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Abstract

PARP inhibition can improve survival in cancer patients whose tumors have impaired capacity for homologous
recombination, such as germ line or somatic mutations in BRCA. The efficacy of such therapy should be greater if
the rate at which cancer cell DNA incurs single-strand breaks is enhanced. Since oxidative stress promotes
formation of such breaks, measure which boost oxidative stress in cancer – preferable somewhat selectively – may
be worthwhile adjuvants to PARP therapy. In the many cancers that express the Warburg phenomenon,
dichloroacetate can promote increased mitochondrial generation of oxidants by directing more pyruvate to oxidation
in the Krebs cycle. Concurrent administration of the arthritis drug auranofin could further enhance mitochondrial
release of hydrogen peroxide by indirectly inhibiting peroxiredoxin-3, the chief mitochondrial source of peroxidase
activity. The copper-chelating drug tetrathiomolybdate, employed in cancer therapy as an anti-angiogenic agent, can
boost superoxide levels by diminishing activity of the copper-zinc-dependent cytosolic superoxide dismutase.
Episodic intravenous infusion of high-dose ascorbate could also be employed to increase oxidative stress in the
cancer and thereby complement PARP inhibitor therapy. The potential of dichloroacetate, auranofin,
tetrathiomolybdate, and intravenous ascorbate to enhance the cancer-retardant efficacy of olaparib (or other PARP
inhibitors) could be assessed in cell culture and rodent models.
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Cancer Therapeutic Potential of PARP Inhibition
PARP inhibitors are potentially useful for the control of cancers with

impaired capacity for repair of double-strand breaks by homologous
recombination (HR) [1]. These include cancers carrying genomic or
somatic mutations of BRCA, or that for other reasons lack efficient
HR. A key determinant of the success of PARP inhibitor therapy will
be the rate at which single-strand DNA breaks are formed in cancer
cells. By impeding the base excision repair mechanism required for
remediation of single strand breaks, PARP inhibition increases the
chance that double strand breaks will occur, most notably during S
phase DNA replication. Capacity to repair such double strand breaks
will be impaired in cells with inefficient HR, and unrepaired double
strand breaks can induce apoptosis via p53 signaling or other
mechanisms.

Boosting Oxidative Stress in Cancers
Oxidative or nitroxidative stress in cancer cells is capable of

inducing single strand breaks, and many cancers are in a state of mild
oxidative stress [2-4]. Measures which somewhat selectively up-
regulate this oxidative stress in cancer cells can therefore be expected
to potentiate the efficacy of PARP inhibitory therapy. In cancers that
express an active Warburg phenomenon-reflecting constitutive
activation of HIF-1 that drives glycolysis and inhibits mitochondrial
oxidation of pyruvate by boosting pyruvate dehydrogenase kinase
(PDK) expression – the PDK inhibitor dichloroacetate (DCA) boosts
mitochondrial respiration and concomitant production of superoxide

[5-7]. This increase in oxidative stress will tend to be cancer-specific,
owing to higher PDK activity in many cancers, as well as the fact that
cancer mitochondria tend to have dysfunctional respiratory chains,
reflecting the genetic lability of cancer [8-10].

Mitochondrial release of hydrogen peroxide can be further boosted
by inhibitors of thioredoxin reductase (TR), as thioredoxin-2 is the
source of reductive power for peroxiredoxin-3, an antioxidant enzyme
which contributes importantly to hydrogen peroxide disposal in
mitochondria [11-13]. Peroxiredoxin-3 is c-Myc-inducible, and many
cancers show increased expression of this enzyme [14-16]. The
venerable anti-arthritic gold drug auranofin inhibits thioredoxin
reductase potently, with a Ki of only 4 nM, reflecting an interaction
between gold and the selenocysteine in its active site [17,18]. When
added to cell cultures, 0.3 uM auranofin achieves a 50% inhibition of
the mitochondrial fraction of TR [19]. The standard clinical regimen of
this drug – usually 3 mg twice daily – may be sufficient to achieve
partial inhibition of TR activity systemically.

