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Hemophilia A and the Need for Better Treatments
Hemophilia A represents the most common inheritable deficiency 

of the coagulation proteins [1]. The severity of hemophilia A is 
traditionally based on plasma levels of FVIII, with persons exhibiting 
less than 1% normal factor (< 0.01IU/mL) being considered to have 
severe hemophilia, persons with 1-5% normal factor moderately 
severe, and persons with 5%-40% of the normal FVIII levels mild 
[2-4]. Up to 70% of hemophilia A patients present with the severe 
form of the disease, and suffer from frequent hemorrhaging, leading 
to chronic debilitating arthropathy, hematomas of subcutaneous 
connective tissue/muscle, and internal bleeding. Over time, the 
collective complications of recurrent hemorrhaging result in chronic 
pain, absences from school and work, and permanent disability [2]. 
Current state-of-the-art treatment consists of frequent prophylactic 
infusions of plasma-derived or recombinant FVIII protein to maintain 
hemostasis, and has greatly increased life expectancy and quality of life 
for many hemophilia A patients.

This treatment approach is, however, far from ideal, due to the 
need for lifelong intravenous infusions and the high treatment cost. 
Moreover, this treatment is unavailable to a large percentage of the 
world’s hemophiliacs, placing these patients at great risk of severe, 
permanent disabilities and life-threatening bleeds. Furthermore, even 
among the patients who are fortunate enough to have access to, and the 
financial means to afford, prophylactic FVIII infusions, approximately 
30% will form FVIII inhibitors [5]. The formation of these inhibitors 
greatly reduces the efficacy of subsequent FVIII infusions, and can 
ultimately lead to treatment failure, placing the patient at risk of life-
threatening hemorrhage. There is thus a significant need to develop 
novel, longer-lasting hemophilia A therapies.

In the past three decades, the remarkable progress in the 
understanding of the molecular basis of the disease, the identification 
and characterization of FVIII gene, structure, and biology has 
heightened the interest and feasibility of treating hemophilia A with 
gene therapy. In contrast to current protein-based therapeutics, lifelong 

improvement or permanent cure of hemophilia A is theoretically 
possible after only a single gene therapy treatment; indeed, several 
aspects of hemophilia A make it ideally suited for correction by gene 
therapy [6-14]. First, in contrast to many other genetic diseases, the 
missing protein (coagulation FVIII) does not need to be expressed in 
either a cell or tissue specific fashion to mediate correction. Although 
the liver is thought to be the primary natural site of synthesis of FVIII, 
expression of this factor in other tissues exerts no deleterious effects. 
As long as the protein is expressed in cells which have ready access 
to the circulation, it can be secreted into the bloodstream and exert 
its appropriate clotting activity. Second, even modest levels (3-5%) of 
FVIII-expressing cells would be expected to convert severe hemophilia 
A to a moderate/mild phenotype, reducing or eliminating episodes 
of spontaneous bleeding and greatly improving quality of life. Thus, 
even with the low levels of transduction that are routinely obtained 
with many of the current viral-based gene delivery systems, a marked 
clinical improvement would be anticipated in patients with hemophilia 
A. Conversely, even supra physiologic levels of FVIII as high as 150% 
of normal are predicted to be well tolerated, making the therapeutic 
window extremely wide [4]. Based on this knowledge, the American 
Society of Gene and Cell Therapy (www.ASGCT.org) recently 
provided NIH director, Dr. Francis Collins, with a roadmap of disease 
indications that it feels will be viable gene therapy products within the 
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Abstract
Hemophilia A represents the most common inheritable deficiency of the coagulation proteins. Current state-

of-the-art treatment consists of frequent prophylactic infusions of plasma-derived or recombinant FVIII protein to 
maintain hemostasis, and has greatly increased life expectancy and quality of life for many hemophilia A patients. 
This treatment approach is, however, far from ideal, due to the need for lifelong intravenous infusions, the high 
treatment cost, and the fact that it is unavailable to a large percentage of the world’s hemophiliacs. There is thus 
a need for novel treatments that can promise long-term or permanent correction. In contrast to existing protein 
based therapeutics, gene therapy offers to provide a permanent cure following few, or even a single, treatment. 
In the present paper, we review ongoing work towards this end, focusing on studies we have performed in a large 
animal model. Some of the key topics covered in this review include the unique opportunities sheep offer as a model 
system, the re-establishment and clinical and molecular characterization of a line of sheep with severe hemophilia 
A, the advantages and feasibility of treating a disease like hemophilia A in utero, and the use of Mesenchymal Stem 
Cells (MSC) as cellular delivery vehicles for the FVIII gene. The review finishes with a brief discussion of our recent 
success correcting ovine hemophilia A with a postnatal transplant with gene-modified MSC, and the limitations of this 
approach that remain to be overcome.
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next 5-7 years. The hemophilias were identified as belonging to the 
most promising, “Target 10”, group of diseases.

Sheep as a Preclinical Model of Hemophilia A
A number of animal models have been developed to evaluate new 

methods of not only treatment of coagulation disorders, but also the 
prevention and treatment of inhibitor formation. Transient hemophilic 
rabbit models induced by infusion of plasma containing inhibitors 
have been used to evaluate the effect of different bypass products to 
factor VIII [15], but these models, while valuable for inhibitor studies, 
do not accurately recapitulate the human disease, precluding their 
use for gene therapy studies. Fortunately, dog models of hemophilia 
A with congenital deficiency [16,17] and mouse models obtained by 
gene targeting and knockout technology [18] are available to study 
FVIII function and gene therapy approaches for treating hemophilia 
A. Therapeutic benefit has been obtained in numerous studies using 
a variety of vector systems in the murine model [9,10,19-25], and 
phenotypic correction of hemophilia A in the dog has been achieved, 
but has proven to be far more difficult than in mice [26,27]. Despite 
promising results in both canine and murine models, however, no 
clinical gene therapy trial has shown phenotypic/clinical improvement 
of hemophilia A in human patients. This is in marked contrast to the 
recent clinical successes with gene therapy for hemophilia B [28]. The 
reasons for the disparity in the efficacy of gene therapy for treating 
hemophilia A versus B is not presently clear. Nonetheless, based on the 
disappointing results to-date, there is currently no active hemophilia 
A clinical gene therapy trials, even though hemophilia A accounts for 
roughly 80% of all cases of hemophilia.

