

Ultrasonic Studies on Molecular Interaction in Binary Liquid Mixture of Cyclic Diether with 1-Alkanols (C_5-C_{10}) at 298.15 K

Dhirendra Kumar Sharma^{1*}, Sanddep Sahu¹, Akil Khan², Seema Agarwal¹, Chandrapal Prajapati¹, Suneel Kumar¹

¹Department of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi, India; ²Department of Chemistry, Government College Lidhaura, Tikamgarh, India

ABSTRACT

We present experimental data of speed of sound (u), viscosities (η) and densities (ρ) for the binary liquid mixtures of cyclic diether with 1-alknols at 298.15 K by using ultrasonic interferometer technique. From the experimental values of speed of sound (u), viscosities (η) and densities (ρ) have been used for study of the molecular interaction in the different liquid mixtures using the excess values of parameters such as excess surface tension (S^E), excess available volume (V_a^E), excess relaxation strength (r^E), excess enthalpy (H^E) and excess free volume (V_f^E) variation in the above parameters for the different liquid mixtures is indicative of the nature of molecular interaction between them. For all studied systems, excess surface tension (S^E), excess available volume (V_a^E), excess relaxation strength (r^E), excess enthalpy (H^E) and excess free volume (V_f^E) were negative over the entire mole fraction range of 1,3-dioxolane at measured temperatures. The obtained results are interpreted in term of intermolecular interaction in binary liquid mixtures.

Keywords: Surface tension; Available volume; Excess relaxation strength; Enthalpy; Free volume; Density; Viscosity; Binary mixture

Abbreviations: ρ : Densities of liquid; u : Ultrasonic velocity; η : Viscosity; X_1 : Mole fraction of 1,3-Dioxolane; T : Temperature; S : Surface tension; S^E : Excess surface tension; V_a : Available volume; V_a^E : Excess available volume; r : Relaxation strength; χ : Interaction parameter; H : Enthalpy; H^E : Excess enthalpy; V_f : Free volume; V_f^E : Excess free volume; Y^E : Thermodynamic excess function

INTRODUCTION

The ultrasonic studies of a binary liquid mixture are very useful for practical and theoretical points of view to understand in many liquid theories. For these reasons future applications of ultrasound in chemical reactions will be in diverse [1]. In the synthesis of pharmaceuticals, ultrasound will improve chemical yields over conventional methods. The data of the properties associated with the liquids and liquid mixtures like speed of sound (u), viscosities (η) and densities (ρ) find extensive application in solution theory and molecular dynamics [2]. The present paper is a part of our ongoing research program in the measurement of thermodynamic and transport properties of liquid and liquid mixtures at 298.15 K. The liquids were chosen in the present study on the basis of their industrial applications [3-7]. Alkanols are used as hydraulic fluids in pharmaceutical

and cosmetics, in medications for animals, in manufacturing of perfumes, paint removers, flavors and dyestuffs, as defrosting and as an anesthetic agent. The experimental results have been used to discuss the nature of interaction between unlike molecules in terms of hydrogen bonding [8]. The nature and relative strength of the molecular interaction between the components of the liquid mixtures have been successfully investigated by the ultrasonic methods. Thermodynamic and transport properties of binary liquid mixtures with different organic liquids have been studied by many workers.

Thermodynamic studies of binary liquid mixtures have attracted much attention of scientists. These excess values of surface tension (S^E), available volume (V_a^E), relaxation strength (r^E), enthalpy (H^E) and free volume (V_f^E) in binary liquid mixture are useful in understanding the solute-solvent interactions [9,10]. In

Correspondence to: Dhirendra Kumar Sharma, Department of Chemistry, Institute of Basic Science, Bundelkhand University, Jhansi, India; E-mail: dhirendra.dr@rediffmail.com

Received: 23-Sep-2025, Manuscript No. JPCB-25-39440; **Editor assigned:** 26-Sep-2025, PreQC No. JPCB-25-39440 (PQ); **Reviewed:** 10-Oct-2025, QC No. JPCB-25-39440; **Revised:** 04-Dec-2025, Manuscript No. JPCB-25-39440 (R); **Published:** 12-Dec-2025, DOI: 10.35841/2161-0398.25.15.441

Citation: Sharma DK, Sahu S, Khan A, Agarwal S, Prajapati C, Kumar S(2025) Ultrasonic Studies on Molecular Interaction in Binary Liquid Mixture of Cyclic Diether with 1-Alkanols (C_5-C_{10}) at 298.15 K. *J Phys Chem Biophys*. 15:441.

Copyright: © 2025 Sharma DK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

recent years ultrasonic study of liquid and liquid mixtures has gained much importance during the last four decades in assessing the nature of molecular interaction and investigating the physiochemical behavior of system. In the present paper we have report the results of study on binary liquid mixture of 1,3-dioxolane over the entire range of composition at 298.15 K. By using the experimental data of sound velocity (u), viscosity (η) and density (ρ), various acoustical parameters like excess surface tension (S^E), excess available volume (V_a^E), excess relaxation strength (r^E), excess Enthalpy (H^E) and excess free volume (V_f^E) have been calculated the mixture. The binary liquid mixtures studied in this paper are as follows:

