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Plant breeding, like several other classical fields of R&D in plant 
sciences has also been substantially influenced by the development 
and use of molecular markers. These markers have been found to be 
powerful tools for wide ranging applications in many plant breeding 
areas, notably, identification and analysis of quantitative/qualitative trait 
loci (QTLs) and their positioning on linkage maps; cloning of genes for 
desirable traits based on the molecular linkage maps; gene pyramiding 
and Marker-assisted selection (MAS), the determination and analysis 
of genetic diversity within germplasms and other plant collections and 
analysis of genome structures for several crop plants [1-4]. As applied 
in breeding programs, the molecular markers help to accelerate the 
incorporation of genes that control or contribute to the variation of 
the target traits and also provide reliable information of kinship and 
phylogeny between species. Considerable progress and achievements 
in the area of molecular marker research have been reported for 
more than three decades now, ever since the first molecular marker 
application as a RFLP was reported by Botstein et al. [5]. Increasing 
applications of molecular markers and progressive improvements to 
the various technologies involved have also ensured that the molecular 
markers continue to be deployed for plant breeding work regularly [1-
3,6-8]. Since the proposition of the concept in 1980, various types of 
molecular markers such as RFLP, RAPD, AFLP, SSR, SNP among others 
have been developed [5,9-15]. These markers vary in their resolution 
power, genome coverage and linkage or otherwise to loci controlling 
traits of relevance to the breeder. Likewise, these markers have also 
varying levels of complexities of experimental designs, ease of field 
level application and the need for advanced skill sets and resources for 
successful application in breeding strategies. Successful applications of 
these markers have depended on their deployment as markers of choice 
based on exhaustive studies over a large time period (more than 3 
decades) and across a large number of crop plants. These markers have 
been developed as general markers while at the same time we also now 
have specific sets of molecular for specific crops that can be deployed 
with ease and high efficiency anywhere in the world.

In the recent years, with an increasing availability of completely 
sequenced genomes, the single nucleotide polymorphism and structural 
variations in sequenced genomes have been used to develop highly 
reliable molecular markers [12]. The development of a high density 
of molecular markers as well as the determination of entire genomic 
nucleotide sequences of many closely related plants has generated an 
interesting spin-off that enables a comparative study of these markers, 
genome sequences and organization of the markers along the genomes. 
Such comparative studies have revealed surprisingly high levels of 
conservation of numbers or orders or locations of the loci and markers 
in these related plants. This has opened out new vistas for species that 
have not yet been sequenced, but can still be tested for marker co-
linearity or synteny relative to those of the known genomes [16,17]. As 
revealed through the comparison of genomes between different plants, 
orthologous genes to a certain extent conserve synteny and co-linearity 
in the chromosomes [16]. The establishment of the co-linearity or 
synteny of the order and numbers of loci along the chromosomes 
immediately suggests the possibility of exploiting these co-linear or 
synteny states of one or more known genomes to derive corresponding 

information from an unknown but related genome. Indeed, Wu and 
co-workers have developed universal primers in solanaceous species 
with single-copy orthologs (COSII), and successfully applied COSII 
to the study of syntenic relationships among tomato, eggplant, pepper, 
and Nicotiana [18-21]. These results have a great significance for the 
analysis of those genomes where marker and sequence density is scarce 
or lacking but is available in case of a related taxon [22-24]. Thus, if 
one were to consider a crop plant for molecular breeding work, say 
for instance, the cluster bean (Cyamopsis tetragonoloba) or any other 
leguminous crops, where such data are scanty or altogether lacking, it is 
now possible to deploy markers and genome sequence derived orthologs 
from the sequenced leguminous taxon closest in relation to these crops 
with no or little genome sequence data to achieve an unprecedented 
level of rich marker density in a much shorter period of time than 
that it would otherwise have taken to develop de novo the entire set 
of marker data. This possibility of developing markers universally 
based on markers and sequences of orthologs of a related sequenced 
genome is exciting in its potential application to even trees which have 
always been less studied for molecular breeding on account of their 
long generation times. Several papers have highlighted the existence of 
gene and marker synteny across taxa. The important rationale here is 
the derivation of present day genomes from an ancestral one during the 
course of evolution. That this has happened is the basis for the several 
phylogenetic and phylogenomic studies reported so far in plants. 
Tracing the evolutionary history of the genome is in fact based on 
the synteny / co linearity of genes and gene orders. It is because of the 
expectation of a synteny that it also becomes easy to identify deviations 
from the synteny that occasionally occurs due to transposition, 
mutations recombination events so that certain portions of the genome 
or even single gens may be a mosaic or chimera of elements with more 
than one ancestral lineage. Such regions become the landmarks relative 
to which rest of the genome can be aligned and assessed for co linearity. 
This is another R&D area where advancement has been enabled by the 
deployment of molecular markers. Thus not just specific traits alone, 
but also for larger parts of the genome, the molecular markers have 
important roles to play, often as specific landmarks within a genome.

The advancement in next generation genome sequencing (NGS) 
technologies have made it a realistic and viable proposition to develop 
new molecular markers based on the genome sequence data [25-
29]. As is evident from the several excellent reviews about the NGS 
technologies, the extent of throughput, volume of data and cost per 
sequencing are related with increasingly favorable trends such that 
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the costs are decreasing while at the same time generated data is 
increasing qualitatively as well as quantitatively. It thus a realistic 
scenario to envisage the age of “universal markers” [30] rather than that 
of individual taxon markers that the next few years promise to unfold. 
Surely any and all technological advancements that make this scenario 
that much more realizable are welcome.
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