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Nomenclature

A, D ,D     : Finite difference coefficients

C1,C2,Cμ     : empirical coefficients

c	 : chord length

Cl	 : airfoil lift coefficient

ƒ	 : physical frequency

K 	 : a factor in SBIC scheme to determine a special scheme

M∞	 : free stream Mach number

u,v	 : Mean (time-average) velocity components in x and y directions 

V	 : Velocity vector

Γ : Diffusivity coefficient

κ	 : reduced frequency=ωc/(2U∞)

α	 : angle of attack

ε 	 : Volumetric rate of dissipation

a : Cell face cell

b	 : one-half of the chord length

Cm	 : airfoil moment coefficient about quarter chord

F	 : Flux

I	 : Flux

K	 : Kinetic energy of turbulence

T	 : stress tensor

U∞ : free stream velocity
t
ϕΓ : Turbulent diffusivity coefficients

δυ 	 : Cell volume

t	 : Time

αm : angle of attack in mean position

ωa	 : circular frequency,2πƒ

ijδ : Kronecker delta

G	 : Generation of turbulence kinetic energy

µ  	 : Dynamic viscosity

P	 : Pressure

εσ 	 : Turbulent Prandtl numbers for dissipation rate

θ 	 : angle between mean and moment chords

ρ  	 : Density

Re : Reynolds number

tµ  : Turbulent viscosity

kσ : Turbulent Prandtl numbers for turbulent kinetic energy

φ	 : Scalar quantity

Introduction
In the field of Computational Fluid Dynamics (CFD), there are 

two categories of numerical methods for simulating moving boundary 
flow problems. One is the moving grid method [1], which constantly 
updates the grid according to the position of object. The major 
limitation of moving grid method is the regeneration of mesh at every 
time step, which may consume much time and reduce computational 
efficiency. To overcome this drawback, a pseudo grid-deformation 
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Abstract
A new pressure based implicit procedure to solve the Euler and Navier-Stokes equations is developed to 

predict transonic viscous and inviscid flowsaround the pitching airfoil with high resolution scheme. In this process, 
nonorthogonal and non moving mesh with collocated finite volume formulation areused. In order to simulate pitching 
airfoil, oscillation of flow boundary condition is applied. The boundedness criteria for this procedure are determined 
from Normalized Variable Diagram (NVD) scheme. The procedure incorporates the k - ε  eddy-viscosity turbulence 
model. In the new algorithm, the computation time is considerably reduced. This process is tested for inviscid and 
turbulent transonic aerodynamic flows around pitching airfoil.The results are compared with other existing numerical 
solutions and with experiment data. The comparisons show that the resolution quality of the developed algorithm is 
considerable.
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approach was developed [2]. This approach calculates the grid speed 
through analytical expression of grid movement. The method is feasible 
to simulate rotational motion of the object. However, to simulate 
axial motion of the object, the volume change of grid cells should be 
considered. Another type of approaches for handling moving boundary 
problems is the field velocity method [3,4] which adopts the grid speed 
technique to simulate the velocity change of flow field. This method is 
especially suitable for calculation of step change of airfoil, and has been 
successfully applied to calculate the gust response of the airfoil/wing [5-
8]. The method of conventional field velocity is usually used to calculate 
the indicial response by incorporating unsteady flow conditions via 
grid movement in CFD simulations. The main privilege of this method 
is direct calculation of aerodynamic responses to step changes in 
flow conditions. An impulsive change in the angle-of-attack can be 
considered as an impulsive superposition of a uniform velocity field 
to the free stream. The magnitude of the indicial change for the angle 
of attack is used for calculation of the magnitude of normal velocity. 
In this method, the necessity of uniform distribution of time step over 
the entire flow domain is guaranteed. In addition, the airfoil is not 
made to pitch. Hence, the influence of pure angle-of-attack and pitch 
rate are decoupled efficiently. A similar methodology for simulating 
responses of an airfoil to step changes in pitch rate and interaction with 
vertical gusts exists. Moreover, the field velocity method is also applied 
for prediction of the effects of the trailed vortex wake from the other 
rotor blades in helicopters, compressors or other turbo machineries. A 
time dependence study illustrates that a smooth and accurate solution 
in time requires the consistent evaluation of time metrics in order to 
satisfy the geometric constitutive law Sitaraman et al. [9].

