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Abstract
In general, the majority of ectoparasitoids of Lepidoptera parasitize larval and/or prepupal stages of the host and 

do not use the pupal stage, suggesting the presence of ecological and physiological constraints in the evolution of host 
range. Here, the evidence is given that Agrothereutes lanceolatus, a solitary ectoparasitoid wasp, can exceptionally 
parasitize host pupae, succeeding to extend its host range to pupal hosts that have a hardened cuticle. Laboratory 
experiments confirmed that A. lanceolatus developed successfully to adult both on host prepupae and on young pupae 
in equal proportions. Development time and size of the resulting wasps did not differ between the host types. However, 
the percentages of hosts producing wasp offspring differed among age classes within the pupal stage. The offspring 
survival was high except the oldest class of host pupae. With increasing host pupal ages, the offspring size decreased 
whereas the development time increased. Older host pupae hence were less suitable for the development of offspring. 
The offspring mortality mostly occurred during the 1st larval stadium without signs of growth, suggesting a difficulty in 
feeding on host pupae from an external position. Thus, A. lanceolatus can use a wider range of hosts than expected 
from its ectoparasitic development. The fact may enable A. lanceolatus to be a common and widespread polyphagous 
species among ectoparasitic Cryptinae.

Keywords: Offspring fitness; Pupal parasitoid; Homona magnanima;
Host quality

Introduction
An ovipositing female parasitoid in the field encounters hosts 

of different stages and ages, and select to oviposit on some of them 
because a variety of stage and age of a given host species are likely to be 
present simultaneously in time and space. Parasitoids in general prefer 
some host stages or ages to the others [1-3] though host preference 
depends on host availability and parasitoids’ physiological state, i.e., 
egg load, life expectancy, etc. [4-6].

Host stage and age usually affect parasitoid offspring survival, 
development rate, and sex ratio [4,7-11]. Fitness (size, fecundity, etc.) 
of the resulting offspring is also determined by the host stage and age 
that are parasitized [9-13]. Host stage and age are thus important 
determinants of ‘host suitability’ for many parasitoids. Investigations 
into the relationships between host-stage or -age and host suitability 
have been undertaken for a wide range of parasitoids [7,8,13,14]. 

The host range of ectoparasitoids of lepidopterans is mostly 
restricted to host prepupae and larvae in protected situations such 
as those in the cocoon, plant stem and leaf roll [15 -17]. One major 
reason for this may be that lepidopteran pupae are covered with a 
hardened cuticle, which makes it difficult for ectoparasitic larvae to 
feed on the tissue within from an external position [18]. In contrast, 
many endoparasitoids parasitize lepidopteran pupae and prepupae 
[15,17]. Curiously, ectoparasitoids attacking Hymenoptera and 
Coleoptera can use the pupal stage of hosts, which have a soft cuticle. 
Also, ectoparasitoids such as Nasonia spp. parasitize coarctate dipteran 
pupae; however, they lay eggs on a soft pupa inside a hardened larval 
skin and the parasitoid larvae consume the soft host. These facts 
suggest the presence of ecological and physiological constraints in the 
evolution of host range [19,20].

The present study focuses on the ectoparasitoid wasp Agrothereutes 
lanceolatus Walker (Hymenoptera: Ichneumonidae: Cryptinae), 

which can be an exceptional example, extending its host range 
through inclusion of the host pupal stage. Agrothereutes lanceolatus 
is a common ectoparasitic wasp that is distributed throughout East 
Asia including Japan [19]. Members of the Cryptinae, including A. 
lanceolatus, principally use Lepidoptera hosts [16,19]. Agrothereutes 
lanceolatus is widely seen in a variety of environments and attacks 
several tortoricids and pyralids, including important pests such as 
Chilo suppressalis Walker, Glyphodes pyloalis Walker, and Homona 
magnanima Diakonoff [19-23]. 