- 1,3-dioxolane-pentanol
- 1,3-dioxolane-hexanol
- 1,3-dioxolane-heptanol
- 1,3-dioxolane-octanol
- 1,3-dioxolane-nonanol
- 1,3-dioxolane-decanol

purchased from CDH New Delhi, India. 1,3-dioxolane (CDH New Delhi, India) was supplied with purity $\geq 99.7\%$, pentanol (CDH New Delhi, India) with $\geq 99.7\%$, hexanol (CDH New Delhi India,) with $\geq 99.5\%$, heptanol (CDH New Delhi, India) with $\geq 99\%$, octanol (CDH New Delhi India,) with $\geq 99.7\%$, nonanol (CDH New Delhi, India) with $\geq 99\%$, decanol (CDH New Delhi, India) with $\geq 99\%$, respectively. All the liquids were used after double distillation [11]. All chemicals were purified by the method described by Zhao et al. [12] 1,3-dioxolane was dried over K_2CO_3 , filtered and distilled were discarded. The measured density, viscosity and sound velocity of the pure component at 298.15 K with the available literature [13-24] as shown in Table 1. The reported experimental values of density (ρ), sound velocity (u) and viscosity (η) conform closely to their corresponding literature values.

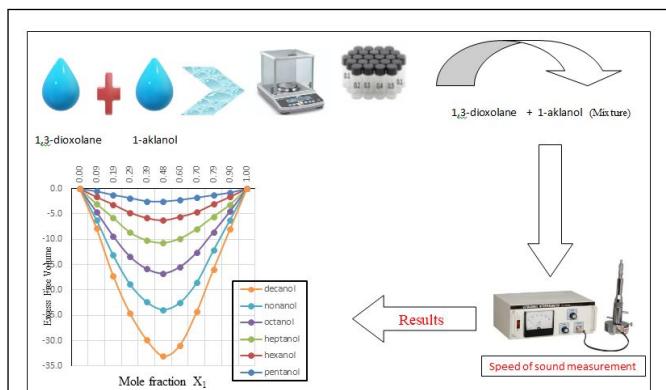
MATERIALS AND METHODS

Materials

The chemicals used were of analytical grade and 1,3-dioxolane, pentanol, hexanol, heptanol, octanol, nonanol, decanol

Table 1: Density (ρ), sound velocity (u) and viscosity (η) of pure components at $T=98.15$ K.

Compound	ρ (g.cm $^{-3}$)		u (m.s $^{-1}$)		η (mPa s)	
	Observed	Literature	Observed	Literature	Observed	Literature
1,3-Dioxolane	1.0616	1.0577 ¹⁷	1340	1338 ¹⁷	0.5885	0.5878 ¹⁷
		1.0586 ¹⁷		1338 ¹⁸		0.5873 ¹⁷
Pentanol	0.8124	0.8108 ¹³	1198	1197 ¹⁶	3.3978	3.5411 ¹³
		0.8107 ¹³		1268 ²²		3.5424 ¹³
Hexanol	0.8176	0.8187 ¹³	1306	1304 ¹⁵	4.6091	4.5924 ²³
		0.8152 ¹⁵		1303 ¹⁵		4.5932 ²⁰
Heptanol	0.8196	0.8187 ¹³	1325	1327 ¹⁵	5.9066	5.9443 ¹³
		0.8197 ¹⁹		1327 ²⁴		5.9443 ²⁴
Octanol	0.8236	0.8216 ¹³	1350	1348 ¹⁴	7.1508	7.6605 ¹³
		0.8218 ¹³		1347 ²²		7.5981 ¹³
Nonanol	0.8248	0.8244 ¹⁵	1366	1365 ¹⁵	8.9258	9.0230 ²¹
		0.8242 ¹⁵		1364 ²⁴		9.0200 ²⁴
Decanol	0.8292	0.8267 ¹⁵	1378	1380 ¹⁵	11.8027	11.825 ¹⁵
		0.8264 ¹⁹		1379 ²⁴		11.829 ¹⁵


Methods

All the binary liquid mixtures were prepared by weighing appropriate amount of pure liquids on an electronic balance (Citizen Scale (I) Pvt. Ltd. Mumbai, India) with a precision ± 0.1 . The experimental uncertainty in mole fractions did not exceed ± 0.0005 . All the solutions were prepared by mass ratios and stored in the air-tight stopper measuring flasks. Four-Five samples were prepared for same day and their speed of sound, viscosity and density, were measured on the same day. The density was determined at the experimental temperature using a 25 ml capacity specific gravity bottle immersed in the thermostatic bath. The volume of the bottle at the experimental temperature *viz.*, 298.15 K was ascertained using distilled water. Sound velocity determined by the multi-frequency interferometer (Model F-80D, Mittal Enterprise, New Delhi, India) at 3 MHz and 298.15 K, A fixed frequency generator working at 3 MHz. its resonant frequency, the crystal undergoes rapid mechanical oscillations, generating ultrasonic waves. These waves can propagate through the liquid in the vessel, creating effects like cavitation, acoustic streaming or enhanced mixing. An experimental setup for measuring the viscosity by ostwald viscometer. The viscometer was calibrated using distilled water at 298.15 K and multiple measurements (five repetitions) were taken for each sample to ensure accuracy. The uncertainty in viscosity measurement is given as $\pm 0.005 \times 10^3$ mPa·s, indicating high precision.

