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Introduction
China is one of the most rapidly developing countries in the 

world, but in the meantime it is suffering from severe air pollution 
due to heavy industrial/metropolitan emissions. This extremely high 
loading of aerosols has strong effects on climate and environment, e.g., 
the effects on solar radiation (cooling surface and slowing down the 
global warming), cloud formation, ozone photochemical activity, and 
visibility [1-5]. The heavy haze pollution also causes severe human’s 
health problems, such lung cancer, asthma and other respiratory 
illnesses [6,7]. 

Unlike other regions in industrial countries (such as Europe 
and the US), the haze pollution (aerosol pollution) in China widely 
displaced in a very large area. The haze pollution is not only covered 
over large cities, but also over farmland areas. As a result, the haze in 
China has not only important impact on human’s health, but also on 
the ecosystem in eastern China. The effect of regional haze pollution on 
the yields of rice and wheat in China. Their result shows that reduction 
of solar irradiance due to aerosol pollution can cause ~2% reduction in 
total rice production and ~6% reduction in total wheat production in 
eastern China [8].

In addition to the large spatial dispersion of aerosol pollution, 
there is also significant temporal variation of aerosol pollution during a 
short period (days to weeks) in eastern China [9-13]. The focus of this 
study is to better understand the causes of this short-term temporal 
variability of aerosol pollution, which has very important implication 
in haze pollution control in the region. 

Materials and Methods
In this study, a long-term measurement of PM2.5 concentrations 

(from 2012 to 2016) is used to investigate the variability of aerosol 
pollution, and a regional chemical/transport WRF-Chem model 
(Weather Research and Forecasting Chemical model) is used to analyze 
the regional transport and the short-term variability.  
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Abstract
In recent years, there are heavy aerosol pollutions in eastern China. For example, in the Northern China Plain 

(NCP) and the capital city of Beijing, the concentrations of PM2.5 (particle matter <2.5 μm in diameter) often reached 
to the levels of more than 200-400 μg/m3. In contract, the World Health Organization (WHO) identifies a safe level of 
air quality as containing 10-25 μg/m3. In addition to the high levels of aerosol pollutions, there is a largely temporal 
variability of the concentrations. This study discusses the major factors, which control the short-term variability (days 
to weeks) of the aerosol pollutions in eastern China. The results suggest that the meteorological parameters, including 
wind direction, wind speed, and vertical diffusion in the planetary boundary layer (PBL) have important effects on the 
short-term variability. The secondary formation of aerosols, especially during heavy haze periods, has also important 
contribution to the large variability. Because the secondary aerosols (SA) have a large portion in the composition of the 
total aerosols during the haze period, the formation of SA amplifies the magnitude of the variation, causing significant 
increase in the concentrations of PM2.5 during the heavy haze periods in eastern China. 
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Measured data 

The sampling site of PM2.5 (the particle matter with a diameter <2.5 
µm) concentrations is located in the southeastern part of downtown 
Xian, China (34°13′N, 108°52′E). The surrounding area represents a 
mixture of industrial, commercial, residential, and traffic environments. 
It is worth emphasizing that a battery manufacturer (Ni related battery) 
and an automobile plant (welding of metals) were located within less 
than 7 km from the sampling site. 24-hour integrated daily PM2.5 
samples were collected. The particles were collected on pre-fired 
(780°C, 3 hours) 47 mm Whatman quartz microfibre filters (QM/A , 
Whatman Inc., U.K.) with the mini-volume air samplers (Airmetrics, 
Eugene, OR, USA) that operated at a flow rate of 5 L min-1.  

WRF-Chem model 

The model used in this study is a regional chemical/transport 
model (WRF-Chem).  There are two major parts of the model, namely, 
a dynamical model (WRF) and a chemical model (Chem). The Weather 
Research and Forecasting (WRF) Model is a mesoscale numerical 
weather prediction system. The WRF model is a fully compressible and 
non-hydrostatic Euler model. Thirty-five vertical levels are used in a 
stretched vertical grid with spacing ranging from 50 m near the surface, 
to 500 m at 2.5 km and 1 km above 14 km.  The detailed information 
regarding the parameters used in the WRF model, such as the PBL 
scheme, the land surface scheme, the microphysics scheme, and the 
cumulus cloud scheme can be found at the WRF website.

