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Abstract

Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-
proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded
proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction
and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been
implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer’s and Parkinson’s.
Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a
therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of
neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in
neurodegenerative disorders and potential utility of proteasomal modulation therein.
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Introduction
The Ubiquitin-proteasome system (UPS) is the key intracellular

molecular machinery for protein degradation and maintenance of
protein homeostasis in eukaryotic cells. Although originally dismissed
as a “garbage disposal” system, in the last two decades, UPS has been
recognized as a central player in the regulation of essential cellular
functions including cell cycle, cell differentiation, antigen processing,
stress signaling, inflammatory responses, and apoptosis. UPS also
exhibits important functions in normal brain development by
controlling cell fate and specification [1]. Apparently, the presence of
functional UPS components in both pre- and postsynaptic
compartments of neurons is required for their proper function [2].
Alterations in UPS activity have been shown to induce pathological
changes and abnormal brain function. Many brain pathologies,
especially neurodegenerative diseases, are characterized by the
accumulation of toxic levels of protein aggregates which challenges the
proteostatic mechanisms to the point of collapse. Modulating UPS
mechanisms has therefore emerged as a promising adjunct treatment
strategy for diverse brain pathologies including brain cancer,
neurodegeneration, brain-associated autoimmune disorders and
inherited brain disorders associated with protein misfolding and toxic
gain of functions [3-5]. During the last two decades many mechanisms
that regulate the UPS have been unraveled, and depending on the
disorder in question, both proteasome inhibition and activation
present significant potential in pharmacotherapeutic development. As
the general nature of UPS [6-8] and its participation in aging and
cancer [9-13] have been widely reviewed in the published literature,
this short review primarily covers the role of proteasome and
investigational use of proteasome modulation in the therapy of
neurodegenerative disorders.

The Ubiquitin-Proteasome System (UPS)
UPS is the primary degradation system in eukaryotic cells, which

mediates the degradation of short-lived regulatory proteins and the
removal of damaged soluble proteins [3]. It involves the
implementation of two sequential steps: ubiquitination and proteolytic
degradation of ubiquitinated proteins (Figure 1). The ubiquitination
step covalently attaches an ubiquitin chain to the lysine residues in
substrate proteins, which serves as a recognition signal for further
processing of proteins by proteasome. The formation of an isopeptide
bond between the ε-amino group of lysine residues and the carboxyl
group of the C-terminal glycine of ubiquitin is an ATP-dependent
process. It is achieved via a cascade involving three distinct classes of
enzymes: ubiquitin-activating enzymes (E1), ubiquitin-conjugating
enzymes (E2) and ubiquitin ligases (E3) [14]. An E1 enzyme mediates
the ATP-dependent activation of ubiquitin. The activated ubiquitin is
translocated to an E2-conjugating enzyme, followed by E3 ligase-
mediated facilitation of ubiquitin transfer to a specific lysine residue to
the target substrate [15]. In this process, the substrate specificity is
achieved through the availability of a large number of different E3s
that interact with specific target substrates [16]. To date, at least 35 E2s
and over 600 E3s have been discovered to exist in mammalian cells,
which suggests a system with a high degree of substrate specificity
[17]. When a proper ubiquitin chain consisting of at least four
ubiquitin moieties is assembled on a substrate protein, it becomes a
subject for the proteasome wherein it is degraded into short peptides
and amino acids which are recycled for new protein synthesis.

The Proteasome Assemblies
In its constitutive presentation, the proteasome is a mono-capped

or bi-capped cylindrical structure housing the proteolytic active sites.
The cylindrical core (also known as core particle 20S or CP) is formed
by two different types of protein subunits, α and β, which are arranged
in four stacked heptameric rings enclosing a central cavity. In
eukaryotes, seven distinct α subunits are located in the two outer rings
of the barrel, and seven distinct β subunits form the two inner rings
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[18]. The β subunits face the interior cavity of the cylinder and house
the active sites for proteolytic activity: β1 cleaves after acidic residues
(caspase-like activity), β2 cleaves after basic residues (trypsin-like

activity), and β5 cleaves after hydrophobic residues (chymotrypsin-like
activity). Access to the active sites is regulated by a gate consisting of
N-terminal protrusions of the α subunits [19,20].

