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Abstract

Human sodium iodine symporter gene (NIS) is the responsible factor for the effectiveness of radioiodine
treatment in differentiated thyroid carcinoma. Previous studies in the literature have shown that loss of the NIS gene
expression is the reason of ineffective treatment and dedifferentiation of the thyroid cancer. Definitely radioiodine
treatment is the most effective cancer treatment method in the world. Probable applications of this treatment to the
other types of tumors (like breast cancer, prostate cancer ect.) was the expected and wanted outcome of previous
related studies which would be preferable to any kind of other treatments like chemo or radiation therapy. This has
been achieved by transfection of cell lines with NIS gene by viruses. Additionally there have been these kinds of
studies in the literature however none of these studies consist a stimulating factor like thyrotropin (TSH) for thyroid
carcinoma. In radioiodine treatment the cornerstone of the treatment modality is the increased TSH levels in the
plasma which can be achieved by withdrawal of thyroid hormone or recombinant TSH preparations. The TSH rich
environment is the requirement of radioiodine treatment protocol. The future direction in radioiodine treatment would
be the addition of a stimulating factor in the treatment environment. This stimulating factor might be TSH or other
stimulants for various different cancer types like prostate specific antigen (PSA).
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Introduction
The NIS expression of the tumor tissue is the key point of how the

tumor will respond to radioiodine treatment [1]. NIS is responsible of
oxygen-dependent transport of Na and I and it is located in the
basolateral membranes of the thyroid cells [2]. Unfortunately there are
other tissues in the body that has NIS receptors which are salivary
glands, breast tissue; which will be evaluated later in this review. The
major determinant of this NIS mediated uptake is thyrotropin (TSH)
which regulates both NIS and thyroid peroxidase (TPO) and
thyroglobulin (Tg) expression [3]. TSH has effect on the NIS mediated
iodine accumulation in thyroid cells and would probably have same
effects in target tumor cells. Thus in our opinion TSH might have
positive effect on the iodine accumulation but this theory has to be
verified with in vitro or experimental studies firstly before clinical
applications. TSH administration may be performed by recombinant
TSH preparations which are in routine usage. TSH is also the key
point of radioiodine treatment. In radioiodine treatment protocol
elevation of TSH to at least 25-30 levels is considered necessary [4].

Thus in radioiodine treatment for other type of tumors by NIS
transfection (radiovirotherapy) should also include TSH rich
environment in our opinion. Additionally previous studies support
this opinion which has demonstrated that TSH significantly stimulates
increase in the NIS m-RNA and protein levels [5]. How to overcome
TSH’s effects in the other cells like thyrocytes is a meter of debate.
There are various protocols in the literature to block the effect of TSH

in the normal thyroid tissue, and other cell types expressing NIS which
will be mentioned in the following. Experience in the field of
radioiodine treatment has shown that it is not possible to treat thyroid
carcinomas that has lost their differentiation thus dedifferentiation is
the most important problem for thyroid carcinoma treatment.

First applications: Breast cancer
The normal breast tissue concentrates iodine as we experience in

radioiodine treatment in routine applications. Additionally this
unwanted concentration becomes a problem in especially lactating
breast. The dose considerations during iodine treatment include
stopping the lactation previously and after the treatment. Although
focal iodine accumulation in breast is considered warning for malign
breast tumors there are some exceptional cases that might have focal
iodine accumulation in their breasts without malignancy in routine
practice (Figure 1). This unwanted effect has led to some
investigations whether iodine accumulates in malign breast cancer
tissue besides normal and lactating breast in the past. The treatment
trials in breast cancer patients concluded that there might be potential
for the role of radioiodine treatment in the future [6-8].

Joseph et al. [6] have demonstrated that the iodine concentration is
higher in the tumor tissue compared to the normal breast tissue [6].
Additionally other investigators have shown the iodine accumulation
in the breast tumors which is presumed to be mediated by NIS
expression and not suppressed by perchlorate although normal breast
tissue and thyroid is [9,10]. Joseph et al. [6] also investigated the effect
of stable iodine in three patients and observed no change in
pertechnetate uptake in breast tumor tissue [6].
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Figure 1: 33 years old, female; her pathological result was papillary
thyroid carcinoma follicular variant (3x5 cm). She received 100
mCi radioiodine treatment posttreatment scan revealed residual
uptake in neck and increased focal activity accumulation in her left
breast (Whole body, spot anteroposterior and spot lateral images
from chest). Ultrasonographic imaging from breast revealed
nothing and her diagnostic scan was normal in one year follow up.