Host records evidently indicate that A. lanceolatus is polyphagous 
whereas most Cryptinae are rather monophagous or oligophagous 
[20]. Thus, A. lanceolatus may have life history traits that enable it 
being polyphagous [22,23]. Furthermore, careful examination of 
specimens preserved with the host mummy suggests that it may also 
parasitize host pupae (Ueno, personal observations). If this holds 
true, A. lanceolatus is an exceptional ectoparasitic species and is an 
excellent test parasitoid to examine host range evolution in ecto- versus 
endoparasitoids. However, it is also likely that the parasitoid develops 
as a hyperparasitoid of endoparasitoids inside lepidopteran pupae. No 
previous studies have given evidence that ectoparasitoids can use the 
pupal stage of lepidopterans. Here I hypothesize that A. lanceolatus can 
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parasitize the pupal stage of hosts, which makes it to use a wide range 
of host species. 

Accordingly, in the present study, offspring development and 
survival of A. lanceolatus on host prepupae versus pupae were examined 
to test the hypothesis. The impact of host pupal age on the offspring 
survival, body size, and development was also examined. Based on 
the results, life history and host selection behavior of A. lanceolatus is 
discussed.

Materials and Methods
General biology of A. lanceolatus 

Although many aspects of the biology of A. lanceolatus are poorly 
understand, current information on its biology is summarized as 
follows. Agrothereutes lanceolatus is multivoltine, appearing from early 
in spring to late autumn, after which overwinters as a prepupa inside 
the cocoon. Adult female longevity is about one month at a constant 
20°C in the laboratory. Females are synovigenic and produce yolk-rich, 
anhydropic eggs continuously during the lifetime [22,23]. In common 
with many other synovigenic species, destructive host feeding is 
essential for egg production [23]. A. lanceolatus is an idiobiont, and the 
female paralyzes the host permanently with venom upon oviposition. 
It can also be a facultative hyperparasitoid [22]. A. lanceolatus is easily 
mass-reared on a factitious host, Galleria mellonella (Linnaeus) [22].

Parasitoid and host preparation 

A laboratory colony of A. lanceolatus was established using adult 
parasitoids collected from the campus of Nagoya University, Nagoya 
City, Japan. Female parasitoids were placed individually in plastic 
containers (10 cm in diameter, 4.5 cm in height), together with tissue 
paper saturated with honey solution. The tissue paper was replaced 
twice a week thereafter. The containers were kept at 20 ± 1°C, 60-
70% RH with a 16L: 8D photoperiod. The colony was maintained 
on prepupae of a laboratory host, Galleria mellonella. Host cocoons 
containing prepupae were presented to female A. lanceolatus in the 
plastic containers. Parasitized hosts were removed and held at 25 ± 
1°C with a 16L: 8D photoperiod, until parasitoid emergence. Newly 
emerging females were placed individually in the plastic containers, 
were paired with a male and were maintained as described above.

Host stage effect: Host prepupa versus pupa

This experiment was aimed to examine the effect of host 
developmental stage on the performance of the offspring A. lanceolatus. 
Offspring survival rate, size, and developmental time were used as 
measures for performance. Host cocoons of 16-18 mm in length were 
selected to use. Host cocoons containing prepupae and pupae (2–4 
days old after pupation) were used as test hosts. 

Each test female wasp was allowed access to both prepupal and 
pupal hosts. One host prepupa and one pupa were presented for each 
female for two hours every two days, allowing the female wasp to 
experience with both types of hosts. This treatment was repeated 3–4 
times before the experiment was initiated and, as a result, female wasps 
six to eight days old were used for testing.

A pair of host cocoons (one prepupa and one pupa) was presented 
to each test female wasps in the containers. After a single oviposition 
had been confirmed, hosts were removed from the containers to avoid 
them being superparasitized. Oviposition was confirmed by observing 
the base of the wasp ovipositor where it was possible to see an egg 

passing through [24,25]. In all, 38 females were used and thus 76 hosts 
were parasitized in this experiment.

Parasitized hosts were individually placed in plastic containers 
and were kept at 20 ± 1°C under a 16L: 8D photoperiod, until adult 
parasitoid emergence. The containers were checked daily for parasitoid 
emergence. The sex of emerging parasitoids was recorded, and, 
subsequently, the forewing length was measured under a stereoscopic 
microscope. Forewing length was used as an index of offspring size. 
Hosts that had not produced parasitoid offspring one month past 
oviposition were dissected under a binocular microscope to examine 
the stage at which parasitoids had died. 

