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The Problem
The genetic origin of cancers has been now accepted as a central 

principle of oncogenesis and the continued discovery of oncogenes 
and tumor suppressor genes is expanding the labyrinths of complexity 
in cancer biology [1-3]. Molecular pathway analyses of the critical 
oncogenes and their aberrant genetic modificationshave given a 
wealth of information on the deregulation of these pathways in cancer 
and how this knowledge can be exploited for designing drugs for 
cancer treatment. It is still not clear how these individual pathways 
interact between each other to yield a global cancer geno/phenotype. 
Common wisdom in the field dictates that it is not prudent to focus 
only on a few gene targets or a few molecular pathways to obtain a 
comprehensive understanding of cancer. This realization has led to 
the advent of large scale, systems approach to cancer such as genome-
wide association study (GWAS) without providing useful clues on the 
underlying molecular mechanisms. Despite all these advancements, 
a comprehensive understanding of cancer(s) is still a dream. Genetic 
heterogeneity that is commonly observed in human cancers is a robust 
example of why gene target-based drugs never attain 100% efficacy even 
within a cohort of patients with apparently similar tumor type. The 
problem at hand is therefore not of finding more “new” gene targets 
but of finding the missing piece in integrating our current repertoire 
of cancer-specific molecular pathways. We hypothesize that focusing 
on tumor metabolism could potentially rope-in diverse tumor genetics 
pathways thereby providing a common metabolic denominator for 
understanding deregulation of energy metabolism in cancer.

Energy Metabolism in a Cancer Cell
Despite the tremendous progress for the past few decades 

(discovery of oncogenes, tumor suppressors, cancer signaling 
pathways), cancer related mortality and morbidity are still high 
as we are uncovering the labyrinths of complexity of cancer cell 
transformation. An intriguing puzzle is how tumor genetics and tumor 
metabolism collectively determine the cancer phenotype and the 
clinical manifestations. A number of alterations in cellular metabolism 
accompany cancer cell transformation [4-7]. These could range from 
altered glucose metabolism to coordinated changes in cell cycle 
deregulation and multiple facets of energy metabolism. Mutations 
in oncogenes and/or tumor suppressor genes and other carcinogenic 
events could transform a normal cell to a cancer cell. The question is 
: “What does it take to sustain and to propagate this cancer cell in the 
host environment ?”. From a single cell perspective, mitochondria are 
the major bioenergetic organelles in eukaryotic cells that perform two 
critical functions namely, the ATP production and the programmed 
cell death (apoptosis). A sensitive balance between these “life” and 
“death” functions of the mitochondria is vital to cellular survival and 
eventually, to the physiological health. Mitochondrial DNA mutations 
have been implicated in organismal aging, neurological disorders such 
as Alzheimer’s disease, Parkinson disease as well as in cancer [3,8-10]. 
A poorly understood biochemical hallmark of cancer is the “metabolic 
switch” first observed by Warburg [11,12] – which pertains to the 
condition where the tumor cells preferentially depend on the glycolytic 
pathway and avoid an apparently more efficient mitochondrial pathway 

even in the presence of oxygen (aerobic glycolysis) [5,11-21]. Despite 
this apparently counter-intuitive bioenergetics signature of cancer 
cells, there is emerging set of evidences that point out to significant 
implications of this feature in biosynthesis of macromolecules (amino 
acids, fatty acids etc.,) that are required for cancer cell sustenance and 
proliferation. Warburg phenotype could therefore be a just a unique 
metabolic state stemming from the trade-off between glycolytic 
upregulation (at the cost of avoiding a more efficient mitochondrial 
bioenergetics pathway) and the need to divert the glycolytic byproducts 
to biosynthetic routes [22]. This feature is already in clinical use where 
radioactive glucose analog (2FdG) is used to achieve contrast (owing 
to increased tumor uptake) in positron emission tomography. Despite 
the clinical utility and the realization of its ubiquitous nature, a clear 
mechanistic understanding of the metabolic switch is still lacking. 
In particular, there is no clarity on what are the molecular players 
involved in triggering/sustaining metabolic switch in cancer cells 
although the recent studies on pyruvate kinase M2 (PKM2) seem 
to offer a good starting point [23]. Recent reports even question the 
original Warburg hypothesis in the light of new evidence that the 
apparent “glycolytic” upregulation may not be exclusive to cancer cells 
only [24,25]. It is not clear if cancer cells indeed have “dysfunctional” 
mitochondria (original hypothesis) or if the cancer cells tend to 
“evade” mitochondrial function owing to tighter regulatory steps in 
mitochondrial oxidative phosphorylation (OxPhos) than in glycolytic 
pathway. Another ramification of Warburg hypothesis is the “chicken 
and egg” paradox between altered mitochondrial dysfunction and 
cancer cell transformation – thereby confounding the problem of 
causality of Warburg phenotype observed in cancer cells. Regardless 
of such a dilemma, we believe it is possible to adopt a pragmatic view 
where we appreciate that there is a reciprocal relationship between 
mitochondrial defects and cell transformation. With this perspective, we 
could potentially exploit this reciprocity by developing imaging assays 
for probing the “tumor-induced mitochondrial alterations” so as to 
enable us to accomplish the goals of early detection of in vivo tumors 
as well as to discover mitochondrial biomarkers that could further 
enable us in evaluating tumor aggressiveness and patient prognosis. 
This strategy is particularly attractive because this is applicable to all 
tumor types irrespective of their genetic background – owing to the 
fundamental nature of mitochondrial energy metabolism. We would 
like to reiterate that Warburg phenotype is distinctly different from 

*Corresponding author: V Krishnan Ramanujan, PhD, Assistant Professor of 
Surgery & Biomedical Sciences, Metabolic Photonics Laboratory, Cedars-Sinai 
Medical Center, 8700 Beverly Blvd., D6067, Los Angeles, CA 90048, USA, Tel: 
(+1) 310-423-7666; E-mail: Ramanujanv@csmc.edu

Received December 05, 2011; Accepted December 08, 2011; Published 
December 10, 2011

Citation: Krishnan Ramanujan V (2011) Tuning in Tumor Metabolism: The Cost 
of Being a Cancer Cell. J Cell Sci Ther 2:e104. doi:10.4172/2157-7013.1000e104

Copyright: © 2011 Krishnan Ramanujan V. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited.