Although they have concluded in their study that radioiodine
uptake of tumor tissue is higher than normal breast tissue and
pertechnetate uptake resembles the NIS expression the effect and
dynamics of high dose radioiodine has to be demonstrated by future
studies.

Strategies in viral radiotherapy
Synergistic effects of viral treatment and NIS has been

demonstrated and additionally viral treatment and external beam
treatment has been performed together with great success. A triple
strategy including additional radioiodine therapy has not been
investigated and the necessity is questionable. In our opinion
increasing NIS expression with suitable environment for radioiodine
treatment would provide the most efficient treatment method. The
decision of the mediators like TSH or other tissue specific stimulant
may be bring the success. In the future there might be no tumors
which require other treatment options than radiovirotherapy.

However dose considerations have to be re-evaluated regarding
high doses required for radioiodine part of the treatment. The
experimental studies have pointed that approximately 500 mCi for a
single treatment may be required. These doses are much higher than
our routine applications (200 mCi for metastatic tumors). Additional
environmental stimulations may increase these doses thus safety of the
iodine treatment might be preserved.

Grünwald et al. [11] have investigated the NIS mediated
radiovirotherapy and have demonstrated by I-123 gama camera
imaging the synergistic effect of radioiodine and viral therapy [11].
Recent studies have demonstrated generally that additional external
beam therapy or radioiodine therapy instead of viral therapy alone
may benefit for tumor eradication [12]. Recently Trujillo et al. [13]
have decided the suitable radioiodine dose required to treat prostate
cancer in the mice and have found that 1 mCi is the optimal
therapeutic dose; 0.5 mCi is not enough to promote a response and 2
mCi has no additional effect [13]. They have calculated that these
doses contribute to 248 to 496 mCi in human. They have finally
achieved slow growing tumor and prolonged life.

Dedifferentiation of thyroid cancer
Dedifferentiation is the most important problem in thyroid cancer

treatment. It has been accepted that an anatomical lesion that do not
have iodine uptake contributes to dedifferentiated tumor (Figure 2).

However there are some arguments whether to accept iodine
negativity in diagnostic scan or post treatment scan or increase in
fluorodeoxyglucose (FDG) uptake as dedifferentiation. Usually
patients with dedifferentiation present with elevating Tg levels with
positive FDG accumulation and negative iodine uptake (Figure 3).
However generally iodine negativity is considered as dedifferentiation
and which means the prognosis is not good especially with positive
FDG accumulation.

There are further medical treatment options (tyrosine kinase
inhibitors) for this kind of patients however the long term follow up
results of these treatments are not achieved completely since these are
new treatments. There have been some particular cases treated with
sunitinib (Figure 4).

67 years old female patient; has diagnosis of papillary thyroid
carcinoma (1.4 cm, capsular invasion, 2 metastatic lymph nodes) and
received 150 mCi radioiodine treatment. She received 150 mCi one
year later because of pretrakeal lymph node metastasis and three years
later additional 200 mCi for progression and pulmonary metastasis.
Dedifferentiation was observed thus she received sunitinib treatment
and response was achieved three months later. However in the follow
up progression was observed during the sunitinib treatment.
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Figure 2: 61 years old, male patient; underwent total thyroidectomy
operation three years ago. His pathological result was papillary
thyroid carcinoma (7 cm) with capsular invasion and one
metastatic lymph node. He received 100 mCi treatment. (Figure 2a:
posttreatment anteroposterior images including neck and thorax
regions). Three years later he received second 100 mCi treatment
because of elevating thyroglobulin posttreatment scan revealed low
uptake in residual tissue and pulmonary metastasis with high
thyroglobuline levels (94) (Figure 2b: posttreatment images in
anteroposterior projection including neck and torax and abdomen)
however PET/CT scan showed additional servical and mediastinal
subcutaneous metastatic lymph nodes (Figure 2c: PET/CT
transaxial, multiple intensity projection images).

Figure 3: 40 years old female patient; she had multifocal papillary
thyroid carcinoma (0x1 cm and 1x5 cm) with capsular and
lymphovascular invasion who was operated three years ago. She
received 100 mCi in first diagnosis (Figure 3a: posttreatment whole
body scan in anteroposterior projection) and two years later a
second 100 mCi treatment for elevating Tg levels.

