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Introduction
There is still a great challenge to develop an effective treatment

modality against cancer diseases through the numerous disadvantages
of conventional methods such as systemic toxicity, drug resistance, low
selectivity and potential long-term side effects [1,2]. Researchers,
therefore, have been focused on the minimal-invasive and more
efficient strategies such as Photodynamic Therapy (PDT) that is a
promising treatment modality based on the synergic interactions of a
nontoxic photosensitizer, low-energy and non-thermal visible light,
and tissue oxygen to destroy the target cells and tissues by producing
singlet oxygen and reactive oxygen species [3,4]. Despite the great
success and wide utilization of this alternative treatment modality in
clinical settings, PDT has also some limitation. For instance, visible
light (near-infrared wavelength) employed in PDT could not penetrate
into deep tumor tissues and the long term retention of certain
photosensitizers in cutaneous tissues leads to potential long-lasting
skin toxicity [2,5,6]. Yumita and Umemura had firstly employed low-
intensity ultrasound instead of visible light to sonochemically activate
the photochemical materials to produce reactive oxygen species (ROS)
and destroy target cancer cells [7,8]. Thus, the problem about low-
penetration ability of the light into deep tissues was surpassed by the
discovery of Sonodynamic Therapy (SDT) because ultrasound is a type
of mechanical wave with frequencies greater than 20 kHz that can
exert a specifically localized effect from the surface of the skin up to
15-20 cm into the body to reach a cancer target immersed deep within
human tissues [9,10]. Since the discovery of SDT, low-intensity
ultrasound has been performed in four major fields of cancer therapy,
including SDT, ultrasound-mediated chemotherapy, ultrasound-
mediated gene delivery and ultrasound-mediated anti-vascular therapy
[11]. Although the underlying activity mechanisms of ultrasound-
mediated therapies are depended on certain exposure parameters such
as intensity, duty factor, ultrasound frequency and pulse repetition
frequency, it is well established that non-thermal ultrasound waves
may induce the production of ultrasonic cavitation, free radicals,
singlet oxygen, reactive oxygen species and ultrasound-mediated
apoptosis [12]. Due to the mechanical characteristics of ultrasound
waves, changing pressure gradients in liquid leads to the growth,
oscillation, and/or collapse of gaseous cavities (bubbles) [13].
Cavitation can be typically observed into two types as stable and
inertial, which are regulated by the oscillatory behavior of bubbles
under acoustic field [13-16]. Stable cavitation could be identified with
the periodic oscillations of gas bubbles that have already existed in the
tissue and that could be observed as the waxing bubble during the
negative pressure half cycle and the shrinking bubble during the
positive pressure half cycle as response to an ultrasound wave field
[9,13,17,18]. Although stable cavitation do not collapse violently at any

point of the pressure cycles, inertial cavitation or transient cavitation
collapses violently after rapid bubble growth during the negative
pressure half cycle and the collapse of cavitation at high-pressure
amplitudes leads to instantaneously discharge of highly condensed
energy at collapse center that induces localized increase in temperature
(104 – 106 K) and pressure (81 MPa) in surrounding
microenvironment [9,15,19]. The sonomechanical influences of
cavitation collapse near solid boundaries (such as a tissue interface)
can be observed as shock waves propagation and micro-jets travelling
at high speed (~ 100 m/s) towards the rigid surface [15,20].
Ultrasound-mediated chemotherapy, sonoporation, drug delivery, gene
delivery etc. principally use these sonomechanical effects to disrupt the
normal functions of the cellular membranes [21]. The sonochemical
effects of the bubble collapse can be monitored as the generation of
free radicals, singlet oxygen and reactive oxygen species, and / or the
occurring of sonoluminescence that can activate the sonosensitizer
molecules [19]. Although it is not a surprise to expect light emission
due to the high temperature releasing by transiently cavitating bubbles
collapse, the precise mechanism of light production is still unclear.
Sonoluminescence may be occurred due to the blackbody radiation,
bremsstrahlung radiation, recombination radiation, or combinations
thereof [19,22-25].

Consequently, ultrasound seem to be a promising technology with
non-toxic and tolerable behavior besides the requiring inexpensive
equipment and easy implementation in SDT, drug delivery, gene
delivery and the other cancer therapies, as well as its conventional
usage for diagnostic purposes. Due to the encouraging results of a
significant number of in vitro and in vivo experiments, we think that
more scientific effort should be attracted along the ultrasound-
mediated therapies by planning the researches in naturally occurring
cancers and in larger mammals for the promptly application in a
clinical trial.
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