In addition to dynamical calculations, a chemical model is fully 
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coupled with the dynamical model (WRF-Chem).  The version of 
the model used in the present study includes an online calculation of 
dynamical inputs (winds, temperature, boundary layer, clouds, etc.); 
transport (advection, convection, and diffusion); dry deposition; 
gas phase chemistry, radiation, and photolysis rates. The chemical 
mechanism includes 158 reactions among 36 species. The aerosol 
modules used in the study are described as the aerosol module 
developed by EPA CMAQ.  

Results and Discussion 
Measure aerosol variability

The measured daily mean surface concentrations of PM2.5 in a large 
city in China (Xi’an, with a population of 8 millions) during a 4-year 
period (from 2013 to 2016) (Figure 1). 

The measured result shows three important feathers. First, the 
concentrations of PM2.5 were very high, with a mean concentration of 
~170 μg/m3, indicating that heavy haze events often occurred in this 
region. Second, there was a strong long-term variability. The winter-
peak values of the concentrations reduced from 600-800 μg/m3 in 2013 
to ~400 μg/m3 in 2016. This long-term change was mainly associated 
with the emission control. Third, there were a strong mid-term 
variation and a short-term variability. For example, there was a strong 
seasonal variation (mid-term), with higher concentrations during 
winter than during summer. There was also a very strong daily variation 
(short-term). The short-term variability can lead to the change of PM2.5 
concentrations in a magnitude of 200-300 μg/m3 in days. 

The major controlling factors for causing this short-term variability 
can be expressed by the aerosol mass conservation equation:

[ ] / [ ] / ] [ ] / ] [ ] / ] [ ] / ] [ ] / ]E T V C Dx t x t x t x t x t x t∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂

Where, [X] represents the PM2.5 mass concentration (μg/m3). 
∂[X]/∂t]E represents the change of concentration due to surface 
emission; ∂[X]/∂t]T due to advection or horizontal transport; ∂[X]/∂t]
V represents vertical diffusion in the PBL height; ∂[X]/∂t]C represents 
chemical reactions; and ∂[X]/∂t]D represents dry and wet deposition. 

For short-term variability, the emission term can be ignored, if we 
don’t consider an aggressive activity for emission (e.g., for the large 
emission reduction during the Beijing Olympic game period). If we 
consider a dry weather, without precipitation, the deposition term can 
also be ignored. With the above considerations, the equation governed 
short-term variability can be simplified by the following equation:

[ ] / [ ] / ] [ ] / ] [ ] / ]T V Cx t x t x t x t∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂
This equation shows that major controlling factors for causing 

short-term of PM2.5 variability are (1) advection (regional transport), 
(2) vertical diffusion, and (3) chemical reaction (secondary aerosol 
formation).

Effect of advection and weather condition 

In some regions of eastern China, the short-term variability is 
strongly controlled by advection and weather condition. For example, 
in the NCP region and the city of Beijing, the weather condition and 
wind directions are important factors in controlling the short-term 
variability (Figure 2). 

In the south of NCP and Beijing, there is a large polluted area, 
existing heavy emissions of air pollutants. In contrast, in the north of 
NCP and Beijing, there is a large remote area (mountains and grass 

Figure 1: The measured daily mean surface concentrations of PM2.5 in Xi’an, 
China from 2013 to 2016. The green-dash line shows a long-term trend, and red 
line shows the mean value.

Figure 2: The effect of advection and wind direction on the concentrations of 
PM2.5 in NCP and Beijing. The left panel shows the topography of the region.

lands), with small emissions of air pollutants. As a result, under the 
south wind condition, the aerosol concentrations are generally high 
(right panel of Figure 2). In contrast, under the north wind condition, 
the aerosol concentrations are generally low (middle panel of Figure 
2). In addition to the effect of the spatial distribution of emissions, the 
mountains in this region also play important roles. The mountains in the 
north of NCP act as walls to block the horizontal transport. As a result, 
under south wind condition, the aerosol particles are accumulated at 
the foothill of the mountains (Figure 2) [14].