Figure 3b: posttreatment anteroposterior spot images from neck
and thorax. Her Tg levels continued to increase despite treatment
to 59 ng/mL and PET/CT images revealed two lymph node
metastasis in neck.
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Figure 3c and 3d: transaxial CT and PET images pointing
hypermetabolik lymph nodes with arrows.

Figure 4a: Follow up PET/CT images in transaxial and multiple
intensity projection respectively; progression was observed in 5
month period) and treatment was stopped.

The reasons of dedifferentiation are not clearly documented.
Previous diagnostic scans with iodine have been accused and always it
has been accepted that the first treatment dose should be as high as it
can. In a previous study it has been discovered that pretreatment with
I-131 treatment enhances dedifferentiation in thyroid carcinoma
which was the explanation of the problem called ‘stunning’ which was
known for years [14]. Additionally they have found that the
radioiodine uptake is not solely bound to the NIS expression but other
factors are present. They have observed that besides NIS expression
there is down regulation of TSH receptor, TPO and Tg associated
proteins [15].

Figure 4b: Follow up PET/CT images in transaxial and multiple
intensity projection respectively; progression was observed in 5
month period) and treatment was stopped.

Figure 4c: Follow up PET/CT images in transaxial and multiple
intensity projection respectively; progression was observed in 5
month period) and treatment was stopped.

According to some of the previous studies NIS transfection did not
provide the expected outcome in the success of the radioiodine
treatment dedifferentiated tumors [15]. Huang et al. [16] have
conducted a study including both NIS and TPO transfection before
radioiodine treatment in non-small cell lung cancer (NSCLC) cell line
and have achieved success they attributed this success to the absence of
Tg expression and presence of TPO expresison in lung cancer cells
[16]. However they have notified that this success can only be achieved
in lung cancer cells not other cell types [16]. Human TPO transfer has
been performed in anaplastic thyroid carcinoma also [17].
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Additionally (thyrotropin receptor) TSHR gene transfection has been
performed in dedifferentiated follicular cell cancer cell line [18]. TSHR
gene transfection has revealed approximately 3 times higher iodine
concentration and increase in expression of NIS, TPO and Tg
mRNA’s.

Other methods in dedifferentiation
Since application of radioiodine treatment to other tumors than

thyroid cancer was probably beyond our dreams before. However
these exciting developments are hampered by lower efficiency of the
method than expected. Thus additional interventions are necessary for
radiovirotherapy.

Improving methods for radioiodine treatment have been performed
previously like lithium or retinoic acid administration with the
treatment however none of these interventions became standard for
the procedure. The only standards are requirement of a previous
complete surgical removal of thyroid gland and elevation of TSH
levels. Low iodine diet previous to the treatment is also a suggested
prerequisite however it is not routinely controlled by urine iodine
measurements. Which of these interventions are also required for
radiovirotherapy is not clear. Additionally other methods’ (retinoic
acid or other drug administration) did not become the routine
practice. However viral treatments may be considered as the most
effective additive method for radioiodine treatment. Another
important problem about radiovirotherapy is the normal thyroid
tissue and how to block thyroidal uptake. Normal thyroid tissue is the
natural target of the iodine and in order to prevent thyroidal uptake
there have been some applications in previous studies; total
thyroidectomy or stable iodine administration in experimental studies.

Radioiodine treatment in differentiated thyroid carcinoma is an
established treatment by previous large series [19]. It has been known
that non thyroidal tissues also express NIS however only small part of
these NIS expressing tumors do show iodine uptake [20]. The NIS
expression in other tissues than thyroid tissue like salivary glands,
gastric mucosa and mammary gland are lower than thyroid tissue [21].
Additionally it has been observed that malign breast tissue as well as
benign breast tissue may retain iodine and thus the first applications
cover breast cancer with NIS transfection [9]. In order to accelerate
iodine concentration in NIS expressing artificial tumors total
thyroidectomy or radioiodine ablation have been performed in tumor
bearing animals previously [22]. Additionally retinoic acid or other
drugs have been employed in order to facilitate the effect of NIS
mediated radioiodine treatment [23,24]. Other therapeutic agents like
Re-118 and At-211 have been used with NIS gene therapy previously
[25]. In order to improve the therapeutic effect of radioiodine stable
iodine administration, thyroid hormone replacement and antithyroid
drugs have been employed in previous studies [26]. In medullary
thyroid cancer iodine uptake have been restored by recombinant
human NIS linked with calcitonin promoter [27].