RESULTS AND DISCUSSION

The experimental values of speed of sound (u), viscosities (η) and densities (ρ) of 1,3-dioxolane with 1-alkanol mixtures at

298.15 K are listed in Table 2. From these values, we have computed surface tension (S), available volume (V_a), relaxation strength (r), interaction parameter (γ), enthalpy (H) and free volume (V_f) are presented in Table 2 and Figure 1.

Figure 1: Interactions between 1,3-dioxolane with 1-alkanols at 298.15 K.

Table 2: Experimental values of speed of sound (u), viscosities (η) and densities (ρ) and derived parameter surface tension (S), available volume (V_a), relaxation strength (r) and interaction parameter (γ) for the binary mixtures of 1,3-dioxolane(1)+alkanols (2) at 298.15 K.

Mole fraction 1,3-Dioxolane (x_1)	Density (ρ)/ g.cm^{-3}	Viscosity (η)/ mPas	Sound velocity (u)/ ms^{-1}	Surface tension (S) $\times 10^3/\text{N.m}^{-1}$	Available volume (V_a) $\times 10^{-3}/\text{m}^3\text{mol}^{-1}$	Enthalpy (H) $\times 10^6$	Free volume (V_f) $\times 10^{-7} \text{ M}^3\text{mol}^{-1}$	Relaxation Strength (r)	Interaction parameter (γ) $\times 10^{-3}$
1,3-Dioxolane+Pentanol									
0	0.8124	3.3978	1198	0.2155	0.0272	0.3156	1.9568	0.0631	0
0.0939	0.8276	2.3973	1284	0.2436	0.0207	0.345	3.5817	0.039	0.1236
0.1942	0.8436	1.897	1290	0.2501	0.0196	0.3468	4.9996	0.0375	0.1079
0.2941	0.864	1.4437	1296	0.2579	0.0184	0.3384	9.9265	0.0361	0.0928
0.3942	0.8836	1.1866	1300	0.265	0.0175	0.3341	11.0374	0.0351	0.0748
0.4787	0.9068	1.0904	1304	0.2732	0.0165	0.33.8	10.8499	0.0342	0.0609
0.5999	0.9316	0.9311	1310	0.2826	0.0154	0.3262	13.4125	0.0328	0.0422
0.6972	0.9596	0.7717	1318	0.293.8	0.0143	0.3236	17.4788	0.031	0.0326
0.7928	0.9876	0.7171	1324	0.3045	0.0134	0.3201	17.4788	0.0297	0.0206

0.9035	1.026	0.6489	1332	0.3192	0.0123	0.3166	19.1422	0.028	0.0089
1	1.0616	0.5885	1340	0.3332	0.0113	0.3135	21.7624	0.0264	0
1,3-Dioxolane+Hexanol									
0	0.8176	4.6091	1306	0.2469	0.0229	0.4163	1.7591	0.0337	0
0.0912	0.8252	3.3826	1317	0.2524	0.0213	0.4112	2.7275	0.0312	0.0121
0.1955	0.8432	2.3306	1320	0.2588	0.02	0.4003	4.576	0.0306	0.0112
0.2923	0.8584	1.9839	1322	0.264	0.019	0.3899	5.5951	0.0301	0.0092
0.3982	0.8792	1.572	1325	0.2713	0.0177	0.3787	7.5845	0.0295	0.0083
0.4942	0.8992	1.3059	1327	0.2781	0.0167	0.3683	9.5968	0.0291	0.0064
0.6059	0.9264	1.0343	1330	0.2875	0.0155	0.3567	12.9396	0.0284	0.0051
0.6976	0.9508	0.9131	1332	0.2958	0.0145	0.465	14.9307	0.028	0.0034
0.8018	0.9836	0.768	1335	0.307	0.0133	0.3352	18.398	0.0274	0.0026
0.8914	1.0168	0.7304	1337	0.3181	0.0124	0.3254	18.9465	0.027	0.001
1	1.0616	0.5885	1340	0.3332	0.0113	0.3135	24.7413	0.0264	0
1,3-Dioxolane+Heptanol									
0	0.8196	5.9066	1325	0.2529	0.0243	0.4838	1.503	0.0295	0
0.0928	0.8304	4.3181	1334	0.2589	0.0224	0.4725	2.3075	0.0276	0.0115
0.1905	0.8412	3.2577	1334	0.2623	0.0213	0.4552	3.3296	0.0252	0.0092
0.2939	0.8592	2.5895	1335	0.2682	0.02	0.4373	4.4224	0.0274	0.0084
0.3894	0.874	1.9926	1335	0.2728	0.0188	0.4201	6.1746	0.0273	0.0063
0.4818	0.8916	1.5315	1336	0.2786	0.0177	0.4042	8.6425	0.0272	0.0056
0.6021	0.9184	1.219	1337	0.2873	0.0162	0.3835	11.2315	0.027	4.4553
0.6952	0.942	1.0959	1337	0.2947	0.0151	0.3667	12.3322	0.0268	2.3556
0.7892	0.9756	0.9903	1338	0.3055	0.0139	0.3505	13.4017	0.0267	1.7391
0.9006	1.0156	0.7057	1339	0.3184	0.0125	0.3309	20.4381	0.0266	0.7337
1	1.0616	0.5885	1340	0.3332	0.0113	0.3135	24.7413	0.0264	0
1,3-Dioxolane+Octanol									
0	0.8296	7.1508	1350	0.2633	0.0247	0.5619	1.3767	0.0244	0

