505.5
0.10 444.1 10325.9 426.6
0.30 259.1 5147.3 396.1

3-Days 0.03 213.6 6097.6 357.8
7-Days 0.03 113.5 2988.3 298.0

Controls None Not detected

 (Source: Reproduced with permission from (48), © Elsevier).
Table 4: Concentration of nitro musk metabolites in trout liver samples using hydrolyzed extraction. 
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Figure 6: A possible biological transformation pathway of nitro musks (MX or MK) to corresponding metabolite amino compounds illustrating formation of nitroso 
adduct with cysteine containing proteins in the fish liver. Scheme 1: musk xylene (A) to 4-amino-musk xylene (B) and to 2-amino-musk xylene (C). Scheme 2: musk 
ketone (D) to 2-amino-musk ketone (E) (Reproduced with permission from (48), © Elsevier).

  

waters is to develop new sewage treatment processes. This requires 
understanding the fate of PPCPs during sewage treatment plants 
for implementation of better removal techniques. Consumers need 
to be aware of the consequences of PPCPs to aquatic organisms 
and ecosystems, and should follow the regulatory agencies disposal 
guidelines to make our environment friendly for all living organisms. 
At the same time, scientists and toxicologists should continue to 
investigate the transport, fate, toxicity and their potential physiological 
and psychological effects on humans and wildlife as well as relationship 
between bioaccumulation and diseases. 
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