

Transcriptome Analysis of Zones of Colonies of the Δ *flbA* Strain of *Aspergillus niger*

Pauline Krijgsheld^{1,2} and Han AB Wösten^{1,2*}

¹Department of Microbiology, Utrecht University, The Netherlands ²Kluyver Centre for Genomics of Industrial Fermentation, The Netherlands

Abstract

Wild-type colonies of *Aspergillus niger* grow and secrete enzymes at their periphery when they are grown on an agar medium. Inactivation of the sporulation gene *flbA* results in colonies that not only secrete proteins at their periphery, but also in central zones. This is accompanied by a more complex secretome, growth throughout the mycelium, and by thinner cell walls. Here, gene expression was studied at the periphery, an intermediate zone, and the centre of wild-type and $\Delta flbA$ colonies using whole genome microarrays. Heterogeneity in gene expression was not reduced in $\Delta flbA$ colonies when compared to wild-type colonies, despite decreased heterogeneity in zonal secretion, sporulation and growth. It was shown that 1152 genes had a fold change difference in expression ≥ 2 , when the averaged expression profiles of the zones of the wild-type were compared with those of $\Delta flbA$ colonies. This gene set contained 13 genes predicted to be involved in reproduction, 12 genes involved in cell wall biosynthesis, modification and degradation, 345 genes encoding secreted proteins and 38 genes encoding transcriptional regulators. These genes, in particular, the genes encoding transcriptional regulators, may be instrumental to improve *Aspergillus niger* as a cell factory for the production of enzymes.

Keywords: Fungus; *Aspergillus niger*; Heterogeneity; Sporulation; *flbA*; Regulator of G protein signaling; Transcriptome

Introduction

Aspergillus species are among the most abundant fungi worldwide. They feed on a large variety of organic substrates, in particular, on plant material [1]. To this end, enzymes are secreted that degrade the organic polymers within the substrate into small molecules that can be taken up as nutrients. The capacity of *Aspergillus* species to secrete proteins is enormous. For instance, some strains of *Aspergillus niger* secrete more than 30 grams per liter of glucoamylase [2]. This and the fact that a variety of secreted enzymes of *Aspergilli* are used in the industry or as pharmaceutical proteinsmakes these fungi important cell factories.

Aspergilli form colonies that consist of hyphae that grow at their tips and that branch subapically [3]. Growth and protein secretion mainly occur at the periphery of the colony when they are grown on an agar medium [4,5]. Hyphae at the periphery of the colonyare exposed to unexplored organic material, whereas hyphae in the intermediate and central zones are confronted with a (partly) utilized substrate. The composition of the substrate explains about 50% of the variation in gene expression between different zones of the colonies [6]. The other half of the variation is caused by differentiation processes in the vegetative mycelium.

Recently, it was shown that zones of the colony that have the capacity to sporulate hardly secrete proteins [7]. This suggested that secretion by vegetative hyphae is repressed by the sporulation process. Indeed, a $\Delta flbA$ strain that does not sporulate not only secretes proteins at the colony periphery, but also within its central zones. This is accompanied by a more complex secretome, a reduced width of cell walls, and growth throughout the mycelium [8]. Gene *flbA* encodes an RGS domain protein that stimulates the intrinsic GTPase activity of the Ga-subunit FadA [9]. This Ga-subunit is part of a heterotrimeric G-protein complex that also consists of the G β - and G γ -subunits SfaD and GpgA, respectively (Figure 1). The activated Ga-subunit and the G β -G γ dimer both stimulate vegetative growth. FlbA converts the

active Ga-subunit-GTP into its inactive GDP bound stage, thereby repressing vegetative growth and promoting asexual development [10-12]. Taken together, these data indicate that FlbA stimulates sporulation and at the same time, represses vegetative growth and secretion by the vegetative mycelium. Moreover, it would promote synthesis of cell wall polymers, resulting in an increased width of the cell wall. The underlying molecular mechanisms are not yet known.

Here, the impact of inactivation of *flbA* on spatial gene expression in the *A. niger* colony was assessed. A total of 1152 genes had changed their expression ≥ 2 fold when RNA profiles of wild-type and $\Delta flbA$ colonies were compared. This set includes genes involved in reproduction and cell wall synthesis, and genes encoding transcriptional regulators and secreted proteins. These genes areof interest to improve *A. niger* as a cell factory.

Materials and Methods

Plasmids, fungal strains and growth conditions

The wild-type *A. niger* strain N402 [13] and its derivative N402 Δ *flbA* [8] were used in this study. These strains were grown as sandwiched colonies between porous polycarbonate membranes (0.1 µm pores, 76 mm diameter; Profiltra, Almere, The Netherlands) placed

*Corresponding author: Han AB Wösten, Department of Microbiology, Utrecht University, The Netherlands, Tel: 3130 2533448; Fax: 31-30-2512837; E-mail: H.A.B.Wosten@uu.nl

Received March 22, 2013; Accepted October 21, 2013; Published October 23, 2013

Citation: Krijgsheld P, Wösten HAB (2013) Transcriptome Analysis of Zones of Colonies of the *AflbA* Strain of *Aspergillus niger*. Fungal Genom Biol 3: 109. doi:10.4172/2165-8056.1000109

Copyright: © 2013 Krijgsheld P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

on top of solidified minimal medium with 25 mM xylose as a carbon source [4-6]. Cultures were inoculated with a 1 mm mycelial plug and grown at 30° C.

RNA preparation and analysis

RNA was isolated from a biological duplicate of concentric zones of 7-day-old colonies. Zone 1 represented the most central zone, zone 3 an intermediate zone and zone 5, the peripheral zone [6]. Mycelium of zones was harvested from three colonies, frozen in liquid nitrogen and ground with a TissueLyser (Qiagen, Venlo, The Netherlands) in a 2 ml Eppendorf tube with two metal balls (4.76 in diameter) for 1 min at 25 Hz. The frozen material was taken up in 1 ml TRIzol reagent (Invitrogen, Bleiswijk, The Netherlands) by vortexing. Samples were incubated for 2 min after mixing with 200 µl chloroform. This was followed by centrifugation at 10000 g for 10 min. RNA was purified using an RNA clean up column (Machery Nagel, Düren, Germany), after addition of 1 volume 70% EtOH to the water phase. After loading the sample on the column, it was centrifuged for 30 sec at 10000 rpm. This was followed by addition of 600 µl RA3 buffer (provided by the RNA-clean up kit). After 2 min centrifugation at 10000 g, 250 µl RNA3 was added, followed by another 2 min centrifugation at 10000 g. RNA was eluted after a 10 min incubation in two steps with 40 µl and 50 µl RNAse free water. The eluted RNA was pooled and 1 µl was checked for concentration and purity using the nanodrop ND-1000 spectrophotometer (Nanodrop Technology, Wilmington, USA) and the Bioanalyser 2100 (Agilent Technologies, Santa Clara, USA) (Supplemental Figure 1), respectively.

cDNA labeling, microarray hybridization and data analysis

cDNA labeling, microarray hybridization and scanning were performed at ServiceXS (Leiden, The Netherlands), according to Affymetrix protocols. From each RNA sample, 100 ng was used to synthesize biotin-labeled cRNA with the Affymetrix 3' IVT-Express Labeling Kit. Quality of cRNA was checked with the nano-lab-on-a chip Bioanalyzer 2100 (Agilent Technology). 15 µg cRNA was fragmented and half of it was used for hybridization on Affymetrix A. niger GeneChips [14]. After an automated process of washing and staining, absolute values of expression were calculated from the scanned array using the Affymetrix Command Console v1 software. The Affymetrix probe sets on the chip represent 14,259 annotated ORFs and genetic elements of A. niger [14]; (GEO [15] under accession no. GPL6758). The A. niger array data of this study have been deposited in the GEO database under accession number GSE44391.MAS5.0 absent/present calls showed that on average 50% and 48% of the genes were expressed in colonies of the wild-type and the $\Delta flbA$ strain, respectively. Genedata Expressionist and Genedata Analyst were used for normalization and statistical analysis of the arrays (Genedata, Basel, Switzerland). The arrays were condensed with the RMA algorithm and normalized on the quantile. Statistical assessment of differential expression was performed with *t*-test ($p \le 0.01$, using a false discovery rate [BHQ] of \leq 0.05) or by ANOVA (p \leq 0.01, BHQ \leq 0.05). Differentially expressed genes (change in expression \geq 2-fold) were clustered using K-Means clustering. A differentially expressed set of genes obtained by ANOVA was used for a maximal paired contrast analysis to find the zone or strain where the highest mean-difference was observed. The Functional

Catalogue (FunCat, Munich Information Center for Protein Sequence, Munich, Germany) [16] was used for functional classification of genes. Fisher's exact test was used to identify over-and under-represented functional classes in the sets of differentially expressed genes ($p \le 0.001$, BHQ ≤ 0.05).

cDNA synthesis and quantitative PCR analysis

cDNA was synthesized from biological duplicates of total RNA of zones 1, 3 and 5 of wild type and $\Delta flbA$ colonies using the QuantiTect Reverse Transcription Kit (Qiagen). QPCR was performed on the cDNA using the ABI Prism 7900HT SDS and SYBR Green chemistry (Applied Biosystems, Life Sciences, Foster City, USA). A run without cDNA was used as a negative control for every condition. Cycle threshold (Ct) levels were measured in triplicate for *actin* (An15g00560), *faeA* (An09g00120), *glaA* (An03g06550) and 18S rDNA (An03e03200). Primers were designed according to the recommendations of the PCR master-mix manufacturer (Applied Biosystems, Life Sciences, Foster City, USA), and were described previously [17]. The Ct values of 18S were used to normalize the qPCR data. For qPCR, each cycle Ct-change in qPCR represents a two-fold change in expression $(2^{-\Delta(\Delta CT)})$, where $\Delta Ct=Ct_{target gene}-Ct_{18S gene}$ and $\Delta(\Delta CT)=\Delta CT_{mutant}-\Delta CT_{wild type})$.