Effect of vertical diffusion in PBL 

During the heavy haze period, the wind speed is small. The surface 
concentrations of PM2.5 are highly correlated with vertical mixing and 
the PBL height. The in situ measurements show that during the haze 
days, the PBL heights and vertical diffusion are significantly reduced 
due to the decrease of solar radiation, which reduces the thermo 
turbulence [15]. 

During a short period (10 days), there is a strong short-term 
variability of PM2.5 in Beijing. For example, on 24th, Oct. 2013, the 
concentration of PM2.5 was less than 50 μg/m3. In contrast, on 277h, Oct. 
2013, the concentration of PM2.5 rapidly increased to 160 μg/m3. This 
short-term variability is anti-correlated with both wind speed and the 
PBL height (Figure 3).

On 277h of Oct. 2013, the wind speed was less than 1 m/s, and the 
vertical diffusion in the PBL played important roles. The shallow PBL 
height (~0.5 km) strongly depressed the vertical transport from the 
surface to the free troposphere. As a result, the surface concentration of 
PM2.5 reached to a very high value. The surface concentration of PM2.5 
was strongly anti-correlated with the PBL height (right panel of Figure 
3). Moreover, the anti-correlation was non-linearly correlated. For 
example, when the PBL was less than 1 km, the surface concentration 
of PM2.5 was very sensitive with the PBL height. In this case, a small 
reduction of PBL height can cause a large increase in the surface 
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concentration of PM2.5 (Figure 3).

Effect of chemical reactions 

According to the measurements of chemical composition, there 
are high secondary aerosols in eastern China. The secondary aerosols 
(sulfate, nitrate, ammonium, secondary organic carbon) contribute 
to a large portion of total aerosols. Sulfate, nitrate, and ammonium 
aerosols contribute to about 40% and 33% in Beijing and in Shanghai, 
respectively (Figure 4) [14]. 

The formation of secondary aerosols involves complicated chemical 
processes, including gas-phase chemical reactions and multi-phase 
chemical reactions (heterogeneous chemical reactions). However, 
during the heavy haze periods, neither the gas photochemistry nor the 
aqueous chemistry can fully explain the formation of high secondary 
aerosols. For example, the estimated sulfate formation is less than 
measured values under the heavy haze condition in eastern China. 
There is a large missing source for the formation of sulfate particles 
during heavy haze periods in eastern China (right panel of Figure 4), 
and there is additional heterogeneous reaction occurred during the 
heavy haze conditions; i.e., 

SO2(g) + 2NO2(g) + 2H2O(aq)  2H+(aq) + SO4
2-(aq) + 2HONO(g) 

By adding this reaction, the underestimation of the calculated 
sulfate concentrations is largely reduced. However, there is still a large 
uncertainty remained for the underestimation of secondary aerosols 
during the heavy haze periods in eastern China. Because secondary 

aerosols have a large portion in the chemical composition of the total 
aerosols during haze periods, and the formation of SA amplifies the 
magnitude of the short-term variation of PM2.5 concentrations, and 
future study is needed to better understand this problem [15,16]. 

Conclusion
China is one of the most rapidly developing countries in the world, 

but in the meantime it is suffering from severe air pollution due to 
heavy industrial/metropolitan emissions. Unlike other regions in 
industrial countries (such as Europe and the US), the haze pollution 
in China is widely displaced in a very large area, and has significant 
short-term variation in the concentration of aerosol particles in eastern 
China. This study discusses the major factors, which control the short-
term variability (days to weeks) of the aerosol pollutions in eastern 
China. The results suggest that there are 3 major factors in controlling 
the short-term variability, including (1) horizontal transport (wind 
direction, wind speed, and weather system), (2) vertical diffusion in the 
planetary boundary layer), and (3) the secondary formation of aerosols, 
especially during the heavy haze period. The detailed effects of these 3 
major factors on the short-term variability are discussed in this study. 
Because the secondary aerosols have a large portion in the chemical 
composition of the total aerosols during the haze period, the formation 
of secondary aerosols amplifies the magnitude of the variation, causing 
significant increase in the concentrations of PM2.5. However, the current 
calculations often underestimate this effect, especially under heavy 
haze conditions in eastern China. Further study is needed for better 
understanding the formation of secondary aerosols. 
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