The difficulties seen thus far translating success in animal 
models into therapeutic benefit in human patients underscores the 
importance of preclinical animal models that both precisely mimic the 
disease process of hemophilia A, and closely parallel normal human 
immunology and physiology. To this end, between 1979 and 1982, 
a number of male offspring of a single white alpine ewe at the Swiss 
Federal Institute of Technology all died several hours post-partum 
due to severe bleeding from the umbilical cord [29-31]. Daughters 
and granddaughters of this ewe also gave birth to lambs exhibiting 
the same pathology. Investigation of the affected animals showed 
extensive subcutaneous and intramuscular hematomas. Spontaneous 
hemarthroses were also frequent, leading to reduced locomotion and 
symptoms of pain in standing up, restricting nursing activity. Stronger 
injuries that arose when animals were not placed in carefully controlled 
isolation resulted in heavy bleeding and intensive pain. Laboratory 
tests showed increased PTT, and FVIII levels (as assessed by aPTT) of 
about 1% of control animals. Replacement therapy with human FVIII 
(hFVIII) concentrate or fresh sheep plasma resulted in remission of 
disease and rapid clinical improvement.

Unfortunately, due to the expense and effort of maintaining these 
sheep, the Swiss investigators allowed the line to die out, saving only 
a few straws of semen prior to allowing this valuable resource to pass 
into extinction. We recently used a variety of reproductive technologies 
to successfully re-establish this line of hemophilia A sheep, we fully 
characterized both the clinical parameters and the precise molecular 
basis for their disease, and we developed a PCR-based screen for the 
disease-causing mutation that allows identification of affected animals 
in utero [32-37]. In similarity to mutations seen in many human 
patients [38], these animals possess a premature stop codon with a 
frame shift mutation. This is the only animal model of hemophilia 

A with this clinically relevant mutation-type, providing a unique 
opportunity to study therapies in this context. All ten animals to date 
have exhibited bleeding from the umbilical cord, prolonged tail and 
nail cuticle bleeding time, and multiple episodes of severe spontaneous 
bleeding including hemarthroses, muscle hematomas, and hematuria, 
all of which have responded to human FVIII concentrate. Just like 
human patients with severe hemophilia A, a hallmark symptom 
in these sheep is repeated spontaneous joint bleeds, which lead to 
chronic, debilitating arthropathies and reduced mobility. Importantly, 
chromogenic assays performed independently at the Blood Center of 
Wisconsin and Emory University revealed undetectable FVIII activity 
in the circulation of these sheep, explaining their severe phenotype.

In addition to the value of another large animal model of 
hemophilia A and the uniqueness of the mutation, sheep possess 
many characteristics that make them an ideal preclinical model for 
gene therapy. The first of these is the size. Sheep are fairly close in size 
to humans, weighing roughly 8lbs at birth and 150-200lbs as adults, 
likely obviating the need for scale-up of vector dose to move from 
experiments in sheep to trials in humans. This is in marked contrast to 
mice which are ~2800 times smaller than a typical human patient [39]. 
Of course, the large size of the sheep also carries with it the inherent cost 
to generate a sufficient volume/quantity of the novel therapeutic to be 
tested, making the sheep’s size a double-edged sword. Secondly, sheep 
share many important physiological and developmental characteristics 
with humans; for example, the pattern of fetal to adult hemoglobin 
switching, and the naturally occurring changes in the primary sites 
of hematopoiesis from yolk sac to fetal liver and finally to the bone 
marrow near the end of gestation. In addition, in contrast to other large 
animal models such as dog and pig, sheep, like humans, typically have 
singleton or twin pregnancies rather than large litters of offspring. It is 
thus not surprising that fetal sheep have been used extensively in the 
study of mammalian fetal physiology, and results obtained with this 
model have been directly applicable to the understanding of human 
fetal growth and development. Thirdly, sheep are out bred, and thus 
represent a wide spectrum of genetic determinants of the immune 
response, as do humans. As the immune response to both the vector 
and the vector–encoded FVIII are likely to play a key role in FVIII 
inhibitor formation (or lack thereof), this represents an advantage not 
found in most other models, with the possible exception of the dog, 
which could conceivably be out bred as well to achieve a broader genetic 
spectrum. This wider genetic spectrum could, however, also introduce 
greater animal-to-animal variability, potentially necessitating the 
use of larger numbers of animals per group to achieve statistical 
significance. In addition, the development of the sheep immune system 
has been investigated in detail [40-46], making sheep well suited for 
studying the immunological aspects of gene therapy for hemophilia A. 
Importantly, the large size of the sheep, their long life span (9-12 years), 
and their relative ease of maintenance and breeding make it possible 
to conduct the long-term studies in large numbers of animals that are 
necessary to fully evaluate the efficacy and safety issues related to gene 
therapy. For these reasons, we feel that the sheep are a particularly 
relevant model in which to examine gene therapy for hemophilia A. 
An additional unique advantage to using sheep to study hemophilia A 
treatment is that in sheep, like human, a large percentage of the Von 
Willebrand Factor (VWF) is found within platelets rather than free in 
plasma. This is in contrast to dog (in which Von Willebrand Factor 
(VWF) circulates free in plasma [47,48]), and makes the sheep an ideal 
large animal model in which to explore the use of platelet-targeted gene 
therapy for hemophilia A [14,49-51].
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Rationale for Treating Hemophilia A before Birth
Even if the cost of current hemophilia A therapies were reduced 