Tuning in Tumor Metabolism: The Cost of Being a Cancer Cell
V Krishnan Ramanujan*

Metabolic Photonics Laboratory, Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA

Jo
ur

na
l o

f C
ell Science &

Therapy

ISSN: 2157-7013

Jo
ur

na
l o

f C
ell Science &

Therapy

ISSN: 2157-7013

Journal of Cell Science & TherapyJournal of Cell Science & Therapy



Citation: Krishnan Ramanujan V (2011) Tuning in Tumor Metabolism: The Cost of Being a Cancer Cell. J Cell Sci Ther 2:e104. doi:10.4172/2157-
7013.1000e104

Page 2 of 3

Volume 2 • Issue 4 • 1000e104
J Cell Sci Ther 
ISSN: 2157-7013 JCEST, an open access journal

hypoxic metabolic state where glycolytic up-regulation stems from 
the unavailability of oxygen in the case of solid tumors [26,27]. This 
particular situation opens up a new window of opportunity for early 
metabolic intervention of tumors before hypoxia and angiogenesis set 
in. This also opens up an experimental challenge of detecting tumors 
earlier than what is currently being accomplished. What we need 
therefore is an appreciation for identifying tumor-specific metabolic 
targets and a coordinated effort for developing high through-put/
high content technological tools for early detection of tumors and 
chemoprevention.

Preclinical Technologies for Probing Tumor 
Metabolism

Preclinical phase of most of the human cancers is relatively long 
and is the most difficult to detect by the current technologies. An 
ideal early detection technology must reliably detect the smallest 
cancer cluster(s) (~ a few tens to hundreds of cancer cells) anywhere 
within the target tissue. Most of the currently used clinical screening 
techniques such as mammography, magnetic resonance imaging, 
positron emission tomography and ultrasound imaging all have their 
own unique advantages and drawbacks but all fail to meet the above 
criterion (Figure 1). In breast cancer for example, the most used clinical 
screening tool is mammography which detects cancer-associated 
calcifications. Owing to the high false positive rate and relatively poor 
specificity, this technique still has not reached its perfection [28,29]. 
A few other techniques based on exploiting the differential tissue 
scattering properties (e.g., Raman spectroscopy) and those based on 
optical diffuse reflectance have shown promising results in preclinical 
animal models in research laboratories but have never found their 
way into the clinical arena. One of the major bottlenecks in current 
methods could be the fact that these techniques attempt to detect 
“tumor specific signatures” either based on endogenous differences in 
tumor growth and the background host tissue or on passive contrast 

agents that may or may not be successful in tumor-specific localization. 
A potential solution to this problem could be achieved by the following 
two distinct steps. First, we need to identify key metabolic targets that 
uniquely distinguish tumor metabolism from the host metabolism. 
We need to develop tools not just to visualize these metabolic targets 
passively, but also to actively monitor the differential tumor metabolism 
in vivo. Resolving the spatiotemporal activity of metabolic targets (e.g., 
enzymatic activity) in real-time can be a powerful approach to actively 
probe tumor metabolism. Towards this direction, methods to probe 
Warburg [11,12] metabolism in tumors could increase our ability to 
detect smallest possible lesions thereby enhancing the efficacy of early 
intervention. Translating our current knowledge from genomics to the 
realm of metabolomics in preclinical animals models will greatly enable 
this strategy for validating critical metabolic targets that can be utilized 
in the clinical setting. Second, we need to adopt a pragmatic approach 
of combining more than one technique in the same screening setting 
to maximize the information content from the metabolic imaging 
sessions. Optical imaging provides high molecular specificity whereas 
tomography and magnetic resonance methods provide better depth 
information than the optical imaging techniques [6,30-35]. However, 
by a strategic combination of these two different techniques can yield 
a synergistic edge to metabolic imaging of tumor-specific signatures.

Bench-to-Bed Transition
Only a small fraction of the entire body of cancer research conducted 

all around the world every year really achieves its translational potential 
and reaches the clinical utility. The aforementioned bottlenecks may 
not be the only set of limiting factors. It is imperative that we obtain a 
comprehensive understanding of the common metabolic denominator 
of the various classes of tumors with different genetic/receptor 
background. As mentioned above, multimodal metabolic imaging of 
tumors could potentially yield useful repertoire of metabolic targets that 
can further our understanding of the origins of tumor heterogeneity, 

Figure 1: Schematic representation of the key steps of tumorigenesis (generation, sustenance and propagation) and the typical tumor size limits associated with each 
of these steps.  Current clinical screening tools are limited to detecting tumor sizes of the order of a few millimeters which can be significantly improved by the proposed 
multimodal metabolic imaging of tumors.
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drug resistance etc., Attempts also need to be made to bridge the gap 
between the research success in preclinical animal models and the 
clinical success in human patients. At the end of the day, we are all 
in pursuit of not just an intellectual acumen but of solving real-life 
problems of human cancers.
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