Results

Five concentric zones can be distinguished in 7-day-old sandwiched colonies of *A. niger* [4,6]. Zone 1, 3 and 5 represent the most inner zone, an intermediate zone, and the most outer zone of the colony, respectively. Gene expression was assessed in these three zones of xylose-grown colonies of the wild-type and the $\Delta flbA$ strain of *A. niger* using Affymetrix microarrays (Supplemental Table 1). QPCR of *glaA*, *faeA*, and *actin* (Supplemental Table 2) was used to verify micro-array data (Supplemental Table 3). Fold changes of these genes between zone 1 of wild-type and zone 1 of $\Delta flbA$, and zone 5 of wild-type and zone 5 of $\Delta flbA$ as obtained with micro-array analysis and QPCR showed a Pearson's correlation coefficient ≥ 0.97 (Supplemental Table 4).

	wt up intermediate/	wt up	∆ <i>flbA</i> up	∆ <i>flbA</i> up
	center	periphery	intermediate/ center	periphery
01 Metabolism	0	0	0	0
01.01.10 amino acid degradation (catabolism)	0			0
01.03.19 nucleotide transport				0
01.05.01 C-compound and carbohydrate utilization				0
02 Energy		0		0
02.11.05 accessory proteins of electron transport and membrane-associated energy conservation		0		
03 Cell cycle and dna processing			U	
04 Transcription		U	U	U
04.05.01 mRNA synthesis		U		U
05 Protein synthesis		0	U	
08 Cellular transport and transport mechanisms				0
40 Subcellular localisation				U
99 Unclassified proteins	U	U	U	U

Table 1: Over- (O) and under- (U) representation of functional gene classes in the pool of genes that are \geq 2 fold up- or down-regulated in the central zone 1 and intermediate zone 3 when compared to the peripheral zone 5of wild-type and $\Delta fibA$ colonies.

	zone 1 Up	zone 1 Down	zone 3 Up	zone 3 Down	zone 5 Up	zone 5 Down
01 Metabolism	0	0	0	0		0
01.01.07 amino acid transport	0					
01.05.01 C-compound and carbohydrate utilization						0
03 Cell cycle and DNA processing						U
06.13.99 other proteolytic degradation						0
08 Cellular transport and transport mechanisms					0	
99 Unclassified proteins	U	U		U		U

Table 2: Over- (O) and under- (U) representation of functional gene classes in the pool of genes that are ≥ 2 fold up- or down-regulated in the $\Delta flbA$ strain when compared to the wild-type.

	up-regulated in $\Delta flbA$	Down-regulated in ∆ <i>flbA</i>
01 Metabolism	0	0
01.01.07 amino acid transport		
01.05.01 C-compound and carbohydrate utilization		0
02 Energy		U
03 Cell cycle and DNA Processing		U
03.03.01 mitotic cell cycle and cell cycle control		U
04 Transcription	U	
05 Protein synthesis		U
08 Cellular transport and transport mechanisms	0	
40 Subcellular localisation		U
99 Unclassified proteins	U	U

Table 3: Over- (O) and under- (U) representation of functional gene classes in the pool of genes that are \geq 2 fold up- or down-regulated between the mean expression values of zones 1, 3, and 5 of the Δ *flbA* strain and those of the wild-type strain.

Page 4 of 22

Annotation	Gene name*	Description	wild-type zone 1	wild-type zone 3	wild-type zone 5	∆ <i>flbA</i> zone 1	Δ <i>flbA</i> zone 3	∆ <i>flbA</i> zone 5	Regulation	sigP
Top 50 down-reg	gulated genes inthe Δ	flbA strain compared to wildtyp	e							
An05g01730	uncharacterized	hypothetical protein	11442 ± 3316	14891 ± 315	4511 ± 2021	42 ± 7	37 ± 0	27 ± 1	Down	у
An09g00840	uncharacterized	weak similarity to antigenic cell wall galactomannoprotein MP1 - Aspergillus fumigatus	3153 ± 2599	10725 ± 146	3462 ± 103	29 ± 11	35 ± 22	14 ± 2	Down	у
An18g05480	uncharacterized	strong similarity to alcohol oxidase AOX1 - <i>Pichia pastoris</i>	7168 ± 839	7322 ± 2676	3105 ± 1353	46 ± 2	44 ± 3	42 ± 5	Down	n
An16g05920	uncharacterized	weak similarity to surface recognition protein PTH11 - <i>Magnaporthe grisea</i>	4282 ± 1762	6936 ± 1040	5405 ± 665	48 ± 1	47 ± 11	44 ± 1	Down	n
An07g06460	uncharacterized	similarity to C-7 hydroxycephem methyltransferase coupling protein of patent WO9529253-A1 - Streptomyces lactamdurans	1807 ± 56	3006 ± 541	4779 ± 1295	29 ± 5	24 ± 5	28 ± 0	Down	n
An16g05930	uncharacterized	strong similarity to predicted protein An08g06890 - <i>Aspergillus niger</i>	5034 ± 1765	7101 ± 440	6203 ± 1646	63 ± 18	58 ± 11	58 ± 9	Down	n
An01g06890	uncharacterized	similarity to hypothetical peptide synthetase pesA - <i>Metarhizium</i> <i>anisopliae</i>	1497 ± 1410	2785 ± 1060	5197 ± 1630	88 ± 10	29 ± 2	18 ± 0	Down	n
An16g05910	uncharacterized	similarity to cholesterol 7alpha- hydroxylase CYP7 - Sus scrofa	902 ± 636	1646 ± 590	2001 ± 725	17 ± 3	25 ± 5	18 ± 2	Down	у
An03g00690	uncharacterized	hypothetical protein	1261 ± 1329	2284 ± 1815	2321 ± 1481	21 ± 7	28 ± 1	26 ± 2	Down	n
An08g02330	uncharacterized	strong similarity to multidrug resistance protein MLP-2 - <i>Rattus norvegicus</i>	2009 ± 37	2116 ± 179	1500 ± 529	45 ± 2	29 ± 3	22 ± 4	Down	n
An07g06480	uncharacterized	similarity to cytochrome 4F8 cyp4F8 - <i>Homo sapiens</i>	420 ± 130	586 ± 213	753 ± 142	9 ± 1	10 ± 2	9 ± 1	Down	у
An05g01710	uncharacterized	strong similarity to hypothetical protein An16g07720 - <i>Aspergillus niger</i>	1738 ± 1486	2310 ± 357	387 ± 170	19 ± 2	18 ± 2	19 ± 3	Down	n
An01g00530	рерВ	proteinase aspergillopepsin II - Aspergillus niger	682 ± 649	3677 ± 2802	6268 ± 3005	44 ± 5	35 ± 1	34 ± 0	Down	у
An01g06860	uncharacterized	strong similarity to hypothetical Fum9p protein - <i>Gibberella</i> <i>moniliformis</i>	1135 ± 1295	2702 ± 926	5766 ± 2392	67 ± 10	36 ± 3	31 ± 0	Down	n
An01g06870	uncharacterized	strong similarity to hypothetical protein Fum8p - <i>Gibberella moniliformis</i>	581 ± 599	1632 ± 396	3427 ± 1234	50 ± 2	26 ± 1	21 ± 6	Down	n
An02g08300	uncharacterized	strong similarity to the hypothetical protein encoded by An11g06450 - Aspergillus niger	842 ± 71	710 ± 230	2085 ± 860	30 ± 1	21 ± 2	24 ± 8	Down	n
An15g07700	protD	strong similarity to aspergillopepsin II precursor (acid proteinase A) - Aspergillus niger	649 ± 452	5044 ± 2370	9630 ± 101	75±5	76 ± 5	65 ± 2	Down	у
An09g00670	gelD	strong similarity to beta (1-3) glucanosyltransferase Gel3p - <i>Aspergillus fumigatus</i>	1596 ± 565	2244 ± 607	2063 ± 821	45 ± 1	39 ± 6	59 ± 10	Down	у
An16g06570	uncharacterized	hypothetical protein	7069 ± 619	3576 ± 3514	1162 ± 1292	62 ± 4	52 ± 8	62 ± 4	Down	у
An02g00090	uncharacterized	strong similarity to prolidase - Aureobacterium esteraromaticum	6755 ± 2149	4420 ± 2149	707 ± 467	134 ± 13	58 ± 3	36 ± 11	Down	n
An05g02450	uncharacterized	similarity to halogenase bhaA from patent DE19926770-A1 - <i>Amycolatopsis mediterranei</i>	663 ± 62	1035 ± 59	469 ± 33	25 ± 6	18 ± 2	18 ± 1	Down	у
An07g08950	eglC	endoglucanase B eglB - Aspergillus niger	2511 ± 570	11775 ± 532	7793 ± 1370	52 ± 29	366 ± 244	422 ± 77	Down	у
An08g02300	uncharacterized	weak similarity to enniatin synthetase - <i>Fusarium</i> <i>scirpi</i> [truncated ORF]	1123 ± 198	1542 ± 488	1754 ± 1024	79 ± 8	53 ± 1	22 ± 5	Down	n
An01g06900	sm to amyR- A. ory	weak similarity to transcription activator amyR - Aspergillus oryzae	758 ± 96	1056 ± 406	654 ± 233	34 ± 8	25 ± 1	21 ± 1	Down	n