sufficiently that the majority of patients could afford prophylactic FVIII 
infusions, these protein-based therapies would still require frequent, 
lifelong intravenous infusions, and would still be plagued by a high rate 
of treatment failure due to inhibitors. These problems could likely be 
circumvented by performing gene therapy before birth. Similarly, many 
of the hurdles that have thus far prevented gene therapy from curing 
patients with hemophilia A, or many of the other diseases that have 
been investigated, could likely be circumvented by performing in utero 
gene therapy. At the present time, hemophilia A, and many of the other 
diseases considered as candidates for gene therapy, can be diagnosed 
relatively early in gestation, making it feasible to begin devising 
methods for performing gene therapy in utero rather than waiting 
until after birth. Methods for accessing both the sheep and the human 
fetus are well established and clinically viable. Indeed, fetal transfusions 
and in utero stem cell-based therapies have safely been performed 
clinically for decades [52,53]. To date, 46 in utero transplants have been 
performed in human patients [54,55], for 14 different genetic disorders 
[53], and have proven that accessing the early human fetus multiple 
times, using a minimally invasive, ultrasound guided approach, poses 
minimal procedure-related risk [52-54,56-59]. Importantly, experience 
and knowledge gained from studies performed in the fetal sheep model 
were used to design and perform the first curative human in utero 
transplantation for X-SCID [56], highlighting the value of the fetal 
sheep model for not only developing clinically viable methodology, but 
also for predicting clinical outcome. Using these established clinically 
applicable methodologies to perform gene therapy early in gestation 
could correct hemophilia A prior to parturition, promising the birth of a 
normal healthy baby who, ideally, would require no further treatments. 
While most individuals with a family history of hemophilia A are 
encouraged to have prenatal screening, parents currently have only 2 
choices following prenatal diagnosis of hemophilia A: termination of 
pregnancy or the birth of an affected child. The availability of a safe 
and effective in utero treatment would provide parents with a much-
needed 3rd option that could promise the birth of a healthy infant who 
required no further treatments. This opportunity would undoubtedly 
fuel much more widespread prenatal screening for HA. Although in 
vitro embryo screening and selection is a possible solution, this option 
is not widely available due to both its high cost and the lack of the 
required technology in developing countries. In utero gene therapy, in 
contrast, does not require any sophisticated equipment that would not 
already be in place for prenatal diagnosis. Indeed, several recent studies 
have now conclusively demonstrated the marked cost-effectiveness of 
prenatal screening for the hemophilias, even within developing third 
world countries [60-62]. Looking specifically at the US, according to 
the CDC, 320 babies are born with hemophilia A each year. The ability 
to correct this disease prior to birth could thus benefit the ~240 patients 
each year born into families with a history of hemophilia A. In addition 
to the clinical and financial advantages of performing gene therapy 
prior to birth, numerous aspects of the developing fetus make it a 
better recipient than the adult [63-65]. For example, due to their ability 
to integrate into the genome of the host cell, γ-retroviruses and lenti-
viruses have received a great deal of attention as gene delivery vectors, 
since transduction of a long-lived cell could provide lifelong therapy 
following a single administration. However, one of the main limiting 
factors to the successful application of these integrating vectors to in 
vivo gene therapy is the low level of initial transduction and the limited 
degree of expansion of transduced cells that occurs following gene 

therapy, since most cell populations in the adult are relatively quiescent 
unless injury is used to induce cell cycling. In the case of hemophilia A, 
the primary site of FVIII synthesis under normal physiologic conditions 
is the liver [66]. Yet, in a mature animal, it is estimated that only 1 in 
10,000 hepatocytes is actively cycling at any given time [67], making 
it very difficult to obtain meaningful levels of gene transfer unless the 
gene delivery system mediates high efficiency transduction of quiescent 
cells, or injury such as partial hepatectomy is employed to induce cell 
division to enhance transduction and/or drive expansion of the limited 
numbers of transduced cells, as was done in dogs with hemophilia B 
[68]. In the fetus, the cells in all of the organs are actively cycling to 
support the continuous expansion that occurs throughout gestation. 
Thus, cells such as hepatocytes that are largely quiescent in the adult 
are far more mitotically active in the fetus. As such, these cells should 
be far more amenable to genetic correction with vectors requiring cell 
division. Furthermore, the active cycling of the cells in all of the organs 
to support the continuous expansion that occurs throughout gestation 
offers the possibility of achieving expansion of the gene-corrected cells 
during the remainder of gestation, such that initial transduction of even 
small numbers of target cells should lead to significant levels of gene-
correction by birth. Importantly, even in the event of extremely high 
levels of transduction, supraphysiologic levels of FVIII as high as 150% 
of normal are predicted to be well tolerated, making the therapeutic 
window extremely wide [4]. Nevertheless, the sheep model provides 
a unique system in which to determine the potential for toxicity as a 
result of high-level expression of FVIII and optimize the dosing levels 
prior to considering attempting in utero clinical trials for hemophilia 
A. Remaining cognizant of the immune-aspects of hemophilia A 
treatment, it is important to note that, in addition to the ability to target 
cells which are largely refractory to transduction in the adult, unique 
immunologic advantages also exist for performing gene therapy in 
utero. There is a window of time in early immunologic development, 
before thymic processing of mature lymphocytes, during which 
the fetus is largely tolerant of foreign antigens. Exposure to foreign 
antigens during this period often results in sustained tolerance, which 
can become permanent if the presence of the antigen is maintained 
[69]. Given these unique immunological advantages suggest that in 
utero gene therapy would be an ideal approach for treating hemophilia 
A, since lifelong tolerance could theoretically be induced to FVIII. This 
would thus ensure that, even if in utero gene therapy was not curative, 
postnatal gene therapy or protein replacement could proceed safely 
without the risk of inhibitor formation.