Effect of host pupal age

The effects of host pupal age on parasitoid development were 
examined. Host pupae were classified into four age classes according 
to their age: Young pupal class (1–3 days old since pupation); eye 
pigmentation class (4–5 days old); wing formation class (6–8 days old); 
and pharate class (9–10 days old). Although the cocoon morphology 
(size, color, etc) did not change with age, the internal physiology of 
host pupae would dramatically be different among the age classes.

Female wasps used for testing were provided with different 
aged host pupae enclosed in the cocoon of different ages before 
experimentation. During the test, each female was provided with 2–4 
hosts of different ages. The number of hosts presented was not same 
among test females because some females did not respond to hosts after 
attacking 2–3 hosts. After a single oviposition was confirmed, hosts 
were removed from the container. When wasp offspring emerged, the 
day of emergence and the forewing length of the wasps were recorded. 
The day from oviposition to emergence was calculated as a measure of 
development time. The other procedures were the same with the above 
experiment. 

Data were analyzed with the aid of JMP [26]. The percentages of 
successful parasitism, i.e., production of the offspring, were analyzed 
with chi-squared tests. Two-way ANOVAs were used to analyze the 
effect of host age and wasp sex on offspring size and developmental 
time. Factors affecting developmental rate were analyzed by an 
ANCOVA.

Results
Host stage effect: Host prepupa versus pupa

A total of 61 adult A. lanceolatus emerged from 76 hosts parasitized. 
Success of parasitism, i.e. emergence of wasp offspring, was high in both 
host prepupae and pupae. The percentages of successful parasitism 
were 78.9% and 81.6%, respectively, and no significant difference was 
found between the host stage groups (Chi-squared test; N=76, x2=0.08, 
P=0.77). Development time in days from egg (=oviposition) to wasp 
emergence was not affected by the host stages (Tables 1 and 2), though 
it was about 1 day longer in female than male offspring (Table 1). The 
mean size of emerging wasp offspring did not differ between host types 
or between wasp sexes (Table 2) (two-way ANOVA; F=0.71, P=0.41 
for host stage; F=0.77, P=0.39 for wasp sex). Offspring sex ratio (% 
females) also did not differ between the host types (54.6% versus 46.4%; 
chi squared test, N=61, x2=0.40, P=0.53).

Effect of host pupal age

In all, 173 hosts were parasitized. Survival from egg to wasp 
emergence was strongly affected by host pupal age. The percentages of 
hosts producing wasp offspring differed significantly between the host 
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age classes within the pupal stadium (chi-squared test, df=3, x2=72.3, P 
< 0.0001) and, as a result, the percent survival decreased with increasing 
host pupal ages (Figure 1). Offspring survival when the oldest class of 
host pupae was parasitized was around a fifth of that of the youngest 
class of host pupae that was parasitized (Figure 1).

The development time of A. lanceolatus was strongly affected by the 
age of the pupae parasitized (Table 3). The offspring of A. lanceolatus 
developed most rapidly on the youngest class of host pupae (Figure 
2). Host pupal age also had a strong influence on the size of emerging 
wasps (Table 4). The wasps emerging from older classes of host pupae 
were smaller than those from younger classes of host pupae were 
(Figure 3). The sex ratio of emerging wasps did not differ among the 
host age classes (chi-squared test; df=3, x2=2.77, P=0.43).

An intriguing result was obtained when factors affecting 
developmental rate were analyzed by analysis of co-variance 
(ANCOVA). Developmental rate (=wasp offspring size/development 
time) was significantly influenced by host age and wasp sex (Table 
5), which would be expected based on the analyses mentioned 
above. In addition, the size of offspring had a strong influence in the 
developmental rate of offspring. There were positive relationships 
between the two factors (regression analysis; r2=0.24, F=7.78, P=0.01 
for age class 1, r2=0.02, F=0.15, P=0.70 for age class 2, r2=0.80, F=88.2, 
P <0.0001 for age class 3, r2=0.73, F=10.6, P=0.03 for age class 4) (Table 
5 and Figure 4). This suggested that larger parasitoids attain higher 
developmental rate.

Larval mortality occurred mostly in the early stage of development, 
in particular, for the oldest class of host pupae (Figure 5A). Among 
individuals that died during the development, 43%–60% died during 
the first stadium (Figure 5B). Host pupal age had no effect on when 
larval mortality took place (chi-squared test; x2=5.60, P=0.78). However, 
when offspring survival at the early stage of larval development, i.e. 1st 
stadium r, was estimated and analyzed, a significant difference was 
detected (Figure 5A; chi-squared test; x 2=28.3, P < 0.0001). In older 
classes of hosts, parasitoid offspring were more likely to die during the 
1st stadium. This suggested that old host pupae were difficult to feed on 
for young ectoparasitic larvae.