Page 5 of 22

An12g01320	ppoD	strong similarity to linoleate diol synthase - Gaeumannomyces graminis	1123 ± 612	1043 ± 345	132 ± 72	18 ± 2	20 ± 3	14 ± 2	Down	у
An01g06880	uncharacterized	similarity to dihydroflavonol 4-reductase BAA12723.1 - <i>Rosa</i> hybrid cultivar	625 ± 534	1769 ± 746	3403 ± 1745	110 ± 3	36 ± 3	27 ± 6	Down	n
An02g08330	uncharacterized	strong similarity to sequence 253 from Patent WO0100804 - Corynebacterium glutamicum	627 ± 234	624 ± 177	877 ± 309	27 ± 2	25 ± 1	24 ± 6	Down	У
An01g06840	uncharacterized	strong similarity to acid-CoA ligase Fat2p - <i>Saccharomyces</i> <i>cerevisiae</i>	419 ± 441	1295 ± 731	3234 ± 1795	52 ± 0	34 ± 1	29 ± 4	Down	n
An03g06670	uncharacterized	weak similarity to myosin-like protein MLP1 - <i>Saccharomyces</i> <i>cerevisiae</i>	5998 ± 1898	6281 ± 1029	1761 ± 437	171 ± 1	171 ± 7	118 ± 9	Down	n
An01g06830	uncharacterized	similarity to ketosphinganine reductase Tsc10p - Saccharomyces cerevisiae	418 ± 405	1031 ± 265	2067 ± 700	46 ± 1	33 ± 6	24 ± 3	Down	n
An01g06850	uncharacterized	similarity to 4-hydroxybutyrate dehydrogenase - Alcaligenes eutrophus	967 ± 1081	1917 ± 437	4224 ± 1181	112 ± 1	54 ± 2	44 ± 4	Down	n
An03g00640	uncharacterized	similarity to neutral amino acid permease mtr - <i>Neurospora</i> <i>crassa[</i> truncated ORF]	2950 ± 1037	2645 ± 295	2479 ± 1469	149 ± 28	122 ± 9	57 ± 2	Down	n
An01g11670	eglA	strong similarity to endo- beta-1,4-glucanase A eglA - <i>Emericella nidulans</i>	638 ± 408	2367 ± 12	589 ± 232	21 ± 2	42 ± 24	58 ± 1	Down	у
An07g08940	uncharacterized	similarity to acetyl-esterase I of patent WO9502689-A - Aspergillus aculeatus	242 ± 13	1268 ± 407	914 ± 553	20 ± 1	31 ± 7	26 ± 0	Down	у
An11g07020	uncharacterized	strong similarity to the hypothetical protein encoded by An07g00200 - Aspergillus niger	3237 ± 1203	2067 ± 1234	1620 ± 142	125 ± 37	97 ± 1	54 ± 11	Down	n
An07g09330	cbhA	cellulose 1,4-beta- cellobiosidase cbhA from patent WO9906574-A1- Aspergillus niger	1157 ± 1121	7883 ± 2929	3034 ± 1406	67 ± 16	130 ± 62	170 ± 76	Down	У
An09g06200	uncharacterized	strong similarity to PTH11 transmembrane protein - <i>Magnaporthe grisea</i> strain 4091-5-8	5976 ± 1928	5351 ± 2683	3632 ± 1622	442 ± 58	211 ± 45	82 ± 12	Down	У
An04g09990	uncharacterized	strong similarity to 2,5-dichloro- 2,5-cyclohexadiene-1,4-diol dehydrogenase linC - Sphingomonas paucimobilis	749 ± 308	422 ± 138	106 ± 4	36 ± 6	34 ± 6	34 ± 5	Down	у
An04g03840	uncharacterized	similarity to microtubule binding protein D-CLIP-190 - Drosophila melanogaster	365 ± 35	373 ± 52	257 ± 17	16 ± 0	14 ± 0	12 ± 3	Down	n
An05g01720	uncharacterized	strong similarity to hypothetical protein An06g00950 - Aspergillus niger	1552 ± 1286	2068 ± 211	368 ± 231	47 ± 7	42 ± 7	41 ± 1	Down	n
An09g02990	uncharacterized	similarity to probable Sua5 protein APE2397 - <i>Aeropyrum</i> <i>pernix</i>	618 ± 224	781 ± 58	344 ± 112	25 ± 6	26 ± 0	24 ± 2	Down	n
An04g06750	uncharacterized	similarity to hypothetical transmembrane protein - <i>Candida albicans</i>	491 ± 201	386 ± 153	489 ± 169	25 ± 4	20 ± 2	19 ± 2	Down	n
An07g06490	uncharacterized	strong similarity to insulin- degrading enzyme IDE - Rattus norvegicus	213 ± 37	361 ± 124	474 ± 112	17 ± 0	17 ± 0	16 ± 2	Down	n
An12g05390	uncharacterized	weak similarity to integral membrane protein PTH11 - <i>Magnaporthe grisea</i>	2079 ± 127	1355 ± 14	84 ± 32	38 ± 0	31 ± 2	30 ± 3	Down	у
An16g02910	uncharacterized	strong similarity to hypothetical protein CC0533 - <i>Caulobacter crescentus</i>	865 ± 51	1033 ± 82	613 ± 238	52 ± 1	40 ± 8	42 ± 10	Down	у
An08g11680	uncharacterized	strong similarity to 2,5-dicloro- 2,5-cyclohexadiene-1,4-diol dehydrogenase linC - <i>Pseudomonas paucimobilis</i>	320 ± 4	214 ± 41	125 ± 4	56 ± 0	68 ± 11	61 ± 1	Down	У

Page 6 of 22

An01g06930	uncharacterized	strong similarity to polyketide synthase FUM5 - <i>Gibberella</i> <i>moniliformis</i>	714 ± 704	1442 ± 246	2506 ± 866	110 ± 1	60 ± 2	46 ± 1	Down	n
An14g03130	uncharacterized	hypothetical protein	1109 ± 560	752 ± 164	262 ± 94	49 ± 11	29 ± 4	25 ± 2	Down	у
An08g03760	uncharacterized	similarity to hypothetical protein Rv3472 - <i>Mycobacterium</i> <i>tuberculosis</i>	191 ± 86	197 ± 37	843 ± 343	16 ± 1	16 ± 1	23 ± 5	Down	n
An08g05230	uncharacterized	strong similarity to putative endoglucanase IV - Trichoderma reesei	1152 ± 1281	2411 ± 2729	648 ± 116	55 ± 5	58 ± 11	46 ± 5	Down	у
Top 50 up-regul	ated genesin the Δfl	bA strain compared to wildtype								
An08g08490	uncharacterized	similarity to the calcium- independent phospholipase A2 2 - <i>Homo sapiens</i>	143 ± 8	118 ± 7	85 ± 3	728 ± 0	847 ± 91	775 ± 76	Up	n
An07g06240	uncharacterized	strong similarity to ferrioxamine B permease sit1 - Saccharomyces cerevisiae	88 ± 24	87 ± 8	94 ± 8	323 ± 28	397 ± 32	1915 ± 383	Up	n
An03g03620	uncharacterized	strong similarity to multidrug resistance protein atrD - Aspergillus nidulans	18 ± 1	22 ± 2	26 ± 10	83 ± 5	110 ± 1	378 ± 123	Up	у
An08g10830	uncharacterized	strong similarity to geranylgeranyl pyrophosphate synthase ggpps - <i>Gibberella</i> <i>fujikuroi</i>	65 ± 5	58 ± 0	68 ± 18	412 ± 9	388 ± 31	555 ± 30	Up	n
An01g12200	uncharacterized	similarity to hypothetical protein F10B6.29 - Arabidopsis thaliana	112 ± 53	68 ± 23	94 ± 12	741 ± 26	726 ± 82	429 ± 36	Up	n
An09g00270	aglC	alpha-galactosidase C aglC - Aspergillus niger[truncated ORF]	89 ± 18	85 ± 22	760 ± 428	879 ± 73	1158 ± 119	1805 ± 251	Up	nc
An07g04900	uncharacterized	strong similarity to mRNA sequence of cDNA clone 2589 - Aspergillus niger	1065 ± 70	929 ± 155	364 ± 239	5638 ± 245	5796 ± 687	3483 ± 369	Up	у
An11g09170	uncharacterized	similarity to the secreted aspartic proteinase SAP8 - Candida albicans	48 ± 5	55 ± 11	42 ± 1	316 ± 18	441 ± 6	290 ± 41	Up	У
An14g01840	uncharacterized	similarity to hypothetical temperature-shock induced protein TIR3 - <i>Saccharomyces</i> <i>cerevisiae</i>	227 ± 122	258 ± 66	426 ± 36	1679 ± 739	2311 ± 995	2553 ± 877	Up	У
An11g02600	uncharacterized	strong similarity to PT2/ PHT4 Phosphate transporter - Arabidopsis thaliana	50 ± 15	60 ± 10	104 ± 14	483 ± 47	653 ± 132	394 ± 127	Up	n
An16g07040	sm to btgE -A. nid	similarity to beta-1,3- glucanosyltransferase BGT1 - <i>Aspergillus fumigatus</i> [truncated ORF]	502 ± 224	676 ± 353	2375 ± 144	5982 ± 202	6554 ± 1346	7358 ± 380	Up	У
An17g00120	uncharacterized	strong similarity to major facilitator superfamily transporter protein mfs1 - <i>Botrytis cinerea</i>	30 ± 6	26 ± 0	24 ± 2	237 ± 3	221 ± 13	140 ± 13	Up	n
An16g08360	uncharacterized	weak similarity to cytochrome c1 of ubiquinolcytochrome-c reductase - <i>Paracoccus</i> <i>denitrificans</i> [truncated ORF]	64 ± 10	75 ± 12	158 ± 35	610 ± 68	591 ± 130	852 ± 12	Up	n
An11g01810	uncharacterized	weak similarity to probable membrane protein YBR005w - Saccharomyces cerevisiae	55 ± 6	62 ± 5	96 ± 20	438 ± 9	541 ± 62	564 ± 34	Up	n
An02g07930	рроС	strong similarity to linoleate diol synthase precursor - <i>Gaeumannomyces graminis</i>	180 ± 34	126 ± 52	38 ± 2	983 ± 279	747 ± 19	464 ± 32	Up	n
An09g01240	uncharacterized	strong similarity to phospholipase B - <i>Penicillium notatum</i>	78 ± 7	63 ± 9	104 ± 3	499 ± 142	727 ± 111	627 ± 178	Up	у
An01g06280	uncharacterized	strong similarity to IgE-binding protein - Aspergillus fumigatus	267 ± 123	341 ± 167	136 ± 4	2010 ± 28	2634 ± 280	1002 ± 145	Up	у
An13g01250	uncharacterized	strong similarity to the yeast siderophore-iron transporter for enterobactin Enb1 - Saccharomyces cerevisiae.	37 ± 2	35 ± 3	36 ± 3	183 ± 64	331 ± 79	415 ± 58	Up	n
		Saccharomyces cerevisiae.								