Experimental in Utero Gene Therapy Studies
With the knowledge that performing gene therapy in utero would 

provide these advantages over existing post-natal approaches, we have 
spent the last two decades using the sheep model to investigate whether 
it is possible to exploit the highly proliferative state and relative 
immuno-naïveté of the early gestational fetus to achieve significant 
levels of gene transfer following a single intraperitoneal injection of a 
γ-retroviral vector [63,70-79]. This approach to in utero gene therapy is 
safe and technically simple, involving only a single ultrasound-guided 
injection into the peritoneum of the fetus, as early as 54 days of 
gestation (term: 145 days). This approach resulted in gene transfer 
levels as high as 5-6% within the hematopoietic system [73,78-80], a 
level that would certainly be therapeutic in hemophilia A. Importantly, 
these gene-marked hematopoietic cells persisted in these sheep over 
the course of 5 years of study [78,79], transgene-positive CD34+ cells 
could be detected in the bone marrow of these animals several years 
post in utero gene transfer [81], and bone marrow cells isolated from 
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these recipients successfully engrafted the hematopoietic system of 
secondary fetal sheep recipients upon re-transplantation. These three 
pieces of data provide compelling evidence that this approach enabled 
us to successfully insert genes into true hematopoietic stem cells, 
suggesting this method could provide lifelong genetic correction. 
While transduction of clinically significant levels of HSC within these 
sheep following a single injection of vector into the peritoneal cavity 
hinted at the therapeutic potential of this simple approach to in utero 
gene therapy, the retroviral vectors we employed in these studies did 
not possess any type of targeting moiety which would restrict 
transduction to cells of the hematopoietic system. Not surprisingly, 
examination of other tissues of the recipients revealed that gene transfer 
was not limited to cells of the hematopoietic system, but had occurred 
in essentially all of the organs examined, including numerous cell types 
within the liver, lung, and brain [76,78,79,82]. Our results also revealed 
transduction of hepatocytes and hepatic endothelial cells (the cells 
thought to be the natural site of FVIII synthesis/production within the 
body) at levels that would likely be therapeutic in hemophilia A, and 
delineated the time period during gestation when hepatic transduction 
is optimal [76]. Concomitantly, in utero gene transfer studies performed 
by other investigators in sheep, rodent, and non-human primate 
models employing a variety of viral-based gene delivery vectors 
produced similar results [11,63,76-78,83-100], supporting the notion 
that this method could be used to deliver FVIII to the developing liver 
at levels that would covert patients with severe hemophilia A to a 
moderate or even mild phenotype [76]. Moreover, since tissue-specific 
expression is not necessary for FVIII, the transfer of this gene into a 
wide range of tissues with ready access to the circulation, followed by 
long-term expression, would greatly enhance the therapeutic potential 
of this approach for treating/curing hemophilia A. As discussed 
previously, one of the major hurdles hindering treatment of hemophilia 
A by factor replacement therapy is the formation of inhibitory 
antibodies that can occur in roughly 30% of patients with repeated 
FVIII infusions. While analyzing the tissues from the sheep that 
received in utero gene transfer, we noted that the thymus frequently 
exhibited transgene positivity by PCR [78, 79]. Given the pivotal role of 
the thymus during the development of the fetal immune system’s 
ability to distinguish self from non-self, we undertook studies to 
ascertain the immunologic significance of the presence of these 
transgene-positive cells within the thymus. In our first set of studies, 
[101] we demonstrated that in utero gene transfer successfully induced 
durable immune tolerance to the vector-encoded β-galactosidase. This 
tolerance induction appeared to involve both cellular and humoral 
mechanisms, since both antibody responses and cellular responses to 
the transgene product were blunted in these animals even several years 
after in utero gene transfer. Further mechanistic studies demonstrated 
that performing in utero gene transfer early in gestation takes advantage 
of multiple tolerogenic avenues present in the fetus, since it results in 
the transduction of both thymic epithelial cells, which may promote 
induction of central immune tolerance, and cells of Hassall’s corpuscles, 
which can instruct dendritic cells to induce Tregs that can help 
maintain peripheral immune tolerance to the transgene products. 
These findings thus suggest that, even if not curative, in utero gene 
therapy would be ideal for hemophilia A, since lifelong tolerance could 
be induced to FVIII, thus overcoming the immune related hurdles that 
currently hinder post-natal treatment of this disease. Interestingly, the 
only studies that have thus far explored the possibility of performing in 
utero gene therapy for the treatment of the hemophilias have been 
aimed at correcting hemophilia B (factor IX deficiency) [11, 83, 84, 95-
97, 99, 100, 102, 103], likely due to difficulties encountered in initial 

attempts to express FVIII as a transgene in the context of viral vectors 
[104]. Given the fact that patients with hemophilia A are >10x’s as 
likely to develop inhibitory antibodies to the exogenous coagulation 
factor as patients with hemophilia B [105, 106], these studies thus leave 
unanswered the critical question of whether the ability to induce 
immune tolerance to marker gene products and FIX in utero will 
ultimately translate into the ability to induce tolerance to FVIII, given 
FVIII’s higher inherent immunogenicity. Studies are ongoing in the 
sheep model to address this important issue. While gene transfer to 
multiple fetal tissues would be desirable for correcting a disease such as 
hemophilia A, that would benefit from widespread systemic release of 
a secreted transgene product, our analyses also revealed that the fetal 
reproductive tissues often contained proviral DNA, raising the 
troubling possibility that the developing germline had been modified as 
a result of in utero gene therapy. Since prior studies had demonstrated 
that both the embryonic germline [107-110] and isolated Primordial 
Germ Cells (PGC) [111] can readily be modified with murine retroviral 
vectors and pass the vector genetic material to subsequent generations 
in a Mendelian fashion, we rigorously addressed the risk to the germline 
in the fetal sheep model [70,77,87,112]. Although the fetal ovaries 
appeared to be unaffected by this approach to in utero gene transfer, we 
found that numerous cells within the developing testes were in fact 
modified, including small numbers of immature germ cells within the 
forming sex cords and the resultant sperm cells. Importantly, however, 
gene-modified germ cells were only observed in 2 of the 6 animals 
examined, and, in these two animals, the incidence of germ cell 
modification was roughly 1 in 6250, a frequency that is well below the 
theoretical level of spontaneous mutation within the human genome 
[113]. This low frequency of modification coupled with observations 
that genetic alterations to the germ cells may produce deleterious 
effects, placing them at a disadvantage during fertilization suggest that 
the likelihood that any genetic alterations present would be passed to 
subsequent offspring would be extremely unlikely. Intriguingly, other 
studies employing lentiviral vectors in non-human primates revealed 
modification of the female germline, but no effect on male germ cells 
[86]. Thus, the issue of germline safety will likely have to be investigated 
in more than one preclinical model, and the specific vector being 
considered for clinical use will have to be employed, in order to obtain 
an accurate assessment of the risk posed by the procedure. This multi-
species data could then be presented to the FDA to determine whether 
whatever risk exists to the developing germline is outweighed by the 
potential benefits of intervening in utero.