The objective of the present work is to compute unsteady transonic 
inviscid and viscous flow fields over a pitching NACA0012 airfoil at 
various angles of the attack.A new pressure based implicit procedure 
to solve the Euler and Navier-Stokes equations is developed to predict 
flowsaround the pitching airfoil with high resolution scheme. In this 
process, nonorthogonal and non moving mesh with collocated finite 
volume formulation are used. In order to simulate pitching airfoil, 
oscillation of flow boundary condition is applied. The boundedness 
criteria for this procedure are determined from Normalized Variable 
Diagram (NVD) scheme. The procedure incorporates the k - ε  eddy-
viscosity turbulence model. The algorithm is tested for inviscid and 
turbulent transonic aerodynamic flows around pitching airfoil.The 
results are compared with other existing numerical solutions and with 
experiment data. The comparisons show that the resolution quality of 
the developed algorithm is considerable.

Governing equations and discretization

The basic equations, which describe conservation of mass, 
momentum and scalar quantities, can be expressed in Cartesian tensor 
form as:

( ) ( ) 0ρ ρ∂ ∂
+ =

∂ ∂ i
i

u
t x   				                  (1)

( ) ( )ρ ρ∂ ∂
+ − =

∂ ∂
u
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j
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			                    (3)

The stress tensor and scalar flux vector are usually expressed in 
terms of basic dependent variable. The stress tensor for a Newtonian 
fluid is

2
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The scalar flux vector usually given by the Fourier-type law is
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Turbulence is accounted for by adopting ε−k  turbulence model. 
The governing 
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The turbulent viscosity and diffusivity coefficients are defined by
2
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and the generation term G in eqs. (6) and (7) is defined by 
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The term compD  and Θdiff  are additional ε−k  contributions 

to the standard  model often introduced to account for the effects of 
compressibility [10,11]. In this work, the models proposed by Yang et 
al. [10] are adopted, namely,
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The latter being appropriate for high Reynolds number flows, as it 
is the case here. The values of the turbulence model coefficients used in 
the present work are given in (Table 1) [10].

The discretization of the above differential equations is carried out 
using a finite-volume approach. First, the solution domain is divided 
into a finite number of discrete volumes or cells, where all variables 
are stored at their geometric centers (Figure 1). The equations are then 
integrated over all the control volumes by using the Gaussian theorem. 
The development of the discrete expressions to be presented is effected 
with reference to only one face of the control volume, namely, e, for the 
sake of brevity.

 For any variable φ (which may now also stand for the velocity 
components), the result of the integration yields

 
1[( ) ( ) ] φ

δ υ ρφ ρφ δ υ
δ

+ − + − + − =n n
p p e w n sI I I I S

t  

Where I(S) are the combined cell-face convection IC and diffusion 
ID fluxes. The diffusion flux is approximated by central differences and 
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can be written for cell-face e of the control volume in Figure 1 as an 
example as: 

( ) φφ φ= − −D
e e p E eI D S  

Where eSϕ  stands for cross derivative arising from mesh 
nonorthogonality. The discretization of the convective flux, however, 
requires special attention and is the subject of the various schemes 
developed. A representation of the convective flux for cell-face e is:

( . . )c
e e e e eI V Fρ φ φ= Α =  

The value of the dependent variable eφ  is not known and should 
be estimated using an interpolation procedure, from the values at 
neighboring grid points. eφ  is determined by the SBIC scheme 
Djavareshkian [12], that it is based on the NVD technique, used for 
interpolation from the nodes E, P and W. The expression can be written 
as

( - ).e w E w eφ = φ φ φ φ+ 

 

The functional relationship used in SBIC scheme for eφ  is given by

e Pφ φ=    if  0 1P Porφ φ≤ ≥ 

2 1
( 1) ( 1)
P e P e

e P P
P P

x x x x
K x K x

φ φ φ
 − −

= − + + 
− − 

   

  

 

  if  0 P Kφ< <

1
1 1

P e e
e P

P P

x x x
x x

φ φ
− −

= +
− −

  

 

 

  if  1PK φ≤ <   0 0.5K< ≤

where

P W e W e W P W
e e e P

E W E W E W E W

x x x x
p x x

x x x x
φ φ φ φ

φ φ
φ φ φ φ

− − − −
= = = =

− − − −
 

        (19)

The limits on the select each value of K could be determined in 
the following way. Obviously the lower limit is to keep K=0, which 
would represent switching between upwind and central differencing. 
This should not be favored because; it is essential to avoid the abrupt 
switching between the schemes in order to achieve the converged 
solution. The upper limit of K is 0.5, since it represents the constant 
gradient and there is no need to use anything else than central 
differencing in that case. The value of  K should be kept as low as 
possible in order to achieve the maximum resolution of the scheme. 