0.0885	0.8296	5.6095	1350	0.2645	0.0235	0.5363	1.8692	0.0243	1.3124
0.1967	0.8464	3.9321	1349	0.2683	0.022	0.51	2.9529	0.0246	1.3133
0.2998	0.856	3.2616	1348	0.2711	0.0208	0.4845	3.6234	0.0248	1.4823
0.3902	0.8712	2.4284	1348	0.2759	0.0195	0.4629	5.2656	0.0247	2.8279
0.4963	0.8876	1.9058	1348	0.2811	0.0181	0.4375	6.9577	0.0246	4.4106
0.6008	0.914	1.3631	1347	0.2891	0.0166	0.4117	10.516	0.025	4.4812
0.6925	0.934	1.1376	1348	0.2958	0.0154	0.3905	12.718	0.0248	7.3473
0.7975	0.9676	0.9141	1348	0.3064	0.0139	0.3652	15.9753	0.0247	8.9242
0.894	1.0104	0.7652	1348	0.32	0.0124	0.3421	18.906	0.0246	0.0103
1	1.0616	0.5885	1340	0.3332	0.0113	0.3135	24.7413	0.0264	0
1,3-Dioxolane+Nonanol									
0	0.8248	8.9258	1366	0.2665	0.0255	0.6291	1.1714	0.0213	0
0.0876	0.8336	6.8601	1366	0.2693	0.0242	0.602	1.6286	0.021	3.343
0.1913	0.8404	5.8531	1363	0.2706	0.023	0.5684	1.899	0.0219	2.9025
0.2942	0.8504	4.4022	1359	0.2726	0.0218	0.5347	2.662	0.0226	9.5609
0.3963	0.8692	3.1558	1355	0.2774	0.0205	0.5014	3.9924	0.0234	-1.0268
0.4959	0.8844	2.334	1352	0.2813	0.0191	0.4697	5.7014	0.024	-1.6349
0.605	0.9092	1.7321	1349	0.2883	0.0175	0.4354	7.9725	0.0246	-1.8802
0.6947	0.9332	1.3334	1346	0.2949	0.0162	0.4072	10.6902	0.0252	-2.8731
0.7993	0.9648	0.9642	1343	0.3039	0.0146	0.3744	15.3683	0.0258	-3.2951
0.9013	1.0084	0.8031	1340	0.3165	0.013	0.3402	17.3683	0.0262	-3.8191
1	1.0616	0.5885	1340	0.3332	0.0113	0.3135	24.7413	0.0264	0
1,3-Dioxolane+Decanol									
0	0.8292	11.8027	1378	0.2714	0.0264	0.699	0.8971	0.0192	0
0.0881	0.8364	8.5615	1374	0.2726	0.0254	0.6634	1.3454	0.0199	-0.9486
0.191	0.8396	7.8207	1370	0.2724	0.0243	0.6226	1.404	0.0206	-1.0823
0.2921	0.856	5.534	1366	0.2765	0.0228	0.5827	2.14	0.0213	-1.3167
0.3937	0.8672	4.2319	1362	0.2789	0.0214	0.5429	2.8863	0.0221	-1.5245
0.4956	0.8824	3.4173	1358	0.2826	0.0199	0.5035	3.5598	0.0228	-1.7167

0.604	0.9076	2.537	1353	0.289	0.0182	0.4615	4.8971	0.0238	-3.0204
0.7129	0.9308	1.5262	1348	0.2948	0.0166	0.4198	9.1301	0.0248	-4.3032
0.7983	0.9616	1.1637	1344	0.3032	0.0151	0.3871	12.181	0.0256	-5.431
0.8971	1.004	0.8623	1340	0.3151	0.0133	0.3505	16.4668	0.026	-5.8106
1	1.0616	0.5885	1340	0.3332	0.0113	0.3135	24.7413	0.0264	0

The excess parameters such as excess surface tension (S^E), excess available volume (V_a^E), excess relaxation strength (r^E), excess enthalpy (H^E) and excess free volume (V_f^E) have been calculated using the following equations.

$$\text{Surface tension } S = 6.4 \times 10^{-3} \cdot \rho \cdot u^{1/2} \quad (1)$$

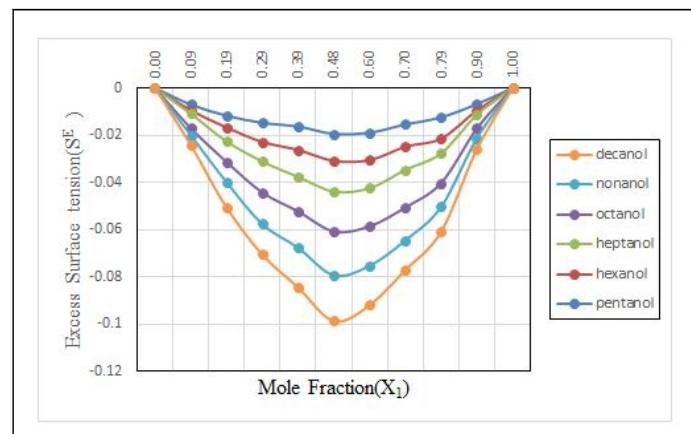
$$\text{Available volume } V_a = (M/\rho) [1 - (U/U_\infty)] \quad (2)$$