The ultimate development of vectors that can target specific cell 
types following in vivo administration will ultimately make it possible 
to eliminate the risk of inadvertently modifying non-target cells, like 
those of the germline, following a direct vector injection approach 
to in utero gene therapy. Given the current absence of such vectors, 
and our desire to develop safer means of correcting hemophilia A and 
other diseases prior to birth, we have been exploring the possibility that 
mesenchymal stem cells can be used as vehicles to deliver exogenous 
genes to the developing fetus or neonate.

Mesenchymal Stem Cells (MSC) as Hemophilia A 
Therapeutics

In pioneering studies [114,115] performed over 30 years ago, 
Friedenstein demonstrated that fibroblastoid cells obtained from 
the bone marrow were capable of transferring the hematopoietic 
microenvironment to ectopic sites, thus establishing the concept that 
the marrow microenvironment resided within the so-called marrow 
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stromal cells. Years later, scientists began to explore the full potential 
of these microenvironmental cells, and results of these studies led to 
the realization that this population harbored cells with properties of 
true stem cells, now alternately referred to as marrow stromal cells or 
Mesenchymal Stem Cells (MSC) [116]. MSConly comprise roughly 
0.001 0.01% of cells within the marrow [117], but can be passaged 
extensively in vitro without a loss of differentiative potential, making 
it possible to readily generate clinically relevant numbers of these 
cells [118]. Although much of the work to date has focused on MSC 
isolated from adult bone marrow, cells that appear phenotypically 
and functionally to be MSC have now been isolated by our group and 
others from numerous tissues, including brain, liver, lung, fetal blood, 
umbilical cord blood, kidney, and even liposuction material [119-126]. 
MSC have also been isolated from the amniotic fluid and the chorionic 
villi, making it possible to begin envisioning the use of autologous MSC 
as cellular therapeutics or gene delivery vehicles for in utero therapy 
[127-132].

Importantly, although MSC from each of these tissues appear 
similar with respect to phenotype and overall differentiative potential, 
studies at the RNA and protein level have now revealed that subtle 
differences exist between MSC from these various tissues, with MSC 
from each tissue possessing a molecular fingerprint indicative of 
their tissue of origin [121,122,133-137]. Using the fetal sheep model, 
we showed that these differences result in a bias for human MSC to 
home to and give rise to cells of their tissue of origin in vivo [138,139], 
suggesting that utilizing the appropriate source of MSC may make it 
possible to tailor the site(s) of engraftment. We and others have devoted 
a great deal of energy to demonstrating the ability of MSC from various 
sources to serve as therapeutics for liver disease [139-169]. It is now 
clear that, not only do MSC have the ability to generate, in vitro and 
in vivo, cells which are indistinguishable from native hepatocytes, 
but transplantation of MSC in a range of model systems can result 
in fairly robust formation of hepatocytes which repair a variety of 
inborn genetic defects, toxin induced injuries, and even fibrosis. The 
fetal sheep model provides a unique system in which to explore the 
full differentiative potential of various stem cell populations, since 
the continuous need for new cells within all of the organs during fetal 
development provides a permissive milieu in which gene-modified 
donor cells can engraft, proliferate, and differentiate. Furthermore, 
by performing the transplant at a stage in gestation when the fetus is 
considered to be largely immuno-naïve, it is possible to engraft human 
cells at significant levels, which persist for the lifespan of the animal 
due to induction of donor-specific tolerance [144-146]. Indeed, in 
ongoing studies, we have found that, after transplantation into fetal 
sheep, human MSC engraft at levels of up to 12% within the recipient 
liver [140,145,146,170-175], and contribute to both the parenchyma 
and the perivascular zones of the engrafted organs, placing them 
ideally for delivering FVIII into the circulation. Since FVIII levels of 
3-5% of normal would convert a patient with severe hemophilia A to 
a moderate or mild phenotype, these levels of engraftment should be 
highly therapeutic. Given that the liver is thought to be the primary 
site of FVIII within the body, these collective results suggest that MSC 
may represent an ideal cell type for treating hemophilia A. However, 
although MSC engrafted at significant levels within organs that 
are natural sites of FVIII synthesis, only a small percent expressed 
endogenous FVIII, suggesting that simply transplanting “healthy’ MSC 
will not likely provide an effective means of treating hemophilia A. 
By using gene therapy to engineer MSC to express FVIII, however, it 
is highly probable that the levels of engrafted MSC we have thus far 