According to Eq. (17), if Pφ  (or Cφ  normalized variable at the 
central node) does not belong to [0,1], the space discretization is first 
order, otherwise the SBIC scheme has second order accuracy from 
point of view space discretization. The details of how the interpolation 
is made is dealt with [12]; it suffices to say that the discretized equations 
resulting from each approximations take the form: 

, , ,
. . φφ φ

=

′= +∑P P m m
m E W N S

A A S  

Where A(s) are the convection-diffusion coefficients. The term 
'
φS  in Eq. (19) contains quantities arising from non-orthogonality, 

numerical dissipation terms, external sources, deferred correction 
terms, and ( / )ρδυ δ φPt  of the old time-step/iteration level. For the 
momentum equations it is easy to separate out the pressure-gradient 
source from the convected momentum fluxes. 

Solution algorithm

The set of Eq. (19) is solved for the primitive variable (velocity 
components and energy) together with continuity utilizing pressure-
based implicit sequential solution methods. The technique used is 
the PISO scheme presented herein Issa [13]. In this technique, the 
methodology has to be adapted to handle the way in which the fluxes 
are computed in Eqs. (15-18). The adapted PISO scheme consists of a 
predictor and two corrector sequence of steps at every iteration. The 
predictor step solves the implicit momentum equation using the old 
pressure field. Thus, for example, for the   component, the momentum 
predictor stage can be written as

'( ) o
uu H u D p S* *= − ∇ +  

Where H contains all terms relating to the surrounding nodes 
and superscripts * and o denote intermediate and previous iteration 
values, respectively. Note that the pressure-gradient term is now written 
out explicitly; it is extruded from the total momentum flux by simple 
subtraction and addition. The corrector-step equation can be written as

'( ) uu H u D p S** * *= − ∇ +

Hence, from Eqs. (20) and (21)

( )u u D p p or u D pδ δ** * ** *− = − ∇ − = − ∇

Now the continuity equation demands that

( ) 0u
t

δ ρ
ρ

δ
* **+∇ =

 

For compressible flows it is essential to account for the effect of 
change of density on the mass flux as the pressure changes. This is 
accounted for by linearizing the mass fluxes as flows 

o ou u u uρ ρ ρ δ δρ* ** * *≈ + +   

Or 

( )o o du u D p u p
dp
ρρ ρ ρ δ δ* ** * *≈ − ∇ +

Where Eq. (22) is invoked to eliminate δu and δρ is related to δp by 
the appropriate equation of state. Substitution of Eq. (24) into Eq. (23) 
yields a pressure-correction equation of the form 

W
W n

es
S E

N

P

Figure 1: Finite volume and storage arrangement.

C1 C2 Cμ σk σε

1.44 1.92 0.09 1.0 1.3

Table 1: Values of emperical coefficients in the standard k-ε turbulence model.
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. . . . .P P E E W W N N S S PA p A p A p A p A p Sδ δ δ δ δ* * * * *= + + + +

Where Sp is the finite difference analog of  ( )ouρ *∇ , which vanishes 

when the solution is converged. The A coefficients in Eq. (25) take the 
form (the expression for AE  is given as an example)

( ) ( ) .( )o
E e e e e

dA aD au
dp
ρρ λ *= −   

where λ  is a factor whose significance is explained subsequently. 
The mass flux at a cell face is computed from nodal values of density 
and velocity, the cell-face values of 

o
eρ  and eu*  in Eq. (26) are not 

readily available. To compute those values, assumptions concerning 
the variations of ρ  need to be made. In upwinding 1λ =  when u is 
positive; otherwise it would be zero. Alternatively, in central difference 
formula 1/ 2λ = .

Such assumptions have no influence whatsoever on the final 
solution because they affect only the pressure-correction coefficients, 
and as pδ  goes to zero at convergence, the solution is, therefore, 
independent of how those coefficients are formulated; however, they do 
influence the convergence behavior. 

The structure of the coefficients in Eq. (25) simulates the hyperbolic 
nature of the equation system. Indeed, a closer inspection of expression 

(26) would reveal an upstream bias of the coefficients (A decreases as 
u increases), and this bias is proportional to the square of the Mach 
number. Also, note that the coefficients reduce identically to their 
incompressible form in the limit of zero Mach number.