Where M is the molecular weight of the solution which can be calculated according to the equation [$M = M_1 X_1 + M_2 X_2$] and $U_\infty = 1600 \text{ m/s}$

$$\text{Free volume } V_f = (M \cdot U / k \eta)^{3/2} \quad (3)$$

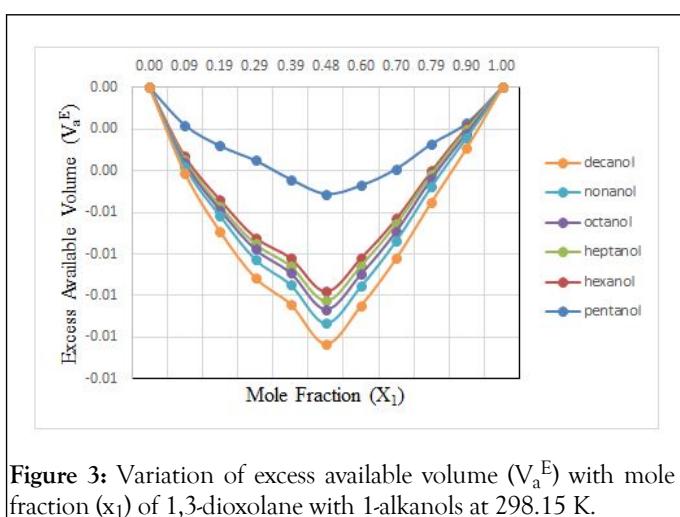
$$\text{Relaxation strength } r = 1 - (U/U_\infty)^2 \quad (4)$$

$$\text{Enthalpy } H = V_m \times P_i \quad (5)$$


$$\text{Interaction parameter } \chi = (u_{\text{exp}}^2 / u_{\text{id}}^2) - 1 \quad (6)$$

$$Y^E = Y_{\text{exp}}(X_1 Y_1 + X_2 Y_2) \quad (7)$$

Y^E refer to (S^E), (V_a^E), (r^E), (H^E) and (V_f^E) whereas Y_{exp} is measured property. Y_1 , Y_2 , are any acoustic parameter, X_1 and X_2 are mole fraction of 1,3-Dioxolane and 1-alkanol.


A perusal of Table 2 shows the mole fraction (X_1) of 1,3-Dioxolane increases, density and ultrasonic velocity increase, while viscosity decreases. This trend can be explained by molecular interactions in the system [25]. When 1,3-Dioxolane is added, it likely leads to closer packing of molecules due to molecular interactions, such as dipole-induced dipole forces.

The calculated excess surface tension (S^E), values for the binary liquid mixture listed in Figure 2. A perusal of curves in Figure 2 indicate the values of excess surface tension (S^E), data for binary mixtures of 1,3-Dioxolane with 1-alkanols are negative. The excess surface tension (S^E), values are negative over the entire mole fraction range and become more negative with increasing the mole fraction of second component for all binary mixtures. These results can be explained in term of molecular interactions and structured effects. Excess values of surface tension are negative over the entire composition range at 298.15 K, indicating weak interaction between the components of the mixture. In all the cases surface tension increases with increase in mole fraction of 1,3-Dioxolane, which indicate reduction in the intermolecular interactions. For all studied systems, excess surface tension (S^E), were negative over the entire mole fraction range of 1,3-Dioxolane at 298.15 K. Among the six systems, 1,3-Dioxolane with 1-alkanols containing system showed more negative.

Figure 2: Variation of excess surface tension (S^E) with mole fraction (x_1) of 1,3-dioxolane with 1-alkanols at 298.15 K.

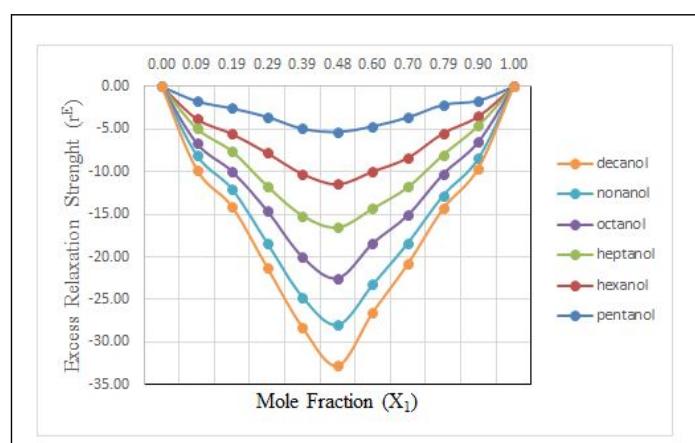
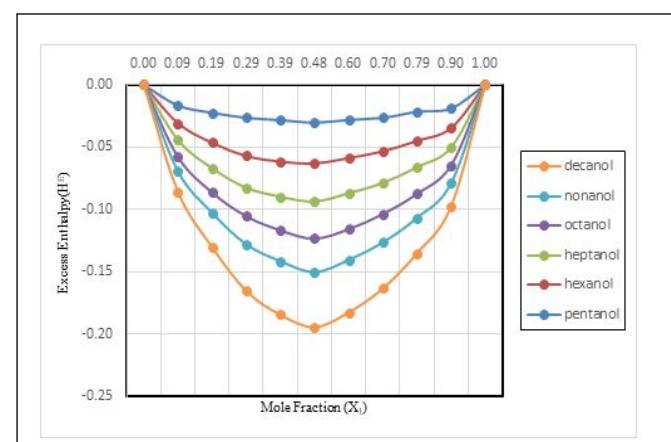

