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Short Communication
Exosomes are cell-secreted nanovesicles (70-150 nm diameters) of

endosomal origin (Figure 1) [1]. They have recently aroused a great
interest in the scientific and clinical community for their roles in
intercellular communication in almost all physiological and
pathological processes [2-5]. All cells can secrete exosomes and the
released exosomes share with the parent cell a similar lipid bilayer with
transmembrane proteins and a panel of enclosed soluble proteins and
RNAs [6,7]. The tightly controlled secretion process is being
deciphered. For instance, it has been shown that the release of
exosomes and microvesicles from adipocytes is significantly reduced
upon inhibition of histone H3 lysine9 methyltransferase G9a and
histone H3 lysine4 demethylase LSD1 [8]. This observation indicates
that both H3K9me2 and H3K4me3 might be essential for the secretion
of exosomes in mammalian cells. Interestingly, as a recent article
revealed, histone methyltransferase G9a also maintains DNA
methylation at imprinted loci with its G9a-like protein partner in
embryonic stem cells, indicating that aberrant distribution of DNA
methylation might also affect the secretion of exosomes [9]. Surface
receptors allow the targeting and capture of exosomes by recipient
cells, while the exosomes’ content can modify the physiological state of
recipient cells. Thus, exosomes may be further investigated to confirm
their potential: (i) as biomarker in various diseases to facilitate the
diagnosis of disorders prior to health deterioration and/or (ii) as
targets to be inhibited or eliminated to improve patients’ health
[10-14].

We and others previously demonstrated in vitro and in vivo that
although all tumor cells secrete exosomes with heat shock protein-70
(HSP70) in their membrane, non-cancerous cells do not. It has been
shown that HSPs are able to associate to toll-like receptors (TLR). For
instance, in some cells, HSP70 can associate to TRL4 while HSP27
binds to TLR3 [15-17]. In “Restoring anticancer immune response by
targeting tumor-derived exosomes with a HSP70 peptide aptamer” we
show that exosomes, via HSP70 expressed in their membrane, are able
to interact with TLR2 on myeloid derived suppressive cells (MDSC)
thus activating them [18]. These cells play a major role in cancer
progression, so we investigated whether inhibition of HSP70 on the
exosomes could actually restore an anti-cancer immune response [19].
To this end, we developed a high-affinity peptide aptamer, called A8,
which binds to the extracellular domain of membrane-bound HSP70
[20,21].

Figure 1: Schematic representation of exosome biogenesis and
secretion: exosomes are formed by budding into early endosomes
and multi-vesicular bodies. These can either fuse with lysosomes for
degradation or with the plasma membrane where they release their
content into the extracellular medium. Hence, exosomes share with
the parent cell a similar lipid bilayer with transmembrane proteins
and a panel of enclosed soluble proteins as well as RNAs. The well-
controlled process of biogenesis, transport and secretion requires a
panel of actors that are currently being identified.

We used different techniques (including nanoparticle tracking
analysis (NTA) and biolayer interferometry (BLI)) to show that
membrane HSP70 in exosomes binds to A8 with higher affinity than to
TRL2. We demonstrate that by doing so, A8 can block the ability of
HSP70-exosomes to activate MDSC. In vivo, a decrease in MDSC
induced by A8 is associated to an efficient anti-tumor response.
Indeed, activated MDSC inhibits T-cells. As a consequence, there is an
inhibition in the anti-tumor immune response notably less intra-tumor
infiltration of cytotoxic T-cells and macrophages and these intra-tumor
immune cells infiltration are associated to tumor regression.
Concerning cytokines secretion, IFN-gamma is also strongly inhibited
by MDSC activated by tumor-derived exosomes. It would be
interesting to study the involvement of Treg cells in the pro-tumor
effect induced by tumor-derived exosomes and MDSC.
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Further, we demonstrate that the release of HSP70-exosomes seems
a general feature of cancer cells (but not of “normal” non-cancerous
cells) and that they can be easily quantified from cancer patients’
urines and blood samples using A8 as a ligand in a BLI biolayer
interferometry approach. Altogether, we demonstrate using our A8
peptide aptamer that exosomes expressing HSP70 in their membrane
can be detected and targeted in a theranostic approach.

These results contribute to open many perspectives for researchers
working not only in cancer therapy but also in diagnosis. Indeed, the
main advantage of quantifying tumor-derived exosomes compared to
circulating tumor cells (CTCs) is that exosomes are found in large
amounts compared to CTCs and that exosomes can be quantified non-
invasively in urines [22]. To move beyond the proof of principle that
tumor-derived exosomes (HSP70-exosomes) can be quantified and
might be interesting to follow up cancer patients, we have started a
prospective study with the anticancer Centre Georges-François Leclerc
(CGFL, Dijon, France) in breast and lung cancer aiming at
determining whether the presence of HSP70-exosomes is predictive of
the patients’ outcome and whether their detection precedes CTCs and
the apparition of metastases.

There is no doubt that even if there are many key questions
remaining to be answered, the relatively young field of exosomes is
gaining greater interest within the scientific and medical communities
[5].
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