Discussion
Host stage effects: Pupal versus prepupal hosts

The present results show that ectoparasitic A. lanceolatus is able to 
develop on prepupal hosts with a high degree of success. This would 

be a logical consequence because host lepidopterans at that stage 
have a soft body surface, enabling ectoparasitic larvae to feed on the 
host effortlessly. In contrast, host pupae have a hard body surface. 
On the basis of ectoparasitic development, it might be expected that 
A. lanceolatus larvae would have difficulty to feed on host pupae: If 
this could be the case, the offspring survival on pupal hosts would be 
lower than that on prepupal hosts. Contrary to this expectation, A. 
lanceolatus survival is over 80% on host pupae, the value of which is not 
significantly different from that on host prepupae (Table 1). Further, 

Figure 1: Offspring survival of A. lanceolatus in relation to host age classes 
within the pupal stadium. The survival differed significantly among the groups 
(see the Results for statistical details). Host age class: 1 = fresh pupa; 2 = pupa 
with eye pigmentation; 3 = pupa with wing formation; and 4 = pharate adults.

Figure 2: Developmental time in days from egg to adult wasp emergence in 
A. lanceolatus in relation to host age classes within the pupal stadium (above: 
male, below: female). Developmental time differed significantly among the 
groups (see Table 3 for statistical details). Data were shown as mean ± SE.

Factors df F-value P-value
Host stage 1 1.07 0.30
Wasp sex 1 45.17  <0.0001

The interaction term was not included in the analysis because interaction between 
the two factors was not significant.

Table 1: Two-way ANOVAs for estimating effects of host prepupae versus pupae 
on development time of A. lanceolatus.

Host stage Wasp sex Size Development time
Prepupa Male 5.87 ± 0.14 14.6 ± 0.18
Prepupa Female 6.11 ± 0.08 15.7 ± 0.16

Pupa Male 5.89 ± 0.09 14.5 ± 0.19
Pupa Female 6.01 ± 0.07 16.4 ± 0.22

Host stage had no significant effect on parasitoid offspring size and developmental 
time (ANOVA, P>0.05, see the Results for details).

Table 2: Mean offspring size (forewing length in mm) and development time (days) 
of A. lanceolatus on host prepupae versus young pupae.

Factors df F-value P-value
Host age 3 89.8 <0.0001
Wasp sex 1 17.7 <0.0001

Table 3: Two-way ANOVA for estimating the effect of host pupal age and wasp sex 
on developmental time of A. lanceolatus.
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the size of emerging wasp offspring does not differ between the host 
stages (Table 2). For A. lanceolatus, host quality is equal between 
host prepupae and pupae. It is not known how ectoparasitic larvae 
of A. lanceolatus gain and maintain access to the host resources and, 
also, how they mobilize resources present within the host pupae. It is 
valuable to examine feeding behavior of A. lanceolatus larvae in the 
future study.

Host pupal age and parasitoid performance

For a number of pupal endoparasitoid wasps of Lepidoptera, the 
age at which the host pupa has been parasitized influences offspring 
survival and performance [14,27-29]. Likewise, the present study has 
provided evidence that host pupal age affects the offspring survival and 
performance of ectoparasitic A. lanceolatus. On younger host pupae, A. 
lanceolatus offspring survives better, grows larger and faster (Figures 
1-3). These results suggest that host suitability is higher in younger 
host pupae. The majority of available literatures show similar results 
[14,29-32]; a decrease of host suitability with pupal age appears to be 
the general rule.

A number of host factors can determine the survival of developing 
parasitoids: These include host defense, host toxins, and nutritional 
adequacy [33-36]. Mortality of offspring A. lanceolatus increases 
with host pupal ages (Figures 1 and 5). Host defense is unlikely 
to explain the increased mortality; ectoparasitoids are mostly free 
from the host immune systems though some host species may show 
circumvent immunity like clotting hemolymph to defend themselves. 
In addition, A. lanceolatus permanently paralyzes the host with venom 
upon oviposition [22], which makes host physical defense ineffective 

Factors df F-value P-value
Host age 3 11.3 <0.0001
Wasp sex 1 3.75 0.057

The interaction term was not included in the analysis because interaction between 
the two factors was not significant.