Figure 3 depicts the variation of the excess available volume (V_a^E) of the chosen system. We clearly see from Figure 3 that the non-linear variation of excess available volume (V_a^E) with mole fraction of 1,3-dioxolane. The negative deviation of excess available volume (V_a^E) reaching a minimum at 0.48 mole fraction of 1,3-dioxolane shows the molecular interactions between the molecules [26]. It is evident from Figure 3 that the value of excess available volume (V_a^E) are negative for all binary liquid system at 298.15 K. The value of V_a^E are plotted against the mole fraction of 1,3-dioxolane and are shown in Figure 3. Similarly results were also obtained by D. Bala Karuna Kumar et al. [27] for binary mixtures of N-methyl-2-pyrrolidone. The depolymerisation of hydrogen bonded alcohols aggregates and decrease in dipolar association of component molecules leads to expansion of volume dominating interstitial accommodation which causes negative value of excess available volume (V_a^E) but it is compensated by charge transfer complex formation between hydrogen of alcohols and oxygen of 1,3-dioxolane. From the plots of (V_a^E) vs. X_1 (Figure 3) it may seen that excess available volume are negative over the whole mole fraction.

Figure 3: Variation of excess available volume (V_a^E) with mole fraction (x_1) of 1,3-dioxolane with 1-alkanols at 298.15 K.


From Table 2 show that the values of interaction parameter (γ) are positive for the system 1,3-dioxolane+pentanol, 1,3-dioxolane+hexanol, 1,3-dioxolane+heptanol and 1,3-dioxolane+octanol. The positive values of interaction parameter (γ) indicate the existence of strong interactions in the binary liquid mixture. The values of interaction parameter (γ) are negative for the system 1,3-dioxolane+nonanol and 1,3-dioxolane+decanol. This indicating the weak interactions in these binary liquid mixtures [28].

The term relaxation strength (r) is useful in prediction of molecular properties of liquid mixtures. The relaxation strength (r) decreases with increases in concentration of 1,3-dioxolane (X_1). Figure 4 shows the variation of excess relaxation strength (r^E) with mole fraction of 1,3-dioxolane at the temperature 298.15 K For the binary system 1,3-dioxolane with 1-alkanols, the excess relaxation strength (r^E) values are negative and decreasing with the increase in mole fraction of 1,3-dioxolane up to the mole fraction (0.5) and the increase with increase in mole fraction. We clearly see from Figure 4 that the non-linear variation of excess relaxation strength (r^E) with mole fraction of 1,3-dioxolane. The negative deviation of excess relaxation strength (r^E) reaching a minimum at 0.48 mole fraction of 1,3-dioxolane shows the molecular interactions between the molecules. The structural changes take place due to the variation in relaxation strength (r) of the system. The excess relaxation strength (r^E) decrease with increase in the composition of 1,3-dioxolane till 0.48 mole fraction, reaches minimum at 0.48 mole fraction and beyond 0.48 mole fraction, it again increases. The existence of minimum relaxation strength (r) indicates the squeezing of molecules in the system.

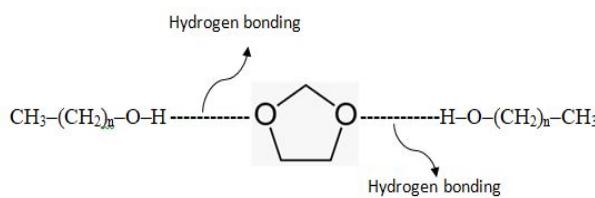


Figure 4: Variation of excess relaxation strength (r^E) with mole fraction (x_1) of 1,3-dioxolane with 1-alkanols at 298.15 K.

Figure 5 shows the variation of excess enthalpy (H^E) with mole fraction of 1,3-dioxolane at the temperature 298.15 K For the binary system 1,3-dioxolane with 1-alkanols, the excess enthalpy (H^E) values are negative and decreasing with the increase in mole fraction of 1,3-dioxolane up to the mole fraction (0.5) and the increase with increase in mole fraction. In the present investigation for the six binary systems it is observe that, as the mole fraction of 1,3-dioxolane increase, the excess enthalpy (H^E) values decreases. This situation is observed for all six binary system under study and can be viewed from plots Figure 6. This suggests that dipole and dispersive force are operative in these systems, when the 1,3-dioxolane concentration low. When the concentration of 1,3-dioxolane increased, the corresponding decrease in concentration of 1,3-dioxolane leads to specific interactions i.e., the interactions move from weak to strong which supports the above arguments is case of other parameters. As a result, the free dipoles released from the alkanols in association with 1,3-dioxolane molecules forming strong hydrogen bonds, hence stronger molecular association existing between the 1,3-dioxolane with 1-alkanols molecules through hydrogen bonding [29].

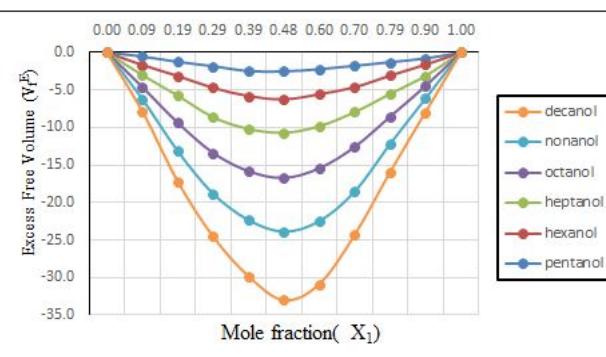


Figure 5: Variation of excess enthalpy (H^E) with mole fraction (x_1) of 1,3-dioxolane with 1-alkanols at 298.15 K.