Further Implications of Thioredoxin Reductase
Inhibition

TR inhibition can be expected not only to boost intracellular levels
of hydrogen peroxide, but to make this hydrogen peroxide more
effective for modulating cell signaling pathways, as thioredoxin
functions to reverse the oxidation of protein sulfhydryl groups which
hydrogen peroxide induces [20,21]. In particular, hydrogen peroxide
tends to activate the stress-activated MAP kinases, JNK and p38, via
ASK-1; thioredoxin functions to inhibit ASK-1 activation [22]. When
p53 is activated by DNA double-strand breaks-as occurs during PARP
inhibitor therapy in p53-competant cells – JNK activity interacts with
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p53 to encourage apoptosis, as opposed to cell cycle inhibition or
senescence [23]. This effect would thus tend to boost the cell-killing
efficacy of PARP inhibition.

TR inhibition also suppresses NF-kappaB activity, as the
transcriptional activity of this factor is dependent on its reduction by
thioredoxin [24-26]. Constitutively elevated NF-kappaB promotes
aggressiveness and chemoresistance in many cancers [27]. It also
promotes sequestration of intracellular iron, by inducing ferritin heavy
chain synthesis [28,29]. The iron stores of many cancers are elevated,
but ferritin expression prevents this iron from catalyzing oxidative
damage-including DNA single-strand breaks-both by sequestering
labile iron, and by oxidizing it to ferric form [29-31]. Hence, inhibition
of NF-kappaB activity by auranofin could be expected to increase the
availability of intracellular labile iron, particularly in cancers that have
high constitutive NF-kappaB activity.

Curiously, auranofin is now being studied clinically in ovarian
cancer-a cancer for which PARP inhibition has particular promise
[32-35]-because this drug also inhibits protein kinase C-iota, a novel
PKC which promotes malignant behavior in many ovarian cancers
[36,37]. In a recent phase II study, in which the standard anti-
inflammatory dose schedule for auranofin was employed, 4 out of 10
treated patients maintained a stable CA-125 for at least a month, with
one patient achieving a reduction in this marker; hence, the authors of
the study concluded that auranofin merited further evaluation in
ovarian cancer [37].

These considerations suggest that joint therapy with the recently-
approved PARP inhibitor olaparib, DCA and auranofin might have
interesting potential as a cancer control strategy for cancers that are
somewhat responsive to PARP inhibition. This combination could be
tested in cell culture studies and in tumor-bearing rodents; if the
addition of DCA and auranofin potentiated the killing efficacy of
olaparib in these models, without notably enhancing systemic toxicity,
clinical evaluation could be contemplated.

Tetrathiomolybdate Can Suppress Superoxide
Dismutase Activity

Induction of single-strand breaks via oxidative stress could also be
promoted by treatment with the copper chelator tetrathiomolybdate
(TM), an orphan drug employed in the treatment of the genetic
disorder Wilson’s disease [38,39]. Copper plays a supportive role in
angiogenesis [40,41] and rodent studies demonstrate that partial
copper depletion -sufficient to maintain plasma ceruloplasmin at
15-20% of baseline levels-slows angiogenesis and cancer xenograft
growth in mice [42-46]. This strategy has proved to be reasonably well
tolerated in cancer patients, and Phase I and II studies in various types
of cancer provide suggestive evidence that it may indeed retard tumor
growth in some cases-though Phase III studies have not yet been done
to confirm this [47-55].