Page 7 of 22

An14g07130	uncharacterized	strong similarity to neutral amino acid permease mtr - <i>Neurospora crassa</i>	95 ± 8	70 ± 4	93 ± 8	481 ± 32	602 ± 135	1245 ± 123	Up	n
An11g04810	aox1	alternative oxidase Aox1 - Aspergillus niger	43 ± 8	54 ± 32	47 ± 20	279 ± 254	470 ± 353	890 ± 194	Up	n
An15g03940	uncharacterized	strong similarity to monosaccharide transporter Mst-1 - Amanita muscaria	244 ± 17	202 ± 47	2589 ± 838	3196 ± 21	3689 ± 943	8423 ± 210	Up	у
An13g00510	uncharacterized	strong similarity to hexokinase 1 hxk1 - Schizosaccharomyces pombe	199 ± 43	202 ± 28	67 ± 10	3335 ± 329	2920 ± 299	223 ± 64	Up	n
An18g01290	uncharacterized	strong similarity to predicted protein An13g01340 - Aspergillus niger	26 ± 2	24 ± 2	38 ± 10	233 ± 53	218 ± 65	405 ± 13	Up	у
An01g07000	uncharacterized	strong similarity to C-14 sterol reductase ERG24 - <i>Saccharom</i> yces cerevisiae	89 ± 14	77 ± 2	270 ± 166	498 ± 24	1009 ± 531	3138 ± 50	Up	У
An10g00680	uncharacterized	strong similarity to H+- ATPase V0 domain 17 KD subunit, vacuolar, CUP5 - Saccharomyces cerevisiae	443 ± 342	220 ± 116	119 ± 50	2783 ± 380	2761 ± 26	1102 ± 42	Up	У
An16g09040	uncharacterized	strong similarity to N-acetylglucosamine-6- phosphate deacetylase CaNAG2 - Candida albicans	629 ± 51	516 ± 71	81 ± 7	6612 ± 950	6653 ± 1009	637 ± 136	Up	n
An01g00390	uncharacterized	hypothetical protein	45 ± 2	47 ± 2	319 ± 99	542 ± 59	685 ± 35	1891 ± 74	Up	n
An16g01850	uncharacterized	similarity to blastomyces yeast phase-specific protein 1 bys1 - <i>Ajellomyces dermatitidis</i>	2984 ± 2759	1197 ± 780	166 ± 54	12215 ± 313	12035 ± 1137	3132 ± 648	Up	У
An16g01880	Lipanl	strong similarity to lysophospholipase - Aspergillus foetidus	648 ± 245	795 ± 248	454 ± 202	10644 ± 663	10585 ± 2214	2676 ± 160	Up	у
An14g02940	uncharacterized	strong similarity to L-sorbose dehydrogenase, FAD dependent - <i>Gluconobacter</i> oxydans	212 ± 101	153 ± 71	139 ± 92	2065 ± 372	1565 ± 349	1690 ± 279	Up	n
An07g03570	uncharacterized	strong similarity to sorbitol utilization protein sou2 - <i>Candida albicans</i>	83 ± 7	85 ± 17	1534 ± 228	1757 ± 42	1613 ± 167	6032 ± 312	Up	n
An18g03360	uncharacterized	similarity to the proteophosphoglycan ppg1 - Leishmania major	32 ± 19	46 ± 26	27 ± 5	473 ± 19	503 ± 4	242 ± 2	Up	у
An14g06980	uncharacterized	strong similarity to delta-12 fatty acid desaturase - Mortierella alpina	33 ± 3	36 ± 2	301 ± 112	465 ± 89	750 ± 251	1939 ± 15	Up	n
An05g00790	uncharacterized	strong similarity to nodulin GmNOD53b - <i>Glycine</i> <i>max</i> [truncated ORF]	25 ± 15	20 ± 4	12 ± 1	213 ± 57	341 ± 30	161 ± 9	Up	n
An03g06660	uncharacterized	strong similarity to peptide transporter ptr2 - <i>Arabidopsis</i> thaliana	2166 ± 1123	1709 ± 1392	80 ± 15	12416 ± 598	10787 ± 865	3842 ± 47	Up	n
An18g01320	uncharacterized	strong similarity to extracellular protease precursor BAR1 - Saccharomyces cerevisiae	148 ± 76	129 ± 56	328 ± 31	2146 ± 67	2897 ± 61	2501 ± 161	Up	у
An05g00800	uncharacterized	similarity to nodulin GmNOD53b - <i>Glycine</i> max[truncated ORF]	47 ± 21	31 ± 11	22 ± 1	395 ± 130	667 ± 69	333 ± 6	Up	n
An12g09870	uncharacterized	hypothetical protein	50 ± 0	57 ± 1	56 ± 0	571 ± 232	432 ± 82	2224 ± 250	Up	n
An11g00100	uncharacterized	strong similarity to triacylglycerol lipase LIP5 - Candida rugosa	71 ± 4	64 ± 3	59 ± 8	800 ± 192	866 ± 397	2265 ± 77	Up	у
An01g01630	uncharacterized	strong similarity to hypothetical protein An09g00510 - Aspergillus niger	69 ± 71	36 ± 26	96 ± 40	1151 ± 99	830 ± 115	802 ± 17	Up	у
An01g07730	uncharacterized	weak similarity to TcSL-2 protein precursor - <i>Toxocara</i> <i>cani</i>	118 ± 74	64 ± 3	63 ± 5	1697 ± 86	1478 ± 312	1257 ± 12	Up	у
An15g03550	uncharacterized	weak similarity to protopectinase patent WO9806832-A1 - <i>Bacillus</i> <i>subtilis</i>	57 ± 44	57 ± 45	20 ± 0	954 ± 34	1066 ± 21	330 ± 22	Up	У

Page	8	of	22
------	---	----	----

An16g06950	uncharacterized	strong similarity to carboxylic acid transport protein JEN1 - Saccharomyces cerevisiae	31 ± 8	26 ± 0	23 ± 5	837 ± 53	725 ± 9	357 ± 20	Up	n
An03g01770	uncharacterized	strong similarity to the EST an_3645 - Aspergillus niger	758 ± 657	336 ± 176	55 ± 12	10029 ± 207	8451 ± 0	1933 ± 247	Up	У
An03g05360	uncharacterized	strong similarity to neutral amino acid permease mtr - <i>Neurospora crassa</i>	39 ± 0	36 ± 2	31 ± 2	1673 ± 148	1362 ± 88	771 ± 2	Up	У
An14g04210	uncharacterized	similarity to hypothetical protein An07g05660 - Aspergillus niger	30 ± 0	35 ± 7	31 ± 0	931 ± 174	1386 ± 104	2511 ± 5	Up	у
An03g06220	sm to gelD- A. nid	strong similarity to beta (1-3) glucanosyltransferase GEL3 - <i>Aspergillus fumigatus</i>	42 ± 3	48 ± 11	58 ± 3	1406 ± 256	1874 ± 54	5043 ± 547	Up	у
An02g08560	uncharacterized	similarity to probable dioxygenase SCOEDB - Streptomyces coelicolor	22 ± 3	23 ± 3	19 ± 0	797 ± 22	1048 ± 83	1682 ± 135	Up	у
An02g08130	uncharacterized	similarity to hypothetical protein 2SCG18.24 - <i>Streptomyces</i> <i>coelicolor</i>	46 ± 3	48 ± 9	41 ± 5	2045 ± 64	2532 ± 185	3306 ± 224	Up	У
An09g05050	uncharacterized	questionable ORF	25 ± 1	24 ± 4	22 ± 3	3522 ± 1024	2872 ± 506	8559 ± 471	Up	у

Table 4: Hybridization values in colony zones 1, 3 and 5 of top 50 up- and down-regulated genes of the Δ*flbA* strain when compared to wild-type. Gene name or its closest homologue. A. nid: A. *nidulans*; A. ory: A. oryzae.

Principal component analysis (PCA) showed that the transcriptomes of the wild-type zones and those of the $\Delta flbA$ strain cluster in the first component of the analysis. This component accounts for 54% of the variation in the datasets (Figure 2). The second component of the analysis accounted for 27% of the variation and separates the transcriptomes from zones 1 and 3 of the wild-type and the $\Delta flbA$ strain from zone 5 of these strains (Figure 2). Expression in the central zone 1 and the intermediate zone 3 of the wild-type correlated to a high extent (Pearson'sr² \geq 0.98), when compared to the duplicates of these zones (r² \geq 0.97 and \geq 0.98, respectively). Wild-type zone 5 was more distinct from zone 3 and 1 (r²=0.91 and 0.93). The expression profile of zone 5 was also most different within the $\Delta flbA$ colony (Figure 2). The fact that zone 5 has the most distinct expression profile was also illustrated by the number of genes, with a fold change in expression ≥ 2 between the zones of wild-type and $\Delta flbA$ colonies (Figure 3). The number of differentially expressed genes between zone 1 and zone 3 of the wildtype colony was 5, between zone 3 and zone 5, 119, and between zone 1 and zone 5, 325. These numbers were 0, 115 and 595 for the $\Delta flbA$ strain, respectively (Figure 3). Of these differentially expressed genes, only 138 were found in both the wild-type and the $\Delta flbA$ strain.

In the next analysis, the number of genes was determined that are differentially expressed when zones of the wild-type and the $\Delta flbA$ strain were compared (Figure 3). The number of genes differentially expressed in zone 1 of the wild-type and the $\Delta flbA$ strain was 233. Of these, 104 and 129 were up- and down-regulated in the $\Delta flbA$ strain, respectively. A total of 235 genes were found to be differentially expressed inzone 3. Of these, 89 were up-regulated in $\Delta flbA$, whereas 149 were up-regulated in the wild-type. In zone 5, 297 genes were differentially expressed, of which 126 and 153 were up- and down-regulated in the $\Delta flbA$ strain, respectively.

Expression analysis of functional gene classes

Fisher's exact test was used to determine whether functional gene classes [16] were over-or underrepresented in the set of genes that are differentially expressed in zones 1 and 3, compared to zone 5 of the wild-type and the $\Delta flbA$ strain (Table 1). The functional classes metabolism and amino acid degradation were overrepresented in the up-regulated genes of zones 1 and 3 of the wild-type colony (Table 1), whereas the

functional classes metabolism, energy, accessory proteins of electron transport and membrane associated energy conservation and protein synthesis were overrepresented in the peripheral wild-type zone 5 (Table 1). The functional classes transcription, mRNA synthesis and unclassified proteins were under-represented in this cluster of genes, while only the latter functional group was underrepresented in zone 1 and 3 of the wild-type. In the up-regulated genes in the central and intermediate zone of the $\Delta flbA$ strain, the functional class metabolism was over-represented, whereas cell cycle and DNA processing, transcription, protein synthesis and unclassified proteins were underrepresented (Table 1). Metabolism, amino acid degradation, nucleotide transport, C-compound and carbohydrate utilization, energy and cellular transport and transport mechanisms were over-represented in the up-regulated genes in the peripheral zone of $\Delta flbA$ colonies (Table 1). On the other hand, transcription, mRNA synthesis, subcellular localization and unclassified proteins were under-represented.

Funcat analysis was performed on the differentially expressed genes between the zones of the wild-type and the $\Delta flbA$ colonies (Table 2). Up-regulated genes in zone 1 of $\Delta flbA$ compared to wild-type zone 1 were overrepresented in metabolism and amino acid transport, whereas unclassified proteins were underrepresented. Metabolism and unclassified proteins were also over- and underrepresented, respectively, in the down-regulated genes in zone 1 of $\Delta flbA$ compared to wild-type zone 1. The same was observed in the down-regulated genes in zone 3, whereas only the gene class metabolism was overrepresented in the up-regulated genes of this zone. Cellular transport and transport mechanisms were overrepresented in the up-regulated genes of the peripheral zone 5 of $\Delta flbA$ colonies. In contrast, the downregulated genes in this zone showed an over-representation of genes of the functional classes metabolism, C-compound and carbohydrate utilization and other proteolytic degradation, whereas cell cycle and DNA processing and unclassified proteins were underrepresented (Table 2).

Expression analysis of specific functional gene classes

The expression profiles of zones 1, 3 and 5 of the wild-type were pooled and compared with the pooled profiles of zones 1, 3 and 5 of the $\Delta flbA$ strain. In other words, for each gene the mean expression

Page 9 of 22

within the wild-type colony was compared to the mean expression within the $\Delta flbA$ strain. This was done to increase the statistical power of the comparison (comparing 6 instead of 2 arrays in each case). The number of genes up-regulated in $\Delta flbA$ colonies was 520, while 632 genes were down-regulated. Funcat analysis showed that the up-regulated genes are overrepresented in the functional categories metabolism and cellular transport and transport mechanisms, whereas transcription and unclassified proteins were underrepresented (Table 3). Down-regulated genes were overrepresented in metabolism and C-compound and carbohydrate utilization, and underrepresented in energy, cell cycle and DNA processing, mitotic cell cycle and cell cycle control, protein synthesis, subcellular localisation, and unclassified proteins (Table 3).