achieved in utero could provide therapeutic benefit in hemophilia A. 
Unlike hematopoietic stem cells which are difficult to efficiently modify 
with most viral vectors while preserving their in vivo potential, MSC 
can be readily transduced with all of the major clinically prevalent 
viral vector systems including those based upon adenovirus [177-
179], the murine retroviruses [179-183], lentiviruses [183-188], and 
AAV [189,190], and efficiently produce a wide range of cytoplasmic, 
membrane-bound, and secreted protein products. Furthermore, 
human MSC are stable in culture, do not undergo transformation, and 
do not form tumors in vivo (in contrast to murine MSC). By transducing 
the MSC in vitro, rather than injecting the vector directly, there is no 
risk of off-target transduction, and the vector being employed simply 
needs a strong constitutively active promoter to ensure that all cells 
derived from the transplanted MSC continue to express the FVIII 
transgene and mediate a therapeutic effect. Importantly, the only 
documented cases of retroviral-induced insertional mutagenesis have 
been observed following genetic modification of hematopoietic stem 
cells [191-193]. There is no evidence that MSC transform or progress 
to clonal dominance following transduction, and recent studies have 
shown that even if genomic instability is intentionally induced, MSC 
undergo terminal differentiation rather than transformation [194]. 
Critical proof-of-principle studies have already shown that MSC can 
be transduced with FVIII-expressing viral vectors and secretes high 
levels of FVIII protein. FVIII purified from the conditioned medium 
of the transduced MSC was proven to have a specific activity, relative 
electrophoretic mobility, and proteolytic activation pattern that was 
virtually identical to that of FVIII produced by other commercial cell 
lines [195]. Given the widespread distribution and engraftment of MSC 
following their systemic infusion, the ability of MSC to give rise, in 
vivo, to cells of numerous tissue types, and their ability to efficiently 
process and secrete high amounts of biologically active FVIII, they 
are, not surprisingly, being viewed as ideal vehicles for delivering a 
FVIII transgene throughout the body and thus providing long-term/
permanent correction of hemophilia A [195-197]. In addition to their 
widespread engraftment and their ability to serve as delivery vehicles 
for the FVIII gene, the rather unique immunological properties of MSC 
may further increase their utility for treating hemophilia A. MSC do 
not normally express MHC class II or the co stimulatory molecules 
CD80 and CD82, unless they are stimulated with IFN-γ, and are thus 
known to be relatively hypo-immunogenic. As such, they do not 
provoke the proliferation of allogeneic lymphocytes or serve as very 
effective targets for lysis by cytotoxic T cells or NK cells. In fact, a 
large body of evidence is now accumulating that MSC can be readily 
transplanted across allogeneic barriers without eliciting an immune 
response [198,199]. Thus, if one wished to use MSC to treat hemophilia 
A, off-the-shelf MSC from an unrelated donor could theoretically be 
used, greatly increasing the feasibility of obtaining and using these 
stem cells for therapy. This property may also be important in the 
context of in utero therapies, given recent studies by Mackenzie and 
Flake showing that, while the fetal immune system has been presumed 
to still be largely naïve at the time of in utero transplant, both the 
fetal and the maternal immune system appear, at least within the 
mouse, to have the ability to negatively impact upon the engraftment 
of allogeneic cells [200,201]. Perhaps even more important from the 
standpoint of their potential use as hemophilia A therapeutics, more 
recent studies have provided evidence that MSC also appear to have 
the ability to exert both immunosuppressive and anti-inflammatory 
properties both in vitro and in vivo. These properties appear to result 
from MSC’s ability to intervene, at multiple levels, with the generation 
and propagation of an immune response. To name just a few examples, 
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MSC have been demonstrated to interfere with the generation and 
maturation of cytotoxic and helper T cells [202-211], dendritic cells 
[212-215], and B cells [216]. In addition to actively shutting down 
the generation of immune effector cells, MSC also have the ability to 
induce the formation of potent Tregs [118,217-219]. MSC are also 
known to express an arsenal of factors [118,205-207,217,220-224] that 
reduce local inflammation, blunt immune response, and counteract 
the chemotactic signals released to recruit immune cells to the site 
of injury/inflammation. It is thus tempting to speculate that these 
immune-dampening properties could enable the delivery of FVIII 
without eliciting an immune response and subsequent inhibitor 
formation, thus overcoming one of the major hurdles to plague current 
treatment/management of hemophilia A.

As will be discussed in the next section, however, our postnatal 
studies in the hemophilic sheep suggest that further work will be 
required to discover how to obtain these potential immune benefits 
in the context of the ongoing injury/inflammation present in animals/
patients with clinically advanced hemophilia A.

In addition to the aforementioned properties, preclinical animal 
studies examining the potential of MSC isolated from adult tissues 
have also highlighted another interesting and clinically valuable 
characteristic of MSC; their ability to selectively navigate to sites of 
injury and/or inflammation within the body. Once reaching these 
specific sites, the MSC then mediate repair both by engrafting and 
generating tissue-specific cells within the injured tissue [225-227], and 
by releasing trophic factors that blunt the inflammatory response and 
often promote healing by activating the tissue’s own endogenous repair 
mechanisms. While the mechanisms responsible for this trafficking 
to sites of injury are currently not well understood, this observation 
raises the exciting possibility that, following systemic infusion, FVIII-
expressing MSC could efficiently migrate to sites of active bleeding/
injury, thereby focusing the therapy where it is most needed. As will be 
discussed in the next section, our postnatal studies in the Hemophilia 
C sheep support this conclusion.