Viruses: Measles virus
Encouraging studies with measles virus in multiple myeloma

treatment has been achieved in human subjects. These results
contribute to some hope for prolonged survival in multiple myeloma
patients which is considered as one of the most mortal malignancy.
Additionally measles virus mediated treatment adjunct to external
beam radiotherapy has achieved success. Integration of viral treatment
to routine external beam radiotherapy may benefit in the future.

Dingli et al. [28] have performed multiple myeloma treatment by
radiovirotherapy by measles virus in mice [28]. Measles virus is a
lymphotrophic virus thus was preferred vector for multiple myeloma
treatment in that trial and the researchers achieved complete
remission with a single dose of I-131 treatment [29]. The researchers
preferred measles virus expressing NIS because their previous
experiences with the Edmonston vaccine strain of measles virus did
not perform satisfactory patency [30]. Their experience with myeloma
model has been very promising and probably there will be treatment
options for myeloma patients in the future. However the authors have
pointed that additional stem cell transplantation might be necessary
additional to radiovirotherapy [28]. The researchers are working on
the methods that might increase the specificity of the treatment
method like targeted receptors like CD38 [28].

Measles virus also has the potential to perform synergistic effect
with external beam radiation [29] and previous studies have been
performed with MV-NIS [30-32]. In a previous study it has been
observed that combination of I-131 with external beam radiation and
MV-NIS treatment might increase the efficiency and survival rates of
the treatment [29].

Viruses: Adenoviral advances
The most preferred vectors are adenoviruses in radiovirotherapy.

There is particular effort in order to improve the effect of adenoviral
treatments. Modified vectors and dendrimer coating are new methods
performed in order to facilitate the effect of adenoviral mediated
treatments.

Oneal et al. [33] have generated two new modified vectors and
named ‘Ad5/3PB-ADP-h NIS and Ad5/3PB-h NIS [33]. They have
performed SPEC/CT imaging additionally and have achieved
significantly different results; increased specificity and therapeutic
efficiency in a prostate cancer model [33]. Successful treatment has
also been achieved by androgen-inducible expression of prostate
cancer cell line by prostate specific antigen promoter with NIS gene
[34]. A previous study has suggested that despite lack of organification
in prostate cell cancer line prolonged retention time and therapeutic
efficacy may be achieved [35].

Grünwald et al. have recently generated Ad5-CMV/NIS and Ad5-
E1/AFP-E3/NIS and investigated their effect by I-123 scintigraphy
[36]. Since the adenoviruses have radiosensitizing potential and
ionizing radiation has the potential to increase transduction and
replication of the adenoviruses the authors have preferred the
adenoviral vectors [33,36-38]. They have performed the ‘dendrimer
coating’ and have overcome the therapeutic defect as a result of lack of
organification in non thyroidal tissues and have achieved less liver
toxicity as in previous studies [39,40]. Same researchers have
investigated the epidermal growth factor receptor targeted adenovirus
dendrimer coating as an improving factor for NIS therapy in another
study which was considered a promising method in previous studies
[41-44].

Future directions
This treatment option has many years history [45]. Various viral

vectors have been performed since the first introduction [46].
Adenoviruses and herpes viruses are the most common types and high
viral titers have been reached which allows treatment [12]. These
developments lead to more efficient treatment options for
radiovirotherapy. Beyond these viral developments additional
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mediators to radiovirotherapy alone would benefit in the future like
TSH mediated (by recombinant TSH administration may be) would
benefit. Classical radiovirotherapy did not achieve the success as
expected but these additional modifications would probably increase
the efficiency of the method and provide possible new applications in
different cancer types. Combined treatment modalities are more
preferable than single viral treatment like radiovirotherapy or as an
adjunct to external beam treatment. Nuclear medicine treatments has
harmony with viral treatments and additional to various different
treating radionuclides (I-131, Re-188, At-11) imaging options also
serves as a guide for treatment. A recent review has pointed that newer
techniques may be developed like positron emission imaging of viral
treatments [12]. Radioiodine treatment is the most efficient treatment
modality among cancer therapeutics for differentiated thyroid tumors.
If the effect of radioiodine treatment in other cancer types can be
achieved by viral transfection this modality probably will be the best
treatment option for most of the cancer types. However the effect of
the treatment should be increased by some mediators and some
definite solution for thyroidal uptake has to be determined.
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