In the present work, Crank-Nicolson scheme is applied for 
discretization of time derivative with second order accuracy. This option 
seems to be the most obvious as it requires the minimum amount of 
memory storage of the velocity fields. The system of equation is solved 
by biconjugate gradient method.

New time advancement algorithm

In this research three time advancement algorithms are used for 
the simulation. Figure 2 shows the flowchart of them. Algorithm 2(a) 
has external loop to satisfy convergence criteria for each iteration. An 
internal loop just for pressure equation is used in Figure 2b. The new 
time advancement algorithm, Figure 2c, is utilized an internal and 
external loop for calculation.

Boundary conditions

At the inlet of the domain, only three of the four variables need to 
be prescribed: the total temperature, the angle of attack, and the total 
pressure. The pressure is obtained by zeroth order extrapolation from 
interior points. At outlet, the pressure is fixed. Slip boundary conditions 
are used on the lower and upper walls. In the case of viscous flow, the 

a)Iterative Algorithm b)Non Iterative Algorithm c)New Algorithm
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Figure 2: Different Flowcharts for Time advancement.
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non-slip condition is applied at the airfoil surfaces. To account for the 
steep variations in turbulent boundary layers near solid walls, wall 
functions, which define the velocity profile in the vicinity of no-slip 
boundaries, are employed. The far-field boundary is set to 30c from the 
airfoil to minimize its undesired effects on the flow surrounding and is 
set to slip boundary conditions.

Results and Discussion
In this section, the results of the inviscid and viscous flows over a 

pitching NACA0012 airfoil along its quarter chord axis are indicated. 
The simulations are performed at a higher Reynolds number. In 
particular, we aim to validate the simulation with existing experiment 
results of a pitching airfoil, and study the lift and drag characteristics of 
a pitching airfoil. The steady state solutions are used as initial conditions 
for time-marching calculations. Figure 3 provides an illustration of 
pure-pitch motion for an airfoil with a mean angle of attack of αm. The 
parameters of motion and flow field are described in Table 2. The airfoil 
is forced into an oscillation around an axis located at the quarter-chord. 
The angle of attack is specified as: 

( ) ( )sin αα α α ω= +m pt t 			             (27)	

The free stream velocities for unsteady computations are set to 
uinlet=U∞cos(α(t)) and vinlet=U∞sin(α(t)). A H-type mesh is generated 
to model the airfoil and the surrounding flow. The schematic of this 
grid which used in the present simulation is shown in Figure 4. The 

 

V
m

mean

Position

α

8

0

Figure 3: Pure pitch definition.

 

Figure 4: Part of the H Grid.
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Figure 5: Grid dependency results for NACA0012, M∞= 0.755, α=-1.8˚.
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Figure 6: Convergence histories  for NACA0012, M∞= 0.755, α=-1.8˚.

κ M0 αm (deg.) αp (deg.) c
0.0814 0.755 0.016 2.51 1.0

Table 2: Pure pitch motion parameters.

grid dependence test for Navier-Stokes Equation on the NACA0012 
airfoil at M∞=0.755, α=-1.8˚ is indicated in Figure 5. Three different 
mesh sizes were considered: 27680, 57950 and 115960 cells and each 
simulation emerged from its fully converged solution. Thus the mesh 
of 57980 cells was selected as a baseline mesh for further analyses. 
Convergence histories for the inviscid flow are shown in Figures 6 and 7 
compare the computed viscous case surface pressure distribution with 
the experimental data [14]on NACA0012 with M∞=0.755, αm=0.016˚, 
αp=2.51˚, k=0.0814 for two angles of attacks. As it is seen from these 
results, there is quite a good agreement between the present method 
and the measurement of Landon [14]. These comparisons show that 
the solutions using oscillating boundary condition method has good 
prediction.