Twenty-six out of the 50 genes with the highest up-regulation (≥ 2 -fold) in $\Delta flbA$ compared to wild-type are predicted to encode proteins with a signal sequence for secretion (sigP) (Table 4). This number was 22 in the top 50 of genes with the highest down-regulation in $\Delta flbA$ colonies. Among the top 50 up-regulated and down-regulated genes, 47 and 43 genes are not yet characterized, respectively, of which

18 and 23 belong to the family of unclassified proteins. These gene sets also contain genes involved in development and cell wall biosynthesis/remodelling and genes encoding transcriptional regulators. Up- and down-regulated (\geq 2-fold) genes of these classes [18] were analyzed in more detail and are described below.

development: Of the 68 genes implicated in asexual and/or sexual reproduction in *A. niger*, 13 are found to be differentially expressed between the wild-type and $\Delta flbA$ strain (Figure 4A, Table 5; Supplemental Table 1). Of these genes, 6 are down-regulated in the $\Delta flbA$ strain and 7 are up-regulated. Of the genes indicated in Figure 1, flbD and sfaD are \geq 2-fold higher expressed in the $\Delta flbA$ strain.

Transcriptional changes associated to asexual and sexual

Page 11 of 22

Annotation	Gene Name*	Description	wild-type zone 1	wild-type zone 3	wild-type zone 5	Δ <i>flbA</i> zone 1	Δ <i>flbA</i> zone 3	∆flbA zone 5	Regulation
An02g03160	flbA	strong similarity to developmental regulator flbA - <i>Emericella nidulans</i>	147 ± 11	166 ± 25	77 ± 24	21 ± 2	24 ± 4	25 ± 3	Down
An04g05880	рроА	strong similarity to linoleate diol synthase - Gaeumannomyces graminis	1658 ± 245	1167 ± 359	282 ± 22	301 ± 2	298 ± 6	188 ± 11	Down
An04g06620	(RAM1/STE16)	similarity to farnesyl-protein transferase beta chain - Homo sapiens	1125 ± 2	1045 ± 31	831 ± 197	527 ± 31	499 ± 42	378 ± 4	Down
An04g07400	sm rosA- A. fum	strong similarity to C6 zinc finger transcription factor PRO1 - <i>Sordaria</i> macrospora[putative sequencing error]	120 ± 28	195 ± 76	562 ± 77	86 ± 3	83 ± 9	43 ± 6	Down
An05g00480	stuA /phd1	strong similarity to transcription factor involved in differentiation stuA - Aspergillus nidulans	3804 ± 1205	4031 ± 108	1721 ± 59	1672 ± 63	1531 ± 47	978 ± 7	Down
An12g01320	ppoD	strong similarity to linoleate diol synthase - Gaeumannomyces graminis	1123 ± 612	1043 ± 345	132 ± 72	18 ± 2	20 ± 3	14 ± 2	Down
An01g03750	abaA	strong similarity to protein abaA - Aspergillus nidulans	61 ± 9	71 ± 12	67 ± 17	113 ± 28	129 ± 3	182 ± 22	Up
An01g04830	flbD	strong similarity to myb-like DNA binding protein flbD - Aspergillus nidulans	89 ± 18	91 ± 8	81 ± 20	238 ± 35	220 ± 32	107 ± 5	Up
An02g07930	рроС	strong similarity to linoleate diol synthase precursor - <i>Gaeumannomyces graminis</i>	180 ± 34	126 ± 52	38 ± 2	983 ± 279	747 ± 19	464 ± 32	Up
An14g01820	phiA /binB	strong similarity to hypothetical cell wall protein binB - Aspergillus nidulans	2018 ± 1048	3064 ± 430	843 ± 70	8800 ± 3676	14346 ± 1791	4066 ± 653	Up
An15g02740	apsA	strong similarity to the anucleate primary sterigmata gene apsA - Aspergillus nidulans	199 ± 47	206 ± 53	252 ± 49	453 ± 29	444 ± 68	560 ± 22	Up
An16g01860	(STE23)	strong similarity to protease involved in a-factor processing STE23 - Saccharomyces cerevisiae	99 ± 20	95 ± 10	118 ± 8	192 ± 8	215 ± 7	279 ± 28	Up
An18g02090	sfaD (STE 4)	strong similarity to G-protein beta subunit sfaD - Aspergillus nidulans	41 ± 10	43 ± 8	104 ± 4	109 ± 5	113 ± 4	165 ± 13	Up

Table 5: Hybridization values of 13 genes that areimplicated in asexual and/or sexual reproduction and that are differentially expressed in wild-type when compared to the Δ*flbA* strain of *A. niger*. The table is based on Pel et al. [18], with the addition of *flbE* (An08g07210), *flbB* (An15g03710) and *flbC* (An12g08230). Gene name or its closest homologue. Sm: Similar; *A. fum*: *A. fum*

Transcriptional changes associated to cell wall synthesis: A total of 102 genes are predicted to be involved in cell wall synthesis [18]. Of these genes, 10 and 2 were found to be up- and down-regulated in the $\Delta flbA$ strain when compared to the wild-type, respectively (Figure 4B, Table 6, Supplemental Table 1). Among the up-regulated genes are three glucanosyl transferase genes, two chitin synthase genes, the chitinase gene *chiB*, two glucanase genes, and two glycosylphosphatidylinositol-anchored endo-mannanase genes. One of these glucanosyl transferases, a *gelD* homologue of *A. nidulans* was 48-fold up-regulated in $\Delta flbA$ compared to wild-type. In contrast, the annotated *gelD* gene of *A. niger* was found to be 40-fold down-regulated in $\Delta flbA$. The other down-regulated gene in the $\Delta flbA$ strain is theglucan beta-1,3 exoglucanase gene *exsG*.

Transcriptional changes associated to proteins with a signal sequence for secretion: As mentioned above, wild-type and $\Delta flbA$ were grown on minimal medium supplemented with xylose. This carbon source activates XlnR, a transcriptional regulator that controls 16 genes encoding xylanolytic enzymes [19-25]. Of these, none were higher expressed in the $\Delta flbA$ strain, whereas 6 (*xlnB*, *xlnC*, *axhA*, *aglB*, *eglB*, *cbhA*, *chbB*) were found to be \geq 2-fold lower expressed when compared to the wild-type (Figure 4C, Table 7, Supplemental Table 1). In fact, *xlnC*, *xlnB*, and *axhA* are among the highest expressed genes at the periphery of wild-type colonies, while they are hardly expressed in the $\Delta flbA$ strain (Table 4). Thirty-two other carbohydrase genes are

down-regulated in the $\Delta flbA$ strain (e.g. the glucoamylase gene glaA), while 8 of these genes are up-regulated in this strain. Among these genes are the α -galactosidase gene *aglC*, the α -glucan synthase *agsE*, the pectin lysase *pelB* and the pectin esterase *pmeA* (Figure 4C, Table 7).

Of the total number of 2612 genes with a predicted signal sequence for secretion, 156 and 189 were up- and down-regulated, respectively (Supplemental Figure 2, Supplemental Table 1 and 5). The up-regulated genes are mainly uncharacterized proteins, but include carbohydrases (see above), a putative cytochrome P450 reductase and two putative proteases. Among the down-regulated are several carbohydrate degrading enzymes (Supplemental Table 1 and 5), a phytase (*phyB*) and six (putative) proteases.

Previously, we identified 138 proteins with a signal sequence for secretion in the secretome of $\Delta flbA$ colonies when grown on fresh xylose medium [8]. Of these, 70 were not found in the wild-type secretome (i.e. even after partial degradation of the cell wall by the addition of cycloheximide) [8]. Differential expression was observed in the case of 23 out of 70 encoding genes (Table 8). One of these genes was down-regulated, whereas 22 were up-regulated in the $\Delta flbA$ colonies. Most of these genes are uncharacterized, but encode proteins that are putative carbohydrate degrading enzymes (3), proteases (2), cell wall/ morphogenesis enzymes (2), lipases (2), phospholipases (2), oxidases and superoxide-dismutases (5) and other/unknown

Page 12 of 22

Annotation	Gene Name*	Description	wild-type zone 1	wild-type zone 3	wild-type zone 5	Δ <i>flbA</i> zone 1	Δ <i>flbA</i> zone 3	Δ <i>flbA</i> zone 5	Regulation
An01g12450	exsG	strong similarity to putative glucan beta-1,3 exoglucanase - <i>Trichoderma harzianum</i>	3091 ± 197	3667 ± 1573	1008 ± 250	966 ± 4	1053 ± 14	689 ± 27	Down
An09g00670	gelD	strong similarity to beta (1-3) glucanosyltransferase Gel3p - <i>Aspergillus fumigatus</i>	1596 ± 565	2244 ± 607	2063 ± 821	45 ± 1	39±6	59 ± 10	Down
An02g02660	dfgG	strong similarity to the protein required for filamentous growth, cell polarity, and cellular elongation Dfg5 - Saccharomyces cerevisiae	87 ± 5	110 ± 17	102 ± 21	487 ± 30	648 ± 129	532 ± 98	Up
An03g06220	sm to gelD- A. nid	strong similarity to beta (1-3) glucanosyltransferase GEL3 - <i>Aspergillus fumigatus</i>	42 ± 3	48 ± 11	58 ± 3	1406 ± 256	1874 ± 54	5043 ± 547	Up
An04g04670	sm to chiB- A. nid	strong similarity to chitinase cts1 - Coccidioides immitis	106 ± 36	104 ± 26	111 ± 1	171 ± 65	308 ± 102	331 ± 185	Up
An07g04650	sm to btgC- A. nid	similarity to exo-beta-1,3-glucanase BGL2 - Saccharomyces cerevisiae.	203 ± 14	275 ± 109	184 ± 41	699 ± 119	797 ± 4	319 ± 12	Up
An07g07530	chrB	strong similarity to cell wall protein UTR2 - Saccharomyces cerevisiae	176 ± 39	254 ± 48	1452 ± 40	1812 ± 115	1764 ± 453	2719 ± 364	Up
An08g07350	sm to gelB- A. nid	strong similarity to glycophospholipid-anchored surface glycoprotein GAS1 precursor - <i>Saccharo</i> myces cerevisiae	226 ± 26	257 ± 8	363 ± 114	674 ± 9	839 ± 71	1001 ± 69	Up
An09g02290	sm to chsD- A.nid	strong similarity to chitin synthase chsE - Aspergillus nidulans	308 ± 12	314 ± 57	255 ± 23	779 ± 15	723 ± 100	479 ± 18	Up
An12g10380	chsF	strong similarity to chitin synthase C chsC - Aspergillus fumigatus	118 ± 6	137 ± 13	478 ± 239	468 ± 12	527 ± 142	1407 ± 9	Up
An16g07040	sm to btgE -A. nid	similarity to beta-1,3- glucanosyltransferase BGT1 - <i>Aspergillus fumigatus</i> [truncated ORF]	502 ± 224	676 ± 353	2375 ± 144	5982 ± 202	6554 ± 1346	7358 ± 380	Up
An16g08090	dfgE	strong similarity to hypothetical protein B2J23.120 - <i>Neurospora</i> crassa	114 ± 8	125 ± 5	174 ± 10	229 ± 21	280 ± 11	438 ± 28	Up

Table 6: Hybridization values of 12 genes that are implicated in cell wall biosynthesis and that are differentially expressed in wild-type when compared to the Δ*flbA* strain of *A. niger*. The table was adapted from Pel et al. [18]. Description of gene name or its closest homologue. Sm: Similar; A. nid*ulans*.

