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Spinal cord injury (SCI) is a devastating condition that in humans 
leads to permanent disability. Currently, there is not yet a satisfactory 
treatment to cure and completely repair the damaged spinal cord in 
humans. Therefore, it is of great importance to follow different lines 
of research to increase our knowledge of this condition and to develop 
new therapies. In contrast to mammals, lampreys and fishes are 
capable of repairing their spinal cord and regaining locomotion after a 
complete SCI [1-4]. In the last decade, zebrafish has appeared as a very 
valuable genetically tractable model that can be used to understand 
the mechanisms that control successful spinal cord regeneration in 
aquatic animals. Lampreys and other species of teleost fishes are being 
mainly used for this type of studies [lampreys: [5-8]; teleosts: [9,10]. 
For example, studies performed using the lamprey model of SCI have 
shown that different reticulospinal descending neurons projecting in 
a similar region of the spinal cord have different regenerative abilities 
after axotomy [4,5] even in the presence of functional recovery. Recent 
findings using lampreys have also shown that those brain neurons that 
are “bad regenerators” usually die after a complete spinal cord transaction 
[3,5]. Other studies in lampreys have suggested that changes in the 
expression of axonal guidance molecules or neurotransmitter receptors 
could be responsible for the success/failure of the regeneration process 
after injury [11-13]. These and other studies have shown that lampreys 
are great models to study successful spinal cord regeneration. However, 
lampreys have a very long and complex life cycle (approximately 9 
years long) involving a metamorphosis process, which makes them not 
suitable to generate transgenic or mutant lines that would facilitate to 
design and perform more functional studies.

On the other hand, zebrafish is an animal model with a short 
life cycle, which has facilitated greatly the generation of different 
transgenic and mutant lines. Transgenic and mutant animals can 
be used to understand the molecular mechanisms that lead to 
successful regeneration of the spinal cord in fishes. Recent studies 
using transgenic mice have shown that new cells are produced in 
the mammalian spinal cord after injury, although only glial cells are 
generated [14,15]. We could translate the knowledge acquired in 
zebrafish studies to design new therapies to promote neuronal and 
axonal regeneration in mammals including humans. For example, Dias 
and co-workers [16] have recently used a double-transgenic zebrafish 
line [Tg(hsp70l:Gal4)×Tg(UAS:myc-notch1a-intra)], in which a heat-
shock promoter drives expression of the active intracellular domain of 
notch1a, to show that Notch signalling controls the generation of new 
motor neurons after SCI in adult zebrafish. Also, a transgenic zebrafish 
line, Tg(shha:GFP), has been used as a sonic hedgehog reporter line 
to show that hedgehog signalling is involved in the generation of new 
serotonergic interneurons after SCI in adult zebrafish [17]. Also, a recent 
study from Goldshmitand co-workers [18] used different transgenic 
and mutant zebrafish lines [Tg(GFAP:GFP), Tg(nestin:GFP)Tg(Isl1:
EGFP),Tg(mpeg1:GFP),Tg(mpx:GFP),Tg(hsp70l:dn-fgfr1-EGFPpd1), 
spry4-/-fh117] to shown that Fgf signalling controls the formation of a 
“glial bridge” that facilitates axonal regeneration after SCI in zebrafish. 
These are just three of several examples of the types of functional SCI 
studies that can be done using transgenic zebrafish lines. So, this model 
appears as a very useful genetic tool to understand the mechanisms that 
control the production of new neurons, or for instance the regeneration 

of descending axons, after SCI in adult fishes. This will clearly help to 
propose new research lines in mammalian SCI models or to design new 
therapies for SCI in humans.
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