Figure 1: Ubiquitin-proteasome system (UPS). UPS involves ubiquitination and proteolytic degradation of ubiquitinated proteins. Ubiquitin
is first attached to the target protein via a cascade involving three distinct enzymes: ubiquitin-activating enzymes (E1), ubiquitin-conjugating
enzymes (E2), and ubiquitin ligases (E3). The ubiquitinated substrate is recognized, unfolded, and deubiquitinated by the 19S regulatory
particle. The unfolded protein enters the 20S catalytic particle where it is degraded by the β1 (trypsin-like activity), β2 (caspase-like activity)
and β5 (chymotrypsin-like activity) subunits.

Figure 2: Various assemblies of proteasome.  The proteasome is a mono-capped or bi-capped cylindrical structure. The cylindrical core (20S
or CP) is formed by two different types of protein subunits, α and β, which are arranged in four stacked heptameric rings enclosing a central
cavity. The proteasome core particle can be capped with 19S or 11S activator complexes (a third activator complex Blm10/PA200 is not
shown).

The default status of the CP gate is closed. Thus, for substrate access
and proteasomal degradation to occur, the N-termini need to be
displaced from their axial position to reveal a continuous channel
leading into the catalytic cavity. Modulation of the gate is a

prerequisite for substrate entry into the proteolytic chamber and is
mediated by proteasome activators. Several endogenous modulators
have been described, including the regulatory particle (RP/19S/
PA700), activator of the PA28 protein family (11S) and Blm10/PA200
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activator [21]. As shown in Figure 2, these regulator assemblies cap the
two ends of CP and modify the function of constitutively active 20S
CP.

The dominant partner of 20S CP in the assembly of 26S proteasome
is RP/19S/PA700, which can connect to one or both ends of the core
by binding to the terminal α-rings of the 20S cylinder. It is composed
of 19 integral subunits that form two biochemically separable sub-
complexes, the lid and base [22]. The base subcomplex is situated
proximal to the CP gate region. It contains six homologous ATPases
(Regulatory particle triphosphatase proteins (Rpt) 1–6), which form a
hexameric ring. They belong to the family of ATPases associated with
diverse cellular activities (AAA). The lid, on the other hand, consists of
nine non-ATPase subunits [3]. When the 20S core is bound by two
19S modules (19S–20S–19S proteasome complex), the assembly is
categorized as the classic 26S proteasome. The 19S ATP-dependent
proteasome activator (PA700) recognizes the ubiquitinated protein
substrates for deubiquitination, unfolding, and threading them into
the catalytic chamber of the proteasome in an ATP- and ubiquitin-
dependent manner [23].

Like the 19S regulator, the 11S regulator (PA28 complex) also
activates the 20S proteasome by binding to the α-rings of the 20S
proteasome, but its function is ATP-independent [24]. PA28 responds
to stress by increased expression [25]. It is expressed as PA28α, PA28β,
and PA28γ isoforms, the exact functions of which are not clearly
understood [25]. PA28α and PA28β have been shown to form hetero-
heptameric rings in cytosol [26,27], while PA28γ forms homo-
heptameric rings and is found in the nuclei of vertebrates as well as
invertebrates [26,27].