One effect of copper depletion is to reduce the activity of the
copper-zinc-dependent cytoplasmic form of superoxide dismutase
(SOD1). Studies in tumor-bearing rodents indicate that tolerable levels
of TM-induced copper depletion do indeed decrease SOD1 activity in
tumor, endothelial cells, and blood cells; this effect apparently
contributes to the tumor-retardant effect of TM therapy, as concurrent
administration of an SOD-mimetic drug partially inhibits TM’s
efficacy in this regard [41,56,57]. It is reasonable to expect that
suppression of cytoplasmic SOD activity in cancer cells would increase
the rate of single-strand breaks via the Haber-Weiss reaction, whereby

superoxide, hydrogen peroxide, and labile iron collaborate in the
generation of hydroxyl radical [58]. Notably, in cancer cells defective
for homologous recombination owing to deletion of RAD54B, SOD1
inhibition induces DNA double-strand breaks and apoptotic death
[59,60]. This phenomenon may be more general to cancer cells
expressing “BRCA-ness”, and presumably would be amplified by
concurrent PARP inhibitor therapy. These considerations suggest that
TM therapy could enhance the efficacy of concurrent olaparib therapy,
and moreover slow cancer growth by an independent impact on
angiogenesis.

Intravenous Ascorbate as an Adjuvant to PARP
Inhibition

An additional pro-oxidative strategy with potential for boosting the
efficacy of PARP inhibitor therapy is high-dose intravenous ascorbate,
which has already been studied in ovarian cancer [61,62]. In mill
molar concentrations that are achievable by high-dose infusion,
ascorbate generates hydrogen peroxide in the extracellular space;
cancers tend to be selectively susceptible to killing by this hydrogen
peroxide, likely because their intracellular levels of superoxide and
labile iron tend to be relatively high [62-66]. Ascorbate therapy could
be expected to promote DNA single-strand breaks somewhat
selectively in cancer cells, and hence would seem likely to boost the
killing efficacy of concurrent PARP inhibition. However, intravenous
ascorbate therapy can only be applied episodically, and PARP
inhibition kills cancer cells primarily in S phase, when double-strand
breaks develop during DNA synthesis. Hence, only a fraction of the
tumor’s cells would be targeted during a single ascorbate infusion
session. That’s why measures which achieve a continuous elevation of
cancer oxidative stress – such as DCA and auranofin – might
importantly complement the tumor kill achieved by episodic ascorbate
infusions.

Summing Up
These considerations suggest that certain agents which are currently

clinically available, and which can amplify cellular levels of reactive
oxygen species - including DCA, auranofin, TM, and parenteral
ascorbate - have the potential to boost the efficacy of PARP inhibition
as a strategy for treating the many cancers which have an impaired
capacity for homologous recombination. The rate at which PARP
inhibitors induce apoptosis in such cancers will hinge on the rate at
which single-strand breaks occur; oxidant stress can increase
production of such breaks.Other oxidant-generating drugs currently in
development -such as elesclomol - may be worthy of evaluation in this
respect once they become available [67]. This concept should be
readily testable in cell culture studies, and in mice bearing human
xenografts of cancers defective for homologous recombination.

To the extent that the measures recommended here can be expected
to induce oxidative stress somewhat selectively in cancers, they would
not be expected to increase the killing of healthy tissues, and hence
should be rather well tolerated. The fact that baseline oxidant
production is often greater in cancers than in healthy tissues, may
imply that these agents will achieve a greater level of oxidant stress in
such cancers. For example, whereas TM therapy would be expected to
reduce SOD activity in all tissues, the impact of this on oxidant stress
should be greater in cells that are making increased amounts of
superoxide. Analogously, auranofin will boost hydrogen peroxide levels
more dramatically in cells whose mitochondria have defective
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respiratory chains and hence make more superoxide – a common
characteristic of cancer cells. And DCA could be expected to boost
mitochondrial oxidant production most in cancer cells that have the
Warburg phenotype and hence express elevated PDK activity.

In contrast, the use of PARP inhibitors to potentiate cytotoxic
chemotherapy is likely to amplify the toxicity of the chemotherapy, as
cytotoxic agents damage DNA in cancer cells and healthy cells alike;
clinical experience in Phase I trials tends to bear this out [68,69].
Hence, there may be little net therapeutic gain in when PARP
inhibitors are used during chemotherapy. (This however does not rule
out the potential value of maintenance PARP inhibitor therapy as a
follow-up to chemotherapy [70].)
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