Table 4: Two-way ANOVA for estimating the effect of host pupal age and wasp sex 
on offspring size of A. lanceolatus.

Figure 3: Offspring size (forewing length) of A. lanceolatus when host age 
classes within the pupal stadium varied (above: male, below: female). Offspring 
size differed significantly among the groups (see Table 4 for statistical details). 
Data were shown as mean ± SE.

Figure 4: Relationships between developmental rate per size and offspring 
size in A. lanceolatus. Regressions obtained were significant (P<0.05).

Figure 5: Offspring survival at the early stage of development, i.e., 1st stadium 
in relation to host pupal age (A) and comparison of developmental stages at 
which parasitoid offspring died (B). For simplicity, data from youngest (dotted 
line) and oldest (undotted line) classes of hosts are shown to illustrate survival 
curves (B).

Factors df F-value P-value
Host age 3 98.4 <0.0001
Wasp sex 1 20.5 <0.0001
Wasp size 1 98.4 <0.0001

The interaction term was not included in the analysis because interaction between 
the two factors was not significant.

Table 5: ANCOVA for estimating the effect of host pupal age, wasp sex and size 
on offspring developmental rate per size.
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regardless of the age of host pupae parasitized. The presence of toxins 
or toxin-like substances is not known substances in G. mellonella pupa 
and adult moth, suggesting an accumulation of toxins in older pupae 
cannot be the reason.

The nutritional inadequacy in old host pupae is a potential 
reason. During the pupal stage of a host, larval tissue is reconstructed 
dramatically to form adult tissue as the pupa ages. Newly constructed 
adult tissue is sclerotized in particular around the pupal body surface. 
Developing parasitoid larvae may have a difficulty to digest such 
sclerotized tissues. Further, sclerotized adult tissues around pupal 
surface may prevent the developing larvae from feeding on pupal 
contents from an external position of the host pupa. Indirect evidence 
that may support this idea is that many developing A. lanceolatus die 
during the earliest larval stage (Figure 5). Mortality often takes place 
before the offspring starts to grow. It is likely that the first stadium of A. 
lanceolatus has difficulty to feed on host pupa and starves to death due 
to a failure to access the tissues within the host. 

The present study also shows that offspring size and development 
time differ among host age classes within the pupal stage. The 
difference may result from changes in the nutritional composition of 
the host. Alternatively, host age effects may be caused by changes in 
the amounts of nutrient available to the developing parasitoid. Host 
resources converted to adult scleotized tissues should not be usable for 
the developing parasitoid. Consequently, the amounts of edible host 
resources may be reduced with increasing pupal age, leading to an 
increase in development time and a decrease in offspring size. For a 
number of pupal parasitoids, adults that emerge from older host pupae 
are smaller than those from younger ones [29,31].

An intriguing result in the present study is that larger parasitoids 
show higher developmental rate per size (=offspring size/developmental 
day) (Figure 4). This means that larger offspring develops faster than 
smaller one. Intuitively, smaller parasitoids should consume smaller 
quantities of host resource and, hence, could pupate earlier [4,37]. 
However, this is not the case for A. lanceolatus. Slower developmental 
rate in less suitable, old hosts (Figure 4) is reasonable, but higher 
developmental rate for larger parasitoid offspring is difficult to explain. 
The development strategies of parasitoids have been received less 
attention than reproductive strategies, such as host selection and sex 
allocation [11,37]. The positive relationship between development and 
size in A. lanceolatus poses a question regarding the developmental 
strategies in parasitoids.

The ability of parasitoids to cope with hosts of variable quality 
would have the overall effect determining host range. The present study 
gives evidence that A. lanceolatus has a potential to use a relatively 
wide range of host pupal age classes in the laboratory situation. This 
suggests that host range of A. lanceolatus is wider than expected based 
on its ectoparasitic nature. It is unclear what life history traits enable 
the ectoparasitic A. lanceolatus to use the host pupal stage, and this 
remains to be investigated. Again, the feeding strategy of developing 
larvae should be addressed to answer the question in future research.
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