Both PA28α and PA28β units are inducible by interferon-γ, which
suggests a potential role of PA28α/β in major histocompatibility
complex (MHC) Class I-mediated antigen presentation [28]. They are
also expressed in organs involved in non-immune functions. In
eukaryotic cells, PA28α/β can generate hybrid 26S proteasomes with
enhanced proteolytic efficiency [29]. It can also facilitate heat shock
protein (HSP) 90-mediated protein refolding [30]. The role of PA28γ
is not entirely clear, but the mice deficient in PA28γ exhibit reduced
body-size, and embryonic fibroblasts derived from these mice shows
cell cycle defects [31]. It is thought that 11S–20S–11S complex can
only degrade simple unstructured proteins, whereas 19S–20S–11S and
19S–20S–19S complexes can hydrolyze large complex proteins [29].

The Blm10/PA200 family can also form pure or hybrid complexes
in which Blm10/PA200 binds to one end and the 19S to the other end
of the CP cylinder [32,33]. It is conserved from yeast to humans and is
populated by monomeric proteins of ~ 250 kDa. Blm10 binds to the
proteasome during the late phases of CP assembly and contributes to
the final maturation of CP complexes [34,35]. One physiological target
for Blm10–proteasome complexes is the transcription factor split
finger protein 1 (Sfp1), which regulates ribosomal protein genes [36].
Additional studies suggest a potential role for Blm10 in mitochondrial
homeostasis [37,38]. Furthermore, it may be an important participant
in DNA or oxidative damage repair processes and chromosome
stability [32,39,40], most likely through ATP- and ubiquitin-
independent degradation of acetylated histones in somatic cells [41].

Immunoproteasome and thymoproteasome
In addition to the constitutive proteasome assemblies discussed

above, adaptive processes can induce the cells to express alternative
proteasomal phenotypes. The immunoproteasome and

thymoproteasome are the two known alternative proteasome forms.
Their expression is primarily regulated by the prevailing cytokine
environment [42-45]. In the immunoproteasome, β1, β2, and β5
subunits are replaced by LMP2 (low-molecular mass polypeptide 2,
also known as β1i), MECL-1 (multicatalytic endopeptidase complex-
like-1, β2i), and LMP7 (β5i). LMP7 and MECL-1 immuno-subunits
display essentially the same cleavage specificity as their constitutive
counterparts, but LMP2 shows more chymotrypsin-like activity than
the caspase-like activity of β1 [46]. Recent studies have suggested a
role of the immunoproteasome in inflammation [47], tumor
development [48], lipid metabolism [49] and NF-κB signaling [50].
Constitutive proteasome and immunoproteasome usually coexist in
cells, but the ratio between the two isoforms varies on the basis of cell
type and environment [51]. The reports suggest that the triggering
factor for the conversion of constitutive proteasome into
immunoproteasome is interferon-γ [52-54], and the
immunoproteasome is assembled four times faster than the
constitutive proteasome, but exhibits greatly reduced stability [55,56].
Unlike the ubiquitous expression of immunoproteasome,
thymoproteasome is exclusively present in the thymus [57].
Thymoproteasome contains the β1i and β2i immune-subunits as well
as a thymic proteasome subunit β5t (also known as proteasome
subunit beta type-11 or PSMB11). The incorporation of β5t results in
the reduction of the chymotrypsin-like activity of the proteasome [57],
and its expression is essential for positive selection of T cells in the
thymus [58].

UPS dysfunction in Neurodegenerative disorders
The high metabolic activity in the brain makes intracellular

neuronal content particularly vulnerable to oxidative damage. Apart
from the recently discovered glymphatic system [59], the brain's only
known method for disposal is to break down and recycle the proteins
within individual cells. The glymphatic system is a paravascular
transport system that allows for cerebrospinal fluid (CSF) and
interstitial fluid (ISF) exchange, facilitating the efficient clearance of
solutes and waste from the brain [60]. On the other hand, as the
primary proteolytic complex responsible for the elimination of
damaged and misfolded intracellular proteins, UPS plays an important
role in preventing accumulation of proteinaceous trash in brain cells.
Given the importance of housekeeping function delivered by UPS, its
potential impact on several neuronal dysfunctions is significant. Both
the constitutive and immunoproteasome participate in normal
neuronal physiology [61-63], and their aberration is linked to various
brain pathologies (Figure 3). Evidence suggests that a unifying
characteristic of several neurodegenerative disorders is the inability of
cells to dispose of aggregated and misfolded proteins. In the text
below, we briefly discuss the identified role of UPS in various
neurodegenerative disorders.