Figure 6: Hydrogen bonding present in 1,3-dioxolane-n-alkanols.

The concept of free volume is an extension of the idea that each molecule is enclosed by its neighbor in a cell. The free volume per molecules may be regarded as the effective volume accessible to the centers of a molecule in a liquid. It is however, evident from the consideration of the liquid state theories that the concept of free volume varies with the specific model chosen for the liquid. A perusal of Figure 7 shows that the value of excess free volume (V_f^E), are negative for the all binary liquid system 1,3-dioxolane with 1-alkanols at 298.15 K. In the present investigation the negative excess free volume (V_f^E), for binary mixtures of 1,3-dioxolane with 1-alkanols may be attributed to hydrogen bond formation through dipole-dipole interaction between 1-alkanol and 1,3-dioxolane molecule or to structural contributions arising from the geometrical fitting of 1-alkanol into the 1,3-dioxolane due to difference in the free volume between components. The interactions of alcohols with organic liquids are interesting due to its acetic nature. The O-H bond in alcohols is polar and allows the release of hydrogen atom as proton (H^+). The order of acidity in alcohols is: 1°-alcohol > 2°-alcohol > 3°-alcohol. This order is due to +I effect while the interacting ability of alcohols is well established no such opinion is suggested from literature [30,31] with regards to 1,3-dioxolane with 1-alkanols were selected to study their molecular interactions through their acoustical behavior.

Figure 7: Variation of excess free volume (V_f^E) with mole fraction (X_1) of 1,3-dioxolane with 1-alkanols at 298.15 K.

The negative values of excess free volume (V_f^E), indicate the presence of strong molecular interaction. We may conclude that 1-alkanols, is disrupted. It is also concluded that Suryanarayana approach for estimating free volume thermodynamic considerations is very well applicable in the present case.

CONCLUSION

This research article report experimental study of sound velocity, viscosity and density and its derived excess parameters. The

existence of molecular interactions in solute-solvent is favoured in the system, confirmed from the ultrasonic velocity (u), viscosity (η), density (ρ), surface tension (S), available volume (V_a), relaxation strength (r), interaction parameter (γ), enthalpy (H) and free volume (V_f). We are concluded that there exists a molecular interaction between 1,3-dioxolane and 1-alkanols due to hydrogen bonding and degree of complexation.

ACKNOWLEDGMENTS

The authors thanks to Uttar Pradesh Council of Science and Technology, Lucknow (No. CST/CHEM/D-648) for financial support (Project ID: 3409).

ETHICAL CONSIDERATIONS

Ethical approval is not applicable for the article.

CONSENT TO PARTICIPATE

Not applicable.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project was sponsored by the Uttar Pradesh Council of Science and Technology, Lucknow (No. CST/CHEM/D-648) for financial support (Project ID: 3409).

DECLARATION OF CONFLICTING INTERESTS

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

DATA AVAILABILITY STATEMENT

The data for this study are available from the corresponding author on request.

REFERENCES

1. Nath G, Paikaray R. Role of frequency in studying intermolecular interactions in a binary mixture of industrial importance liquid. *Mol Liq*. 2009;21(1):99-104.
2. Ali A, Hyder S, Nain AK. Studies on molecular interactions in binary liquid mixtures by viscosity and ultrasonic velocity measurements at 303.15 K. *J Mol Liq*. 1999;79(2):89-99.
3. Francesconi R, Comelli F, Castellari C. Excess molar enthalpies and excess molar volumes of binary mixtures containing dialkyl carbonates+anisole or phenetole at (288.15 and 313.15) K. *J Chem Eng Data*. 2000;45(4):544-548.

