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Commentary
Cellular senescence is a stable growth arrest that normal human

diploid fibroblasts undergo after a finite number of divisions, as a
result of progressive shortening of telomeres and other genotoxic as
well as non-genotoxic stresses.  It is an example of antagonistic
pleiotropy, as it plays an important role in tumour suppression during
early life whereas later in life, it leads to deleterious traits, such as
disrupted tissue function, thereby promoting organismal ageing and
age-related diseases.  Elucidating and understanding the signalling
pathways involved in regulating the senescent state, is therefore of
great biological importance.

Cellular senescence is a stable growth arrest, that normal human
diploid fibroblasts undergo after a finite number of divisions [1], as a
result of progressive shortening of telomeres [2]. However, further
stressors such as oncogenic activation, DNA damage, oxidative stress
and other non-genotoxic stresses were later found to also trigger this
arrested state [3]. Senescence is an example of antagonistic pleiotropy,
playing an important role in tumour suppression during early life, as it
is a natural barrier to carcinogenesis. Later in life, it leads to deleterious
traits, such as disrupted tissue function, consequently promoting
organismal ageing and age-related diseases. Hence, elucidating the
signalling pathways involved in regulating the senescent state is of
great biological importance.

Multiple stimuli are known to activate the p53/p21 and p16/pRB
tumour suppressor pathways, which have clearly been established to
mediate senescence; however, the critical downstream targets have yet
to be determined (Figure 1) [4]. Furthermore, it is unclear whether
these pathways function in parallel or are linear, in establishing
senescence [5]. p21WAF1, a downstream target of the p53 protein, is
an inhibitor of cyclin-dependent kinases and can activate the pRB
tumour suppressor pathway, by inhibiting cyclin D/CDK4,6 kinases
[6]. p16INK4a inhibitor is also able to activate the pRB pathway,
independently of the p53 pathway [5].

The specific cell type and whether the studies are conducted on
human or mouse cells are important factors for determining which of
the signalling pathways has a greater significance in inducing
senescence. Fundamentally, the importance of these two pathways in
establishing senescence has been demonstrated by reversing
senescence by reducing p16INK4a levels and/or inactivating p53 [7-9].

To establish the downstream targets of p53 and pRB, previous
studies have also focussed on the DREAM complex [15-17]. P53 and
pRB are central in controlling cell cycle progression [18]. An integral
component, regulating gene expression throughout the cell cycle,
proposed by DeCaprio and colleagues, is the DREAM complex (Figure
2).

Figure 1: Schematic illustration of the signalling pathways involved
in regulating cellular senescence.

The function of this complex has been characterised in quiescence
[15], which suggests a potential role in senescence, but this remains to
be verified. Although it is clear how p53 and pRB activation lead to
quiescence, a greater understanding of downstream transcription
factors and target genes involved in establishing senescence is essential,
to distinguish between senescence and quiescence.

The DREAM complex is composed of the p130/p107 pocket
proteins, homologous to pRB, E2F4 transcription factor, its
dimerization partner 1 (DP1), and the multi-vulval class B (MuvB)
proteins [LIN9, LIN37, LIN52, LIN54 and RBBP4]. In the active form,
p130/p107 inhibit transcription required for cell cycle progression by
binding to E2F4. Upon entry into the cell cycle, the MuvB core
dissociates from the complex and sequentially recruits B-MYB and
FOXM1 during S-phase and G2-phase, to promote late S-phase and
mitotic gene expression, important for cell cycle progression (Figure
2). A link between the DREAM complex and senescence induction has
been suggested by Litovchick et al. [16], using immortalised human BJ-
hTERT skin fibroblasts. The DYRK1A protein kinase phosphorylates
the Serine 28 residue of LIN52, enabling its interaction with p130/
p107, to form an active DREAM complex. Mutating Ser28-LIN52 to
Ala28-LIN52, thereby inhibiting its phosphorylation, suppresses
oncogenic Ras-induced senescence [16]. However, the DREAM
complex does not comprise the pRB tumour suppressor protein, so it is
possible that during senescence p130/p107 and pRB play differing
functions. Furthermore, Lowe and colleagues have shown that in
another cell system, inhibiting only the pRB pocket protein bypasses
Ras-induced senescence [19]. While these differences are likely to be
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the result of using different cells, the different functions of the DREAM
complex and RB require further investigation [20].

Figure 2: The DREAM complex : Assembly of this complex is
mediated by MuvB, comprising LIN9, 37, 52, 54 and RBBP4,
binding with the RB family members (p130/p107)-E2F4-DP,
leading to quiescence. Upon stimulation of cell cycle re-entry, p130/
p107 are phosphorylated, leading to their dissociation from the
DREAM complex enabling MuvB to sequentially recruit B-MYB
during S-phase and FOXM1 during G2/M phase, to promote cell
cycle-dependent target gene expression. Expression of these target
genes promotes transit through the cell cycle. During G2-phase, B-
MYB undergoes phosphorylation-dependent degradation. Upon
exposure to stimuli that repress cell cycle progression, LIN52 within
MuvB is phosphorylated, promoting re-association of MuvB with
p130/p107-E2F4-DP, to re-assemble the DREAM complex.

Emerging evidence indicates that the epigenetic machinery might
also play a key role in the induction and regulation of cellular
senescence in disease-associated cells. An interesting observation in
cancer cells suggests that genetic depletion of histone
methyltransferases SUV39H1and G9a, is able to prevent cell growth,
and results in profound morphological changes with reduction of
telomerase activity and shortened telomeres [21]. In fact, knocking
down of SUV39H1 in cells led to a substantial increase within G2/M,
whereas knocking down of G9a showed an increased DNA content and
aberrant karyotype. As genetic depletion of SUV39H1/2 results in
widespread genomic instability [22] and both G9a and SUV39H1 serve
as the key H3K9 modifiers in mammals [23], it would be interesting to
investigate the link between H3K9me, a key heterochromatin mark,
and cell cycle regulation. Strikingly, since recent observations indicate
that G9a also interacts with DNA methyltransferases (DNMTs) and
protects DNA methylation [24], another heterochromatin mark in
mammals, cell cycle arrest and senescence might be strongly associated
with euchromatin/ heterochromatin turnover.

Identifying downstream targets of the p53 and pRB signalling
pathways, as well as the role of epigenetics in regulating cellular
senescence is integral to finding the causal factors and laying the
foundation for a better understanding of the signalling circuits
underlying cellular senescence. Multiple mechanisms could be
involved in regulating senescence, as the responses vary between cell-
types, tissues and species. Future research should additionally be
targeted towards characterising these differences. The established
signalling components could represent novel, important and direct
targets for developing new therapies that promote healthier ageing and

increase vitality of the older population through stimulating
regeneration, repair and wound healing, while retaining the tumour
suppressor properties of senescence, if possible. The key components
will also be new therapeutic cancer targets, for developing small
molecule inhibitors and activators aimed at inducing senescence in
tumours. They may also be relevant for treatment of neurodegenerative
disease, as it has been proposed that senescence in central nervous
system cells may be a contributing factor towards neurodegeneration,
due to secretion of pro-inflammatory senescence-associated secretory
phenotype proteins [25-27].
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