Alzheimer's disease (AD): AD is characterized by dementia and loss
of cognitive function, resulting in memory impairment, personality
changes, psychosis, and language disturbances [3]. The progressive
intellectual decline in AD patients is accompanied by an increase in
the deposition of protein aggregates that eventually form intracellular
neurofibrillary tangles (NFT) and extracellular senile/amyloid plaques
[64]. The chronic neuroinflammation observed in the brain samples
from AD patients has been found to be associated with increased
immunoproteasome (LMP2) expression [63].
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Figure 3: UPS dysregulation in neurodegenerative disorders.
Almost all neurodisorders of contemporary interest are
characterized by imbalanced UPS function, indicating the possible
role of modulators of UPS as adjunct therapy.

Reports suggest that UPS may be involved in the degradation of
amyloid precursor protein (APP) via the endoplasmic reticulum-
associated degradation (ERAD) arm of the UPS [65]. Amyloid-β also
interacts with the molecular pathways that regulate the
phosphorylation of microtubule-associated tau protein which is the
second major protein associated with AD plaques [66]. It increases the
expression of the regulator for the calcineurin gene (RCAN1), which
inhibits tau dephosphorylation by a serine-threonine phosphatase
calcineurin [67]. Hyperphosphorylation of tau disrupts its normal
function and results in the accumulation of neurofibrillary tangles.
The fibrillar tau co-precipitates with the proteasome, and proteasome
activity is significantly reduced in AD patients, as compared to age-
matched controls [68]. Amyloid-β aggregates have also been shown to
block the UPS function [69]. The degradation of tau can be accelerated
by proteasome activator Blm10 [37], as well as by inhibiting the
proteasome-associated deubiquitinating enzyme Usp14 [70].

Parkinson's disease (PD): Parkinson's disease is a chronic
progressive neurodegenerative disorder, clinically characterized by
resting tremor, rigidity, and bradykinesia, as well as cognitive deficit
and autonomic dysfunction [71]. The role of UPS in PD was first
revealed by the discovery of E3 ligase activity of parkin and mutation
in parkin gene [72,73]. Parkin mutations account for up to 77% of the
familial cases with an age of onset <30 yr [74], and for 10%–20% of
early-onset PD (EOPD) patients [75]. Parkin, a 53 kDa protein, is
normally expressed diffusely in neurons throughout the brain [76], but
is absent in the brain of patients with autosomal recessive juvenile
parkinsonism [77]. Mutant parkin fails to effectively function as a
ligase, resulting in toxic accumulation of its substrates, such as cell
division control-related protein (CDCrel-1) and parkin-associated
endothelial-like receptor (Pael-R). CDCrel-1 is a septin protein that
regulates synaptic vesicle release and is found to be toxic to
dopaminergic neurons [78]. Pael-R, on other hand, accumulates in
Lewy bodies [79] which are eosinophilic intracytoplasmic inclusions
present in dopaminergic neurons of the substantia nigra in the brains
of PD patients.

Parkin itself has been found to be a component of Lewy bodies [80],
but the major structural protein associated with Lewy bodies is a 14.5
kDa protein called α-synuclein,. Based on the reports that depletion of
the proteasome subunit Rpt2 results in accumulation of α-synuclein