Annotation	Gene Name*	Description	wild-type zone 1	wild-type zone 3	wild-type zone 5	Δ <i>flbA</i> zone 1	Δ <i>flbA</i> zone 3	∆ <i>flbA</i> zone 5	Regulation
An01g00780	xInB	xylanase xynB of patent WO9713853-A2 - <i>Aspergillus niger</i>	4528 ± 1905	16891 ± 683	19085 ± 0	953 ± 977	4014 ± 2052	1371 ± 235	Down
An01g01870	eglC	strong similarity to hypothetical Avicelase III aviIII - Aspergillus aculeatus	77 ± 47	501 ± 267	400 ± 240	22 ± 0	23 ± 1	23 ± 2	Down
An01g03340	sm to celA- A.ory	strong similarity to xyloglucan- specific endo-beta-1,4-glucanase - Aspergillus aculeatus	552 ± 60	4966 ± 831	3065 ± 537	151 ± 48	272 ± 34	191 ± 34	Down
An01g06120	gdbA	strong similarity to 4-alpha- glucanotransferase / amylo-1,6- glucosidase GDB1 - <i>Saccharomyces</i> <i>cerevisiae</i>	1138 ± 28	1366 ± 280	915 ± 411	446 ± 27	385 ± 41	290 ± 12	Down
An01g11660	cbhB	1,4-beta-D-glucan cellobiohydrolase B precursor cbhB of patent WO9906574-A1 - Aspergillus niger	1289 ± 335	8224 ± 845	6037 ± 1558	48 ± 13	430 ± 386	1098 ± 313	Down
An01g11670	eglA	strong similarity to endo-beta-1,4- glucanase A eglA - <i>Emericella</i> <i>nidulans</i>	638 ± 408	2367 ± 12	589 ± 232	21 ± 2	42 ± 24	58 ± 1	Down
An01g14600	uncharacterized	strong similarity to the endo- 1,4-beta-Xylanase B XynB, patent WO9414965 - <i>Aspergillus</i> <i>tubingensis</i>	256 ± 239	364 ± 349	195 ± 92	30 ± 1	34 ± 6	37 ± 4	Down
An02g11150	aglB	alpha-galactosidase aglB - Aspergillus niger	390 ± 96	2373 ± 668	3155 ± 569	111 ± 5	160 ± 21	126 ± 14	Down
An02g13240	agdC	strong similarity to alpha-1-6- glucosidase glcA - <i>Aspergillus</i> <i>parasiticus</i>	806 ± 223	877 ± 435	313 ± 147	224 ± 5	144 ± 26	77 ± 7	Down
An03g00940	xInC	endo-1,4-beta-xylanase C precursor xInC - Aspergillus niger	2605 ± 1941	15761 ± 4701	15538 ± 1230	337 ± 232	1058 ± 553	1067 ± 324	Down

Page 13 of 22

An03g00960	axhA	1,4-beta-D-arabinoxylan arabinofuranohydrolase axhA - Aspergillus niger	4089 ± 1838	15097 ± 1853	17374 ± 0	456 ± 313	1314 ± 776	1602 ± 429	Down
An03g01050	Uncharacterized	similarity to endo-beta-1,4-glucanase - Bacillus polymyxa	137 ± 32	345 ± 202	1027 ± 608	31 ± 8	48 ± 17	89 ± 12	Down
An03g03740	bgl4	strong similarity to beta-glucosidase bgl4 - <i>Humicola grisea</i> var. <i>thermoidea</i>	656 ± 278	958 ± 22	587 ± 133	359 ± 34	367 ± 72	312 ± 13	Down
An03g06550	glaA	glucan 1,4-alpha-glucosidase glaA - Aspergillus niger	370 ± 102	1497 ± 1144	5690 ± 1251	182 ± 15	171 ± 29	166 ± 8	Down
An04g06920	agdA	extracellular alpha-glucosidase aglU - Aspergillus niger	236 ± 29	316 ± 16	651 ± 135	176 ± 8	145 ± 5	176 ± 10	Down
An04g09360	uncharacterized	strong similarity to hypothetical protein CC0812 - Caulobacter crescentus	136 ± 33	153 ± 76	90 ± 13	68 ± 0	64 ± 1	38 ± 8	Down
An04g09690	sm to pmeA- A. nid	strong similarity to pectin methylesterase PME1 - <i>Aspergillus</i> <i>aculeatus</i>	60 ± 19	190 ± 41	174 ± 59	38 ± 3	48 ± 0	47 ± 9	Down
An04g09700	uncharacterized	strong similarity to endo- xylogalacturonan hydrolase xghA - Aspergillus tubingensis	60 ± 41	435 ± 272	143 ± 33	28 ± 4	28 ± 0	39 ± 3	Down
An05g02410	uncharacterized	strong similarity to beta- glucuronidase GUSB - <i>Canis</i> familiaris	287 ± 18	343 ± 48	338 ± 149	201 ± 2	132 ± 4	104 ± 8	Down
An06g00170	aglA	alpha-galactosidase aglA - <i>Aspergillus niger</i>	600 ± 56	678 ± 85	124 ± 23	59 ± 7	32 ± 6	18 ± 3	Down
An07g08950	eglC	endoglucanase B eglB - Aspergillus niger	2511 ± 570	11775 ± 532	7793 ± 1370	52 ± 29	366 ± 244	422 ± 77	Down
An07g09330	cbhA	cellulose 1,4-beta-cellobiosidase cbhA from patent WO9906574-A1- <i>Aspergillus niger</i>	1157 ± 1121	7883 ± 2929	3034 ± 1406	67 ± 16	130 ± 62	170 ± 76	Down
An08g05230	uncharacterized	strong similarity to putative endoglucanase IV - <i>Trichoderma</i> <i>reesei</i>	1152 ± 1281	2411 ± 2729	648 ± 116	55 ± 5	58 ± 11	46 ± 5	Down
An08g10780	uncharacterized	strong similarity to hypothetical protein T16K5.230 of <i>A. thaliana</i>	72 ± 40	140 ± 70	1109 ± 145	30 ± 8	26 ± 2	43 ± 0	Down
An09g02160	rgaeA	rhamnogalacturonan acetyl esterase rgaeA - <i>Aspergillus niger</i>	318 ± 9	829 ± 168	409 ± 176	165 ± 41	149 ± 17	58 ± 2	Down
An11g02100	sm to bgIR- A. nid	strong similarity to furostanol glycoside 26-O-beta-glucosidase CSF26G1 - <i>Costus speciosus</i>	360 ± 21	1634 ± 301	808 ± 253	105 ± 38	140 ± 12	114 ± 5	Down
An12g04610	uncharacterized	similarity to endoglucanase IV egl4 - <i>Trichoderma reesei</i>	966 ± 1072	5636 ± 3072	243 ± 11	76 ± 9	108 ± 31	58 ± 5	Down
An13g03710	agdD	strong similarity to alpha-glucosidase AGLU - <i>Bacillus</i> sp. SAM1606	103 ± 18	130 ± 57	77 ± 28	44 ± 4	42 ± 4	47 ± 3	Down
An14g01800	aglD	alpha-galactosidase aglD - Aspergillus niger	54 ± 4	109 ± 6	136 ± 18	27 ± 0	33 ± 3	34 ± 2	Down
An14g02670	uncharacterized	strong similarity to endoglucanase IV egl4 - <i>Trichoderma reesei</i>	347 ± 273	857 ± 754	737 ± 10	37 ± 3	45 ± 3	37 ± 1	Down
An14g04190	gbeA	strong similarity to 1,4-alpha- glucan branching enzyme glc3 - <i>Saccharomyces cerevisiae</i>	1445 ± 19	1453 ± 195	915 ± 221	769 ± 3	603 ± 58	451 ± 20	Down
An14g04200	rhgB	rhamnogalacturonase rhgB - Aspergillus niger	83 ± 57	177 ± 184	105 ± 34	33 ± 7	36 ± 5	34 ± 0	Down
An14g05820	uncharacterized	strong similarity to beta- galactosidase lacA - <i>Aspergillus</i> <i>niger</i>	126 ± 37	290 ± 21	275 ± 6	60 ± 13	62 ± 12	72 ± 12	Down
An15g04550	xynA	strong similarity to xylanase A xynA of patent WO200068396-A2 - <i>Aspergillus niger</i>	55 ± 0	384 ± 304	1176 ± 75	35 ± 4	41 ± 21	34 ± 1	Down
An15g05370	pgall	polygalacturonase pgall of patent EP421919-A - Aspergillus niger	224 ± 219	767 ± 877	327 ± 240	29 ± 3	25 ± 5	28 ± 5	Down
An16g00540	uncharacterized	similarity to putative large secreted protein - <i>Streptomyces</i> <i>coelicolor</i> [truncated ORF]	32 ± 1	89 ± 3	159 ± 14	23 ± 1	25 ± 1	26 ± 6	Down
An16g06800	eglB	strong similarity to endoglucanase eglB - <i>Aspergillus niger</i>	154 ± 25	226 ± 100	423 ± 232	87 ± 5	92 ± 5	77 ± 5	Down
An17g00300	xarB	strong similarity to bifunctiona xylosidase-arabinosidase xarB - <i>Thermoanaerobacter ethanolicus</i>	156 ± 10	534 ± 22	396 ± 19	88 ± 6	124 ± 19	144 ± 17	Down