4. Vural US, Yuruk H, Muradoglu V. Excess volumetric properties of mixtures epichlorohydrine plus acetone or chloroform at 291.15 and 296.15 K. *Rus J Phys Chem.* 2003;77:1091-1094.
5. Vural US, Yuruk H, Muradoglu V. Excess molar volumes, and refractive index of binary mixtures of glycerol+methanol and glycerol+water at 298.15K and 303.15 K. *Rus J Phys Chem.* 2004;77:33.
6. Vural US. Excess molar volumes, viscosity, refractive index, and Gibbs energy of activation of binary biodiesel+benzene, and biodiesel+toluene mixtures at 298.15 and 303.15 K. *Rus J Phys Chem.* 2005;79:1096.
7. Hind RK, McLaughlin E, Ubbelohde AR. Structure and viscosity of liquids: Viscosity-temperature relationships of pyrrole and pyrrolidine. *Trans Faraday Soc.* 1960;56:331-334.
8. Dominguez M, Pardo J, Lopez MC, Royo FM, Urieta JS. Viscosities of the ternary mixture (1-butanol+n-hexane+1-butylamine) at the temperatures 298.15 and 313.15 K. *Fluid Phase Equil.* 1996;124(1-2):147-159.
9. Nithiyanantham S, Palaniappan L. Ultrasonic study on glucose with alpha-amylase in aqueous media. *Acta Ciencia Indica Phys.* 2005;31(4):533.
10. Nithiyanantham S, Palaniappan L. Molecular Interaction studies of fructose in aqueous amylase solution. *Acta Ciencia Indica.* 2006;32(3):387-391.
11. Perrin DD, Armarego WLF. *Purification of laboratory chemicals.* 3rd Edn, Pergamon Press, United Kingdom, 1988.
12. Zhao Y, Wang J, Xuan X, Lu J. Effect of temperature on excess molar volumes and viscosities for propylene carbonate+N, N-Dimethylformamide mixtures. *J Chem Eng Data.* 2000;45(3): 440-444.
13. Nithya R, Nithiyanantham S, Mullainathan S, Rajasekaran M. Ultrasonic investigation of molecular interactions in binary mixtures at 303 K. *J Chem.* 2009;6(1):138-140.
14. Nithiyanantham S, Palaniappan L. Acoustical studies on some disaccharides (sucrose, lactose, maltose) in aqueous media at room temperature. *Metals Mater Proc.* 2008;20(3):203-208.
15. Al-Dulaimy ZA, Al-Heetimi DT, Khalaf HS, Abbas AM. Excess molar quantities of binary mixture of dipropyl amine with aliphatic alcohols at 298.15 K. *Orient J Chem.* 2018;34(4):2074.
16. Dubey GP, Sharma M. Excess volumes, densities, speeds of sound, and viscosities for the binary systems of 1-octanol with hexadecane and squalane at (298.15, 303.15 and 308.15) K. *Int J Thermophys.* 2008;29(4):1361-1375.
17. Al-Kandary JA, Al-Jimaz AS, Abdul-Latif AM. Densities, viscosities, speeds of sound and refractive indices of binary mixtures of tetrahydrofuran with 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and 1-decanol at 298.15, 303.15, 308.15 and 313.15 K. *Phys Chem Liqs.* 2009;47(2):210-224.
18. Indumati M, Meenakshi G, Priyadarshini VJ, Kayalvizhi R, Thiagaraj S. Theoretical evaluation of ultrasonic velocity and excess parameters in binary liquid mixtures of bromobenzene with alkanols. *Res J Pharmaceut Biol Chem Sci.* 2013;4(2):1332-1384.
19. Chanda R, Banerjee A, Roy NM. Studies of viscous antagonism, excess molar volumes, viscosity deviation and isentropic compressibility of ternary mixtures containing N, N-dimethylformamide, benzene and some ethers at 298.15 K. *J Serb Chem Soc.* 2010;75(12):1721-1732.
20. Giner I, Villares A, Haro M, Gascon I, Lafuente C. Thermodynamic properties of binary mixtures formed by cyclic ethers and chloroalkanes. *J Therm Anal Calor.* 2007;90(2):587-595.
21. Koneti AK, Chintalapati S. Speeds of sound and excess molar volume for binary mixture of 1, 4-dioxane with 1-heptanol at five temperatures. *Adv Chem.* 2014;2014(1):343012.
22. Bhatia SC, Rani R, Sangwan J, Bhatia R. Densities, viscosities, speeds of sound and refractive indices of binary mixtures of 1-decanol with isomeric chlorotoluenes. *Int J Thermophys.* 2011;32(6): 1163-1174.
23. Banipal PK, Singh V, Kaur N, Sharma R, Thakur S, Kaur M, et al. Physico-chemical studies on binary mixtures of 1,4-Dioxane and Alkan-1-ols at 298.15K. *Acad Sci India Sec A Phys Sci.* 2017;88(4): 479-490.
24. Venkatalakshmi V, Gowrisankar M, Venkateswarlu P, Reddy KS. Density, ultrasonic velocity, viscosity and their excess parameters of the binary mixtures of 2-methyl aniline with 1-alkanols (C₃-C₈) at different temperatures. *Int J Phys.* 2013;3:33-44.
25. Al-Dulaimy ZA, Al-Heetimi DT, Khalaf HS, Abbas AM. Excess molar quantities of binary mixture of dipropyl amine with aliphatic alcohols at 298.15 K. *Orient J Chem.* 2018;34(4):2074.
26. Kiyohara O, Benson GC. Ultrasonic speeds and isentropic compressibilities of n-alkanol+n-heptane mixtures at 298.15 K. *J Chem Thermodyn.* 1979;11(9):861-873.
27. Pandey JD, Rai RD, Shukla RK, Shukla AK, Mishra NE. Ultrasonic and thermodynamic properties of quaternary liquid system at 298.15 K. *Indian J Pure Appl Phys.* 1993;31:84.
28. Prahraj MK, Mishra PR, Mishra S, Satapathy A. Ultrasonic study of ternary liquid mixture containing substituted benzene. *Arch Phys Res.* 2012;3(3):192-200.
29. Bala KKD, Hanumantha RY. Excess free volume, internal pressure and molar available volumes in the binary liquid mixtures of N-Methyl-2-pyrrolidone at different temperatures. *Int J Adv Res Chem Sci.* 2015;2(2):28-34.
30. Dash AK, Paikaray R. Acoustical study on ternary mixture of dimethyl acetamide (DMAC) in diethyl ether and isobutyl methyl ketone at different frequencies. *Phys Chem Liq.* 2013;51(6):749-763.
31. Nomoto O. Empirical formula for sound velocity in liquid mixtures. *J Phys Soc Japan.* 1958;13(12):1528-1532.