and the development of Lewy body-like inclusions in mice [81-83], α-
synuclein is identified as a substrate for the 26S proteasome. However,
α-synuclein monomers could also be degraded by 20S core particle
without prior ubiquitination and in the absence of 19S RP [84]. The
aggregates of misfolded α-synuclein perpetuate the UPS defect by
interacting with the regulatory 19S unit and inhibiting the function of
the 26S proteasome [85]. More evidence supporting the role of UPS-
mediated α-synuclein degradation in the genesis of PD comes from a
recent mice study where proteasomal inhibition in the nigrostriatal
pathway by lactacystin resulted in partial dopaminergic cell loss and
concurrent striatal dopamine depletion, accompanied by increased
expression of Ser129-phosphorylated α-synuclein [86]. It is important
to note that α-synuclein is also affected at the genetic level in PD,
characterized by mutations, as well as duplication or triplication of the
synuclein gene [87,88]. Furthermore, the role of chaperone-mediated
autophagy (CMA) and macroautophagy in the degradation of α-
synuclein is also critical [89] and two familial mutations (A30P and
A53T) of α-synuclein have been found to impair CMA degradation
[90]. Another implication of the UPS in PD comes from the
observation associating PD with a mis-sense mutation (I93M) in a
deubiquitinase enzyme, ubiquitin carboxyl-terminal hydrolase L1
(UCHL1), which decreases its deubiquitinating activity [91,92]. Several
other instances of familial PD being associated with genetic defects in
UPS have been discussed elsewhere in greater detail [6,93-95].

Huntington's disease (HD): HD is an autosomal dominant disease,
which is characterized by motor dysfunction, cognitive decline, and
psychosis. The disease is caused by an expansion of a CAG (cytosine-
adenine-guanine) triplet repeat region in huntingtin (Htt) gene
through out-of-register recombination between repeat elements. The
result is an expansion of a poly-glutamine (poly Q) stretch in the N-
terminal domain of the Htt protein [96]. At the structural level, such
an expansion (more than 40 glutamines repeats) results in fibril
formation and aggregation [97,98].

Although proteasome activity is reduced in HD brains [99], the
origin of proteasome dysfunction remains unclear. Studies have shown
that proteasomes are sequestered in Htt inclusion bodies, which results
in an overall reduction in UPS function [100]. In a striatal cell culture
model of HD, the chymotrypsin-like and caspase-like activity were
found to be reduced, while the trypsin-like activity was markedly
enhanced [101]. These changes in enzyme activities were associated
with reduction in the ability to recognize and degrade ubiquitinated
substrates [101]. In HD94 conditional mouse model of HD as well as
in the post-mortem brain of HD patients, Díaz-Hernández et al
observed an induction of immunoproteasome subunits (LMP2 and
LMP7) [61]. Despite an incomplete understanding of the role of
proteasome in HD, evidence is accumulating to suggest that
enhancement of proteasome activity may be beneficial in cells
challenged by polyQ-Htt, since upregulation of PA28γ transcription
improved cell survival in a cellular HD model [102].

Amyotrophic lateral sclerosis (ALS): ALS is a progressive
neurodegenerative disorder affecting motor neurons. Ubiquitinated
inclusion bodies are found within the motor-neurons in both familial
and sporadic forms of the disease, suggesting that UPS dysfunction is a
possible contributor to the genesis of ALS [3]. Accordingly, mice with
a conditional knockout of proteasome subunit Rpt3 in motor neurons
exhibited ALS-like pathology, particularly the accumulation of protein
aggregates with signature components of ALS inclusion bodies, such
as the transactive response (TAR )DNA-binding protein 43 (TDP-43)
and fused in sarcoma (FUS) RNA-binding protein [103]. Induction of
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immunoproteasome subunits (LMP2, MECL-1, and LMP7) has been
observed in ALS [104], and pyrrolidine dithiocarbamate treatment,
which completely blocked the induction of immunoproteasome
expression, led to decreased survival in the mutant superoxide
dismutase 1 (SOD1-G93A) rat model of ALS [105]. These results
suggest that induction of immunoproteasome may help the nervous
system to cope with ALS caused by SOD1 mutation.