The computed variation of the lift coefficient versus angle of attack 
for inviscid and viscous flows during the third cycle is compared with 
that Landon [14] and Uzun [15] and in Figure 8. The existence of this 
variation loop is the result of induced velocities, which result in different 
lift coefficients between the up and down strokes. For presented viscous 
case, the turbulence quantities were specified at inlet to correspond to 
0.008 turbulence intensity and a dissipation length scale of 10% of the 
airfoil chord. The value of K in SBIC scheme for this case is 0.3. 
Figure 8a shows the computed variation of lift coefficient versus angle 
of attack for viscous case which is in close agreement with experimental 
data. Because the flow around a pitching oscillation airfoil is disturbed 
and turbulence models can influence the results, the little difference 
between the numerical prediction and experimental data could be due 
to turbulence model. Figure 8b shows the Cl versus α  for inviscid 
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case. Uzun [15] used a parallel algorithm for the solution of unsteady 
Euler equation on unstructured reformatting grids while this study 
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Figure 7:  Pressure distribution on NACA0012, M∞=0.755, αm=0.016˚, αp=2.51˚, k=0.0814.

 

 a) viscous case                                                        b) invicid case

 

α(deg)

C
L

-2 -1 0 1 2

-0.4

-0.2

0

0.2

0.4

Experimental
Present Study(Viscous)

α(deg)

C
L

-2 -1 0 1 2

-0.4

-0.2

0

0.2

0.4

Uzun
Experimental
Present Study(Inviscid)

Figure 8: Lift coefficient versus angle of attack for  M∞=0.755, αm=0.016˚, 
αp=2.51˚, k=0.0814.

 

0.055

0.05

0.045

0.04

-3             -2             -1             0              1              2              3
α (degree)

C
d

Figure 9: Drag coefficient versus angle of attack for viscous case at M∞=0.755, 
αm=0.016˚, αp=2.51˚, k=0.0814.



Citation: Djavareshkian MH, Faghihi AR (2013) Transonic Flow Simulation Around the Pitching Airfoil with Accurate Pressure-Based Algorithm. J 
Aeronaut Aerospace Eng 2: 112. doi:10.4172/2168-9792.1000112

Page 7 of 7

Volume 2 • Issue 3 • 1000112
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal 

non moving mesh with oscillation of flow boundary condition is 
applied. It can be seen that both methods are not good agreement with 
experimental data particularly at the lowest angle of attack. The reason 
for this difference is caused by the lack of consideration of viscosity. In 
other words, the viscosity can effect on the separated vortex from the 
airfoil and aerodynamic coefficients in unsteady flow.

The predicted drag coefficients versus angle of attack are illustrated 
in Figure 9. The upstroke Cd and Cdmin are higher than the down stroke 
one. In this work, the effect of the airfoil amplitude of oscillation on the 
simulated lift coefficients is assessed. The instantaneous CL versus τ
where K=0.0184, M=0.755 on NACA0012 is indicated in Figure 10. As 
illustrated, the maximum lift coefficients increases at higher amplitudes 
of oscillation, the calculated lift coefficients are periodic and resemble 
harmonic-like patterns. Furthermore, increasing amplitude endues 
significant lead in the CL  results that  CLmax is obtained at a lower 
τ . This can be attributed to the stronger effects of the shed wake and 
vertical structures on the surrounding fluid at the higher amplitudes.
Table 3 indicate CPU Time comparison for different algorithms. The 
numbers of iterationto satisfy convergence criteria for the external 
loops of algorithms (a),(b) and (c) are approximately 10,000 and 1-2 
respectively. For internal loops, the numbers of iterations of these 
algorithms are about 0, 20-30 and 2-3 respectively. As a result, the two 
algorithms (a) and (b) are time consuming and CPU time for new 
method is considerably decreased.

Conclusions
A pressure based implicit procedure to solve the Euler and Navier-

Stokes equations is developed to predict transonic viscous and inviscid 
flows around the pitching airfoil with high resolution scheme. In order 
to simulate pitching airfoil, oscillation of flow boundary condition is 
applied. The boundedness criteria for this procedure are determined 
from Normalized Variable Diagram (NVD) scheme. The main findings 
can be summarized as follows: 1-The pitching airfoil simulation with 
the oscillation of flow boundary condition with fix grid is very simple 
and has low cost. 2-The grid dependence test with high resolution 
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Figure 10: Instantaneous Lift coefficient versus non-dimensional time 
M∞=0.755, k=0.0814.

Iterative 
Algorithm

Non-Iterative 
Algorithm

New 
Algorithm

Internal Loop No. - 20-30 2-3
External Loop No. 1000 1-2
CPU Time (min) 8600 2800 120

Table 3: CPU Time comparison for different algorithms.

scheme indicates that an acceptable solution can be obtained even on 
fairly coarse 3-The agreement between numerical and experimental 
data is considerable. 4-The CPU time for new method considerably 
reduce.
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