Page 14 of 22

An01g01540	uncharacterized	strong similarity to alpha,alpha- trehalase treA - Aspergillus nidulans	154 ± 10	161 ± 8	149 ± 13	568 ± 30	607 ± 43	366 ± 5	Up
An01g10350	sm to lacB- A. niger	strong similarity to secreted beta- galactosidase lacA - <i>Aspergillus</i> <i>niger</i>	113 ± 5	109 ± 20	206 ± 35	469 ± 36	394 ± 38	499 ± 69	Up
An03g00190	pelB	the pectin lyase pelB - Aspergillus niger	56 ± 4	48 ± 4	61 ± 9	338 ± 67	536 ± 67	248 ± 3	Up
An03g06310	pmeA	pectinesterase pmeA- Aspergillus niger	33 ± 6	36 ± 6	43 ± 5	65 ± 4	75 ± 14	179 ± 41	Up
An09g00260	agIC	alpha-galactosidase C aglC - Aspergillus niger[truncated ORF]	31 ± 6	34 ± 4	143 ± 60	208 ± 5	216 ± 38	370 ± 31	Up
An09g00270	agIC	alpha-galactosidase C aglC - Aspergillus niger[truncated ORF]	89 ± 18	85 ± 22	760 ± 428	879 ± 73	1158 ± 119	1805 ± 251	Up
An09g03070	agsE	strong similarity to alpha- glucan synthase mok1 - Schizosaccharomyces pombe	174 ± 2	142 ± 40	163 ± 50	544 ± 44	598 ± 19	458 ± 41	Up
An15g03550	uncharacterized	weak similarity to protopectinase patent WO9806832-A1 - <i>Bacillus</i> <i>subtilis</i>	57 ± 44	57 ± 45	20 ± 0	954 ± 34	1066 ± 21	330 ± 22	Up

Table 7: Hybridization values of 46 genes that are implicated in carbohydrate degradation and that are differentially expressed in wild-type when compared to the Δ*flbA* strain of *A. niger*. The table was adapted from Pel et al. [18]. 'Description of gene name or its closest homologue. Sm: Similar; A. nid: *A. nidulans*; A. ory: *A. oryzae*.

Annotation	Gene Name*	Description	wild-type zone 1	wild-type zone 3	wild-type zone 5	Δ <i>flbA</i> zone 1	Δ <i>flbA</i> zone 3	Δ <i>flbA</i> zone 5	Regulation
protein product	s identified in the	secretome of <i>AflbA</i> that are p	predicted to b	e secreted					
An11g06480	uncharacterized	weak similarity to antigenic protein f86.aa. of patent WO9859071 - <i>Borrelia</i> <i>burgdorferi</i>	165 ± 5	154 ± 2	119 ± 6	43 ± 9	38 ± 1	43 ± 4	Down
An09g00260	aglC	alpha-galactosidase C aglC - <i>Aspergillus niger</i> [truncated ORF]	31 ± 6	34 ± 4	143 ± 60	208 ± 5	216 ± 38	370 ± 31	Up
An03g06310	pmeA	pectinesterase pmeA- Aspergillus niger	33 ± 6	36 ± 6	43 ± 5	65 ± 4	75 ± 14	179 ± 41	Up
An15g03550	uncharacterized	weak similarity to protopectinase patent WO9806832-A1 - <i>Bacillus</i> <i>subtilis</i>	57 ± 44	57 ± 45	20 ± 0	954 ± 34	1066 ± 21	330 ± 22	Up
An11g00100	uncharacterized	strong similarity to triacylglycerol lipase LIP5 - <i>Candida rugosa</i>	71 ± 4	64 ± 3	59 ± 8	800 ± 192	866 ± 397	2265 ± 77	Up
An16g08870	uncharacterized	strong similarity to the triacylglycerol lipase I precursor lipl - <i>Geotrichum</i> <i>candidum</i>	139 ± 16	125 ± 28	84 ± 2	395 ± 28	267 ± 13	181 ± 12	Up
An09g01240	uncharacterized	strong similarity to phospholipase B - <i>Penicillium</i> <i>notatum</i>	78 ± 7	63 ± 9	104 ± 3	499 ± 142	727 ± 111	627 ± 178	Up
An16g01880	lipanl	strong similarity to lysophospholipase - Aspergillus foetidus	648 ± 245	795 ± 248	454 ± 202	10644 ± 663	10585 ± 2214	2676 ± 160	Up
An02g00740	uncharacterized	similarity to 6-Hydroxy-D- nicotine oxidase 6-HDNO - Arthrobacter oxidans	31 ± 1	30 ± 2	35 ± 3	61 ± 5	69 ± 11	130 ± 14	Up
An02g08560	uncharacterized	similarity to probable dioxygenase SCOEDB - Streptomyces coelicolor	22 ± 3	23 ± 3	19 ± 0	797 ± 22	1048 ± 83	1682 ± 135	Up
An03g00460	uncharacterized	strong similarity to the 6-hydroxy-D-nicotine oxidase 6-HDNO - <i>Arthrobacter</i> <i>oxidans</i>	129 ± 69	90 ± 27	102 ± 7	913 ± 19	751 ± 8	198 ± 2	Up
An03g05210	uncharacterized	strong similarity to reticuline oxidase bbe1 - <i>Eschscholzia</i> <i>californica</i>	146 ± 47	180 ± 82	308 ± 23	423 ± 2	453 ± 23	767 ± 34	Up
An06g00720	uncharacterized	similarity to chloroperoxidase CPO - <i>Caldariomyces</i> <i>fumago</i>	59 ± 24	59 ± 16	40 ± 14	109 ± 12	134 ± 32	109 ± 2	Up
An03g06220	sm to gelD- A. nid	strong similarity to beta (1-3) glucanosyltransferase GEL3 - <i>Aspergillus</i> fumigatus	42 ± 3	48 ± 11	58 ± 3	1406 ± 256	1874 ± 54	5043 ± 547	Up

Page 15 of 22

An16g07040	sm to btgE -A. nid	similarity to beta-1,3- glucanosyltransferase BGT1 - <i>Aspergillus</i> <i>fumigatus</i> [truncated ORF]	502 ± 224	676 ± 353	2375 ± 144	5982 ± 202	6554 ± 1346	7358 ± 380	Up
An05g02170	uncharacterized	strong similarity to serine- type carboxypeptidase F CPD-II - Aspergillus niger	60 ± 17	57 ± 6	70 ± 11	109 ± 12	121 ± 19	240 ± 17	Up
An18g01320	uncharacterized	strong similarity to extracellular protease precursor BAR1 - <i>Saccharomyces cerevisiae</i>	148 ± 76	129 ± 56	328 ± 31	2146 ± 67	2897 ± 61	2501 ± 161	Up
An01g06280	uncharacterized	strong similarity to IgE- binding protein - <i>Aspergillus</i> <i>fumigatus</i>	267 ± 123	341 ± 167	136 ± 4	2010 ± 28	2634 ± 280	1002 ± 144	Up
An03g00770	uncharacterized	strong similarity to allergic bronchopulmonary aspergillosis allergen rAsp f 4 of patent WO9828624-A1 - <i>Aspergillus fumigatus</i>	93 ± 3	98 ± 34	454 ± 19	473 ± 118	437 ± 60	2858 ± 7	Up
An04g07160	uncharacterized	similarity to hypothetical protein MLD14.3 - <i>Arabidopsis thaliana</i>	202 ± 34	215 ± 74	246 ± 38	548 ± 65	656 ± 82	666 ± 81	Up
An06g00160	uncharacterized	weak similarity to hypothetical cell wall protein binB - Aspergillus nidulans	319 ± 29	330 ± 70	128 ± 21	3226 ± 732	2940 ± 1230	453 ± 184	Up
An07g02730	uncharacterized	strong similarity to SUN family protein Psu1 - <i>Schizosaccharomyces</i> <i>pombe</i>	261 ± 96	317 ± 133	1534 ± 12	2045 ± 210	2424 ± 353	3717 ± 85	Up
An09g03650	uncharacterized	weak similarity to hypothetical protein Ta0309 - <i>Thermoplasma acidophilum</i>	84 ± 40	52 ± 1	133 ± 16	375 ± 55	488 ± 99	438 ± 1	Up
protein products	identified in the	ΔflbA secreteome that are pr	edicted to be	released by n	on-classical s	ecretion			
An09g02830	uncharacterized	strong similarity to acylaminoacyl-peptidase DPP V - <i>Aspergillus</i> <i>fumigatus</i>	385 ± 95	420 ± 131	622 ± 25	251 ± 45	224 ± 14	116 ± 2	Down
An09g00270	aglC	alpha-galactosidase C aglC - Aspergillus niger[truncated ORF]	89 ± 18	85 ± 22	760 ± 428	879 ± 73	1158 ± 119	1805 ± 251	Up
protein products	identified in the	ΔflbA secretome without sig	nal sequence	for secretion					
An01g06970	ara1	strong similarity to D-arabinose dehydrogenase ARA1 - <i>Saccharomyces</i> <i>cerevisiae</i>	2370 ± 516	3061 ± 357	2476 ± 456	643 ± 50	627 ± 28	1838 ± 51	Down
An02g11970	uncharacterized	strong similarity to 4-nitrophenylphosphatase pho2 - <i>Schizosaccharomyces</i> <i>pombe</i>	85 ± 12	93 ± 21	123 ± 9	164 ± 6	183 ± 36	416 ± 16	Up
An08g10830	uncharacterized	strong similarity to geranylgeranyl pyrophosphate synthase ggpps - <i>Gibberella fujikuroi</i>	65 ± 5	58 ± 0	68 ± 18	412 ± 9	388 ± 31	555 ± 30	Up
An09g06250	uncharacterized	strong similarity to vacuolar aminopeptidase yscl - <i>Saccharomyces cerevisiae</i>	184 ± 42	187 ± 30	405 ± 70	526 ± 16	555 ± 41	430 ± 39	Up
An12g08610	glkA	glucokinase GlkA - Aspergillus niger	302 ± 29	324 ± 114	306 ± 96	652 ± 16	622 ± 75	660 ± 65	Up
protein products	identified in wild	I-type and ΔflbA secretome t	nat are predic	ted to be secr	eted				
An02g11150	aglB	alpha-galactosidase aglB - Aspergillus niger endo-1 4-beta-yylanase B	390 ± 96	2373 ± 668	3155 ± 569	111 ± 5	160 ± 21	126 ± 14	Down
An01g00780	xInB	precursor xInB - Aspergillus niger	4528 ± 1905	16891 ± 683	19085 ± 0	953 ± 977	4014 ± 2052	1371 ± 235	Down
An03g00940	xInC	endo-1,4-beta-xylanase C precursor xlnC - Aspergillus niger	2605 ± 1941	15761 ± 4701	15538 ± 1230	337 ± 232	1058 ± 553	1067 ± 324	Down
An03g00960	axhA	1,4-beta-D-arabinoxylan arabinofuranohydrolase axhA - <i>Aspergillus niger</i>	4089 ± 1838	15097 ± 1853	17374 ± 0	456 ± 313	1314 ± 776	1602 ± 429	Down