Disorders associated with mutation or loss of function of
proteasomal gene

Angelman syndrome (AS), Rett syndrome (RS), and autism are
neurodegenerative disorders, where UPS dysfunction has been
implicated. AS is a neurodevelopmental disorder whose main features
are intellectual disability, lack of speech, seizures, and a behavioral
profile characterized by a happy demeanor, easily provoked laughter,
short attention span, hypermotoric behavior, mouthing of objects,
sleep disturbance, and an affinity for water [107]. RS is an X-linked
dominant disorder predominantly affecting females, which is classified
as an autism spectrum disorder (ASD). Clinically, it is characterized by
psychomotor regression with loss of volitional hand use and spoken
language, the development of repetitive hand stereotypes, and gait
impairment. Classical autism, on the other hand, is marked by distinct
impaired social interaction. It is suggested that these diseases are
associated with loss of function of the ubiquitin protein ligase UBE3A,
also known as E6AP ubiquitin-protein ligase (E6AP) [106, 107], and

the disease manifestation appears to be associated with the severity of
UBE3A loss [108]. For instance, the occurrence of autism has been
correlated with significantly dysregulated ubiquitin protein ligase E3A
gene in the isodicentric chromosome 15 (Idic15) of autistic subjects
[109-111]. The UBE3A gene product, E6-AP, has been shown to
function both as an E3 ligase in the ubiquitin proteasome pathway and
as a transcriptional co-activator. Thus, induction of UBE3A may
provide a therapeutic means to treat autism and similar disorders. The
proteasome system also plays a role in controlling mutated neuroligins
and cholinesterases in ASD [112,113].

Recently, the potential role of γ -aminobutyric acid (GABAA)
receptors in the development of autism has been suggested [114],
mostly because of the co-morbid association between autism and
epilepsy and GABAergic mechanisms responsible for epilepsy
[115,116]. GABAA-mediated neurotransmission is known to play a
crucial role in synaptic tuning and neuronal wiring in pre and early
postnatal days [117]. In a recent study on postmortem middle frontal
gyrus tissues from ASD patients, Crider et al. found a significant
decrease in GABAAα1 protein accompanied by an increased
expression of synovial apoptosis inhibitor 1 (SYVN1), an endoplasmic
reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase
[118]. In a simulated in vitro cortical neuron culture model, the
authors collected evidence of polyubiquitination and proteasomal
degradation of GABAAα1, a phenomenon which was inhbited by
proteasome inhibitor MG132 and SYVN1 siRNA [118].

Drug Classification Target pathology

PSI

(Z-Ile-Glu(OtBu)-Ala-Leu-al)

Reversible β5 inhibitor PD [132]

AD [133]

Epoxomicin Irreversible β5=β2> β1 inhibitor PD [134]

HD [135]

Lactacystin/Clasto-lactacystin β-lactone Irreversible β5=β2= β1 inhibitor PD [2]

AD [136]

HD [137],

ALS [138-141]

Autism [109, 118]

MG101 or ALLN

(N-acetyl-Leu-Leu-Norleu-al)

Reversible β5 inhibitor PD [142]

AD [143]

MG115 (Z-Leu-Leu-Nva-al) Reversible β5 and β1 inhibitor PD and AD [144]

MG132 (Z-Leu-Leu-Leu-al) Covalently binds to the active site of the β subunits PD [142]

ALS [145]

Autism [109, 118]

AD [133, 136]

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
hydrochloride)

Mitochondrial Complex I inhibitor PD [144, 146]

PDTC

(Pyrrolidine dithiocarbamate)

NF-κB inhibitor, antioxidant, immunoproteasome inhibitor ALS [105]

Clioquinol 20S inhibitor (Cu-mediated interaction) HD [147]

Cyclosporin A Non-competitive β5 inhibitor PD [148, 149]
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Paraquat (pesticide) 20S inhibitor PD [124, 150, 151]

Betulinic acid β5 activator Autism [118]

Benzamil Inhibition of acid-sensing ion channels (ASIC1a) HD [126]

Table 1: Proteasome modulators in neurodegenerative disorders. Proteasome inhibitors (unshaded rows) have been mostly employed to create
models of neurodegenerative diseases, whereas proteasome activators (shaded rows) have been tested for therapeutic application in
neurodegeneration.