Need for Postnatal Strategies and Success with Novel 
Treatment

Despite the multiple advantages of early intervention, roughly 
16,000 people within the US are already living with hemophilia A, 
and could thus not benefit from an in utero therapy. In addition, over 
25% of hemophilia A-causing mutations arise de novo with no family 
history, making it unlikely this patient population would be screened 
prenatally. Even when diagnosis is made prenatally, the minimal 
risks and/or ethical issues associated with in utero therapy may be 
unacceptable to the parents. As such, the ability to treat postnatally 
is indispensible for a universal approach that could be applied to and 
benefit all hemophilia A patients. For this reason, we have begun 
exploring whether it is still possible to exploit the many advantages of 
MSC as a cellular vehicle for delivering a FVIII gene if these FVIII-
expressing MSC are transplanted during early childhood, rather than 
in utero. To directly address this question, we recently tested a novel, 
non-ablative transplant based gene therapy in 2 pediatric hemophilia 
A lambs. During the first 3-5 months of life, both these animals had 
received frequent, on-demand infusions of human FVIII for multiple 
hematomas and chronic, progressive, debilitating hemarthroses of 
the leg joints which had resulted in severe defects in posture and gait, 
rendering them nearly immobile. In an ideal situation, one would 
use autologous cells to deliver a FVIII transgene, and thus avoid any 
complications due to MHC-mismatching. Unfortunately, the severe 

life-threatening phenotype of the hemophilia A sheep prevented us 
from collecting bone marrow aspirates to isolate autologous cells. 
We therefore elected to utilize haploidentical allogeneic cells from 
the ram that had sired the two hemophiliac lambs, hoping that, by 
using paternal (haploidentical) MSC, immunologic incompatibility 
between the donor and recipient should be minimized sufficiently 
to allow engraftment. Based on our prior work in the fetal sheep 
model, we knew that the intraperitoneal (IP) transplantation of MSC 
results in widespread engraftment throughout all of the major organs 
[140,145,174,228-230] and durable expression of vector-encoded genes 
[229-231], at least in the context of the developing fetus. We further 
reasoned that using the IP route would also have the advantage of 
enabling the cells to enter the circulation in an almost time-release 
fashion, after being engulfed by the omentum and absorbed through 
the peritoneal lymphatics. Importantly, the IP route also avoids the 
lung-trapping which hinders the efficient trafficking of MSC to desired 
target organs following IV administration, and also poses clinical risks 
due to emboli formation [232,233].

Following isolation, MSC were simultaneously transduced with 
2 HIV-based lentivectors, the first of which encoded an expression/
secretion optimized porcine FVIII (pFVIII) transgene [234]. A porcine 
FVIII transgene was selected for two reasons. First, we had not yet 
cloned the ovine FVIII cDNA and constructed a B domain-deleted 
cassette that would fit in a lentivector. Secondly, the pFVIII transgene 
had previously been shown to be expressed in/secreted from human 
cells at 10-100 times higher levels than human FVIII [8,9,235]. We 
reasoned that, with these very high levels of expression/secretion, even 
very low levels of engraftment of the transduced MSC might still be able 
to exert a therapeutic benefit. The second lentivector encoded an eGFP 
marker gene to facilitate tracking and identification of donor cells in 
vivo. Combining the 2 vectors in the same transduction unexpectedly 
resulted in preferential transduction with the eGFP vector, such 
that only about 15% of the MSC were transduced with the pFVIII-
encoding vector, as assessed by qPCR. Once the transduced MSC had 
been sufficiently expanded, the first animal to be transplanted was 
treated with a dose of hFVIII calculated to correct the levels to 200%, 
to ensure no procedure-related bleeding occurred. The animal was 
then sedated, and 30x10^6 transduced MSC were transplanted into 
the peritoneal cavity under ultrasound guidance in the absence of any 
preconditioning. Following transplantation, FVIII activity (assessed 
by chromogenic assay) was undetectable in the circulation, but this 
animal’s clinical picture improved dramatically. All spontaneous 
bleeding events ceased, and he enjoyed an event-free clinical course, 
devoid of spontaneous bleeds, obviating the need for hFVIII infusions. 
Existing hemarthroses resolved, the animal’s joints recovered fully 
and resumed normal appearance (as assessed by two attending 
veterinarians), and he regained normal posture and gait, resuming a 
normal activity level. To our knowledge, this represents the first report 
of phenotypic correction of severe hemophilia A in large animal model 
following transplantation of cells engineered to produce FVIII, and the 
first time that reversal of chronic debilitating hemarthroses has been 
achieved.

Based on the remarkable clinical improvement we had achieved 
in this first animal, we transplanted a second animal with 120x10^6 
paternal MSC which had been subjected to 2 additional rounds of 
transduction with the pFVIII vector, such that > 95% of these cells were 
transduced and expressing pFVIII. We anticipated that by transplanting 
4x’s the number of cells with roughly 6x’s the transduction efficiency, 
we would achieve pronounced improvement and therapeutic levels 
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of FVIII in the circulation of this animal, given that the transplanted 
cells were producing ~24x’s the levels of FVIII (720units/24hrs) as 
those transplanted into the first animal. In similarity to the first animal, 
hemarthroses present in this second animal at the time of transplant 
resolved, and he resumed normal activity shortly after transplantation. 
This second animal also became factor-independent following the 
transplant. These results thus confirm the ability of this MSC-based 
approach to provide phenotypic correction in this large animal model 
of hemophilia A. However, just as we had observed in the first animal, 
no FVIII was detectable in the circulation of this animal, making the 
mechanism by which this procedure produced such pronounced 
clinical improvement indeterminate.