UPS as a Target in Neurodegenerative Diseases
The prevailing views on proteasome function have changed

radically over the last two decades. It appears that the regulation of
proteasomal levels and activity at various steps including its assembly,
localization, and function is highly complex, which might serve to
fine-tune proteasome function to specific cellular environments and
demands. Although we still do not know whether the proteasomal
defects in brain pathologies are the primary cause or are secondary to
an alternate etiology such as mitochondrial damage, ER stress or
oxidative stress [119-125], modulation of proteasome function as a
therapeutic strategy in neurodegenerative disorders is beginning to
gain momentum. Some of the investigational drugs in this respect are
listed in Table 1.

It must be noted, however, that neurodegenerative disorders are
caused by UPS downregulation, and only few instances appear in the
literature where the therapeutic induction of UPS has been tested. For
example, betulinic acid, a proteasome activator, may have therapeutic
implications in ASD which has been found to be associated with
enhanced GABAergic activity. Betulinic acid has been shown to
significantly suppress the induction of GABAAα1 protein levels in an
ASD model of cortical neurons [118]. Benzamil is another example of
a proteasome activator with the potential to act against
neurodegenerative diseases (Table 1) [126]. Most of the examples of
UPS modulators enlisted in Table 1 are proteasome inhibitors which
have been employed to create in vivo and in vitro models of
neurodegenerative disorders. Regardless, as our understanding of the
various players involved in the UPS, in particular, the ligases and
deubiquitinases which are known to be directly involved in various
brain pathologies, becomes clearer, therapeutic strategies to upregulate
UPS function will evolve. Nevertheless, it is well recognized that
maintaining steady-state levels of proteasome composition and
function is important for the maintenance of proteostasis in neuronal
cells which depend heavily on balanced UPS functioning. As discussed
above, proteostatic imbalances are common among neurodegenerative
diseases leading to increased damage to the cellular protein pool,
intracellular protein aggregation, and reduced proteasome activity.
Therefore, pharmacotherapeutic strategies aimed at modulating the
proteasome system might prove beneficial for neurodegenerative
disease treatment. The discovery of small molecule inhibitors of
deubiquitinating ubiquitin-specific proteases (USP) and other
deubiquitinating enzymes will provide more specific targets than the
20S inhibitors presently available. Moreover, many neurodegenerative
cytoplasmic inclusions can also be cleared by autophagy, and
upregulation of autophagy has also been proposed as a general
treatment for Parkinson’s disease, polyglutamine repeat disorders, and
tauopathies [127]. It is noteworthy that impairment of the UPS results
in upregulation of autophagy [128,129] and in some cases, this
upregulation can compensate for diminished UPS function [128,130].

In pathologies where the UPS components are mutated, as in
autosomal recessive forms of Parkinson’s and Angelman disease, gene
therapy to replace the loss of E3 ligase activity may be possible in the
future. Furthermore, it has been demonstrated that overexpression of
UBE3A protects against the toxicity of polyglutamine repeat proteins
in models of Huntington’s disease and spinocerebellar ataxia [131]. In
another interesting study, anti-acidosis drug benzamil was found to
enhance UPS activity and decrease mutant huntingtin aggregation in
the brains of a mouse model of Huntington’s disease [126].

Conclusion
Although the interest in investigating the potential utility of

proteasome modulation is increasing, current applications are limited
by an incomplete understanding of the various players involved in the
UPS, in particular the ligases and deubiquitinases which have been
directly implicated in various brain pathologies. The future research
will allow revelation of more specific targets and may provide potential
insight for the treatment of neurodegenerative disorders. However, the
eventual therapeutic targeting of UPS in neurodegenerative diseases
will solely depend on the discovery and development of specific
activators of the proteasome system.
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