Despite the pronounced clinical improvement we observed in the 
first animal, he mounted a rapid and fairly robust immune response 
to FVIII, in similarity to prior studies performed with hemophilia A 
mice [235]. Before transplant, this first animal had Bethesda titers 
against hFVIII of only ~3, yet this lifesaving procedure resulted in a 
rise in Bethesda titer to ~800 against the vector-encoded pFVIII and 
nearly 700 to hFVIII. The formation of such high titer inhibitors with 
cross-reactivity to the human protein was surprising, given the well 
established ability to successfully use porcine FVIII products in human 
patients to bypass existing anti-hFVIII inhibitors [236-239]. Similarly, 
despite having no detectable inhibitors prior to transplant, the second 
animal receiving the higher FVIII-expressing cell dose developed titers 
of ~150 Bethesda units against the vector-encoded pFVIII following 
transplantation which also exhibited cross-reactivity to the human 
protein. Following euthanasia of these animals, we performed a detailed 
tissue analysis of to begin deciphering the mechanism whereby this 
novel MSC-based gene delivery produced its pronounced therapeutic 
effect at a systemic level. PCR analysis demonstrated readily detectable 
levels of MSC engraftment in nearly all tissues analyzed, including 
liver, lymph nodes, intestine, lung, kidney, omentum, and thymus. 
These molecular analyses thereby proved our hypothesis that it is 
possible to achieve widespread durable engraftment of MSC following 
transplantation in a postnatal setting in a large animal model without 
the need for preconditioning/ablation, and in the absence of any 
selective advantage for the donor cells. Confocal immunofluorescence 
analysis on frozen tissue sections revealed large numbers of FVIII-
expressing MSC within the synovium of the joints which exhibited 
hemarthrosis at the time of transplant, suggesting the transplanted 
MSC possessed the intrinsic ability to home to and persist within sites of 
ongoing injury/inflammation, releasing FVIII locally within the joint, 
providing an explanation for the dramatic improvement we observed 
in this animal’s joints. This finding is in agreement with prior studies 
[240], showing that local delivery of FIX-AAV to the joints of mice with 
injury-induced hemarthroses led to resolution of the hemarthroses in 
the absence of any detectable FIX in the circulation. While this finding 
provides an explanation for the reversal of the joint pathology present 
in these animals at transplant, it cannot explain the observed systemic 
benefits such as the cessation of spontaneous bleeding events.

Thus far, confocal analysis has also revealed engrafted cells within 
the small intestine, demonstrating that MSC can still engraft within the 
intestine following postnatal transplantation, just as we had observed 
in our prior studies in fetal recipients [229]. Given the ease with 
which proteins secreted from cells within the intestine can enter the 
circulation, future studies aimed at improving the levels of engraftment 
within the intestine have the potential to greatly improve the systemic 
release of FVIII. In addition to the intestine and hemarthrotic joints, 
significant levels of engraftment were also seen within the thymus of 

this animal. While the ability of the transplanted MSC to traffic to the 
thymus could clearly have important implications for the likelihood of 
long-term correction with this approach to hemophilia A treatment, 
additional studies are required to determine with which cells within 
the thymus these MSC are interacting to ascertain the immunologic 
ramifications of thymic engraftment.

Conclusions
Current hemophilia A treatments allow many patients with 

hemophilia to live relatively normal lives, but their high cost, the need 
for lifelong therapy, and the inaccessibility of these therapies to the 
vast majority of patients with hemophilia A worldwide [5] highlight 
the need to develop novel therapies offering longer-lasting benefit or 
permanent cure [7,8,10-14]. Based on their developmental similarities 
to humans, we have employed sheep as a model system to study the 
potential of in utero gene therapy and in utero MSC transplantation 
to correct a disease like hemophilia A prior to birth, and have shown 
that direct vector injection results in levels of gene transfer that would 
likely be therapeutic in hemophilia A and induces durable immune 
tolerance to the vector-encoded genes, but possesses the inherent risk 
of off-target transduction.

Similarly, the transplantation of MSC in utero led to significant 
levels of widespread cell engraftment in both the parenchyma and 
the perivascular regions of multiple tissues, placing the cells ideally 
for release of FVIII into the circulation. Unfortunately, expression of 
the endogenous FVIII gene by these cells following engraftment and 
differentiation was too low to be of therapeutic value. It thus appears 
that a combination of these two approaches may represent the ideal 
means of treating hemophilia A prior to birth. Having recently re-
established a line of sheep that accurately recapitulates both the genetics 
and the clinical symptoms of the severe form of human hemophilia A, 
we are now ideally poised to address this issue. In similarity to human 
patients, this line of sheep exhibits a severe bleeding phenotype with 
frequent spontaneous hemarthroses leading to reduced locomotion, 
muscular hematomas, and episodes of hematuria and internal bleeding 
leading to death. The nature of the mutation found in these animals 
further adds to the uniqueness of this model. Murine models have been 
generated through knockout/deletion technology, and the naturally 
occurring dog colonies exhibit gene inversions [241]. In similarity to 
mutations seen in many human patients [38], hemophilia A in sheep 
is caused by a premature stop codon with a frame shift mutation, 
making this sheep colony the first large animal model yet described 
to possesses a mutation of this kind. It is our hope that the availability 
of this animal model that closely parallels normal human weight and 
physiology, and in which the severity and symptoms of the disease 
clearly resemble that of humans, will provide researchers in the field 
with a valuable preclinical resource for developing novel therapies, 
such as those utilizing stem cell transplantation and gene therapy, for 
hemophilia A. In recent studies, we used this line of sheep to test a novel 
postnatal approach to treating hemophilia A in which MSC served as 
delivery vehicles for a pFVIII transgene. This approach was technically 
straightforward, involving a single injection into the peritoneal cavity 
under ultrasound guidance, in the absence of any prior cytoablation/
conditioning, and thus posed minimal risk to the recipient. This 
MSC-based approach converted both animals treated to-date from a 
severe, life-threatening phenotype to a moderate phenotype, devoid of 
spontaneous bleeds, but still bleeding in response to accidental trauma. 
Remarkably, this approach also resulted in a complete reversal of the 
joint stiffness/swelling as well as the gait and postural defects that had 
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developed as a result of frequent hemarthroses during the first months 
of life.

To our knowledge, this represents the first time that reversal of 
the severe, crippling hemarthroses which plague human patients with 
hemophilia A has been achieved. These results thus open the door 
to the development of new MSC-based therapies for this debilitating 
condition, either systemically or, perhaps, administered directly into 
affected joints of hemophilia patients. Despite the marked clinical 
success we achieved, however, both animals developed high-titer 
inhibitors, likely limiting both the magnitude and duration of the 
therapeutic effect. Mechanistic studies are currently underway to 
understand and ultimately overcome the formation of inhibitors 
resultant from this procedure since, in their absence, this approach 
could result in even more pronounced clinical improvement. It is 
important to note that, were this same procedure implemented in 
utero, the possibility of inhibitor formation would be eliminated, 
possibly making this approach to hemophilia A treatment curative.
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