Page 16 of 22

	1	1	1	1	1	1	1	1	1
An14g01800	agID	alpha-galactosidase agID - Aspergillus niger	54 ± 4	109 ± 6	136 ± 18	27 ± 0	33 ± 3	34 ± 2	Down
An17g00300	xarB	strong similarity to bifunctiona xylosidase-arabinosidase xarB - Thermoanaerobacter ethanolicus	156 ± 10	534 ± 22	396 ± 19	88 ± 6	124 ± 19	144 ± 17	Down
An01g11660	cbhB	1,4-beta-D-glucan cellobiohydrolase B precursor cbhB of patent WO9906574-A1 - Aspergillus niger	1289 ± 335	8224 ± 845	6037 ± 1558	48 ± 13	430 ± 386	1098 ± 313	Down
An07g09330	cbhA	cellulose 1,4-beta- cellobiosidase cbhA from patent WO9906574-A1- <i>Aspergillus niger</i>	1157 ± 1121	7883 ± 2929	3034 ± 1406	67 ± 16	130 ± 62	170 ± 76	Down
An16g06800	eglB	strong similarity to endoglucanase eglB - <i>Aspergillus niger</i>	154 ± 25	226 ± 100	423 ± 232	87 ± 5	92 ± 5	77 ± 5	Down
An08g05230	uncharacterized	strong similarity to putative endoglucanase IV - <i>Trichoderma reesei</i>	1152 ± 1281	2411 ± 2729	648 ± 116	55 ± 5	58 ± 11	46 ± 5	Down
An03g06550	glaA	glucan 1,4-alpha-glucosidase glaA - Aspergillus niger	370 ± 102	1497 ± 1144	5690 ± 1251	182 ± 15	171 ± 29	166 ± 8	Down
An01g12450	exsG	strong similarity to putative glucan beta-1,3 exoglucanase - <i>Trichoderma</i> <i>harzianum</i>	3091 ± 197	3667 ± 1573	1008 ± 250	966 ± 4	1053 ± 14	689 ± 27	Down
An02g09690	uncharacterized	strong similarity to lipase I precursor TFL I - Geotrichum fermentans[putative sequencing error]	652 ± 18	1719 ± 762	529 ± 399	195 ± 22	294 ± 108	356 ± 50	Down
An01g14940	uncharacterized	similarity to nonhemolytic phospholipase C PC-PLC - Burkholderia pseudomallei	299 ± 58	486 ± 126	203 ± 35	122 ± 2	138 ± 34	57 ± 2	Down
An01g01540	uncharacterized	strong similarity to alpha,alpha-trehalase treA - <i>Aspergillus nidulans</i>	154 ± 10	161 ± 8	149 ± 13	568 ± 30	607 ± 43	366 ± 5	Up
An07g07530	crhB	strong similarity to cell wall protein UTR2 - <i>Saccharomyces cerevisiae</i>	176 ± 39	254 ± 48	1452 ± 40	1812 ± 115	1764 ± 453	2719 ± 364	Up
An14g01820	phiA /binB	strong similarity to hypothetical cell wall protein binB - <i>Aspergillus nidulans</i>	2018 ± 1048	3064 ± 430	843 ± 70	8800 ± 3676	14346 ± 1791	4066 ± 653	Up
An08g07350	sm to gelB- A. nid	strong similarity to glycophospholipid-anchored surface glycoprotein GAS1 precursor - <i>Saccharomyces</i> <i>cerevisiae</i>	226 ± 26	257 ± 8	363 ± 114	674 ± 9	839 ± 71	1001 ± 69	Up
An08g00490	uncharacterized	strong similarity to lactonohydrolase - Fusarium oxysporum	160 ± 14	237 ± 17	346 ± 177	484 ± 34	516 ± 99	806 ± 14	Up
An14g02470	uncharacterized	strong similarity to the protein PRO304 of patent WO200104311-A1 - <i>Homo</i> <i>sapiens</i>	326 ± 177	470 ± 61	384 ± 107	2772 ± 181	3044 ± 235	770 ± 49	Up
Protein products	identified in wild	d-type secretome that are pre	dicted to be s	ecreted					
An01g14600	uncharacterized	strong similarity to the endo-1,4-beta-Xylanase B XynB, patent <i>WO9414965</i> - <i>Aspergillus</i> tubingensis	256 ± 239	364 ± 349	195 ± 92	30 ± 1	34 ± 6	37 ± 4	Down
An06g00170	aglA	alpha-galactosidase <i>aglA -</i> <i>Aspergillus</i> niger	600 ± 56	678 ± 85	124 ± 23	59 ± 7	32 ± 6	18 ± 3	Down
An04g06920	agdA	extracellular alpha- glucosidase aglU - <i>Aspergillus niger</i>	236 ± 29	316 ± 16	651 ± 135	176 ± 8	145 ± 5	176 ± 10	Down
An04g09690	sm to pmeA- A. nid	strong similarity to pectin methylesterase PME1 - <i>Aspergillus aculeatus</i>	60 ± 19	190 ± 41	174 ± 59	38 ± 3	48 ± 0	47 ± 9	Down
An07g08940	uncharacterized	similarity to acetyl-esterase I of patent WO9502689-A - <i>Aspergillus aculeatus</i>	242 ± 13	1268 ± 407	914 ± 553	20 ± 1	31 ± 7	26 ± 0	Down

Page 17 of 22

An01g11670	eglA	strong similarity to endo- beta-1,4-glucanase A eglA - <i>Emericella nidulans</i>	638 ± 408	2367 ± 12	589 ± 232	21 ± 2	42 ± 24	58 ± 1	Down
An07g08950	eglC	endoglucanase B eglB - Aspergillus niger	2511 ± 570	11775 ± 532	7793 ± 1370	52 ± 29	366 ± 244	422 ± 77	Down
An01g01870	eglC	strong similarity to hypothetical Avicelase III aviIII - Aspergillus aculeatus	77 ± 47	501 ± 267	400 ± 240	22 ± 0	23 ± 1	23 ± 2	Down
An03g01050	uncharacterized	similarity to endo-beta- 1,4-glucanase - <i>Bacillus</i> <i>polymyxa</i>	137 ± 32	345 ± 202	1027 ± 608	31 ± 8	48 ± 17	89 ± 12	Down
An08g10780	uncharacterized	strong similarity to hypothetical protein T16K5.230 of <i>A. thaliana</i>	72 ± 40	140 ± 70	1109 ± 145	30 ± 8	26 ± 2	43 ± 0	Down
An14g02670	uncharacterized	strong similarity to endoglucanase IV egl4 - <i>Trichoderma reesei</i>	347 ± 273	857 ± 754	737 ± 10	37 ± 3	45 ± 3	37 ± 1	Down
An08g08370	uncharacterized	similarity to the alpha-1,2- mannosidase aman2 - <i>Bacillus</i> sp. M-90	1771 ± 843	2086 ± 211	376 ± 19	179 ± 33	78 ± 14	38 ± 4	Down
An16g00540	uncharacterized	similarity to putative large secreted protein - <i>Streptomyces</i> <i>coelicolor</i> [truncated ORF]	32 ± 1	89 ± 3	159 ± 14	23 ± 1	25 ± 1	26 ± 6	Down
An02g02540	uncharacterized	strong similarity to acetyl- esterase I from patent R63066 - Aspergillus aculeatus	296 ± 66	375 ± 174	350 ± 139	83 ± 16	94 ± 1	74 ± 12	Down
An04g09700	uncharacterized	strong similarity to endo- xylogalacturonan hydrolase xghA - <i>Aspergillus</i> <i>tubingensis</i>	60 ± 41	435 ± 272	143 ± 33	28 ± 4	28 ± 0	39 ± 3	Down
An14g04200	rhgB	rhamnogalacturonase rhgB - Aspergillus niger	83 ± 57	177 ± 184	105 ± 34	33 ± 7	36 ± 5	34 ± 0	Down
An15g05370	pgall	polygalacturonase pgall of patent EP421919-A - <i>As</i> pergillus niger	224 ± 219	767 ± 877	327 ± 240	29 ± 3	25 ± 5	28 ± 5	Down
An07g02360	uncharacterized	similarity to 6-hydroxy-D- nicotine oxidase 6-HDNO - Arthrobacter oxidans	60 ± 24	49 ± 23	104 ± 15	32 ± 3	31 ± 2	25 ± 4	Down
An08g09850	uncharacterized	strong similarity to phosphate-repressible acid phosphatase precursor phoA - <i>Penicillium chrysogenum</i>	424 ± 125	551 ± 364	636 ± 431	245 ± 15	256 ± 8	132 ± 7	Down
An08g11030	phyB	acid phosphatase aph, 3-phytase phyB - <i>Aspergillus</i> <i>niger</i>	436 ± 438	975 ± 1113	973 ± 889	54 ± 4	59 ± 5	44 ± 0	Down
An08g04640	protB	strong similarity to putative lysosomal pepstatin insensitive protease CLN2 - <i>Canis familiaris</i>	98 ± 32	218 ± 127	827 ± 628	62 ± 13	58 ± 5	59 ± 2	Down
An16g09010	protH	strong similarity to carboxypeptidase I protein of patent WO9814599-A1 - <i>Aspergillus oryza</i>	1018 ± 249	1107 ± 340	353 ± 147	312 ± 2	298 ± 3	161 ± 9	Down
An06g00190	uncharacterized	strong similarity to lysosomal pepstatin insensitive protease CLN2 - <i>Homo sapiens</i>	305 ± 23	733 ± 87	1175 ± 28	144 ± 2	114 ± 5	58 ± 5	Down
An12g05960	uncharacterized	strong similarity to dipeptidyl peptidase II DPPII - <i>Rattus norvegicus</i>	105 ± 22	126 ± 40	207 ± 38	81 ± 22	81 ± 4	47 ± 7	Down
An14g02150	uncharacterized	strong similarity to serine- type carboxypeptidase precursor cpdS - <i>Aspergillus</i> <i>phoenicis</i>	49 ± 10	57 ± 12	38 ± 7	23 ± 2	21 ± 1	23 ± 4	Down
An09g00670	geld	strong similarity to beta (1-3) glucanosyltransferase Gel3p - Aspergillus fumigatus	1596 ± 565	2244 ± 607	2063 ± 821	45 ± 1	39 ± 6	59 ± 10	Down
An09g00840	uncharacterized	weak similarity to antigenic cell wall galactomannoprotein MP1 - Aspergillus fumigatus	3153 ± 2599	10725 ± 146	3462 ± 103	29 ± 11	35 ± 22	14 ± 2	Down

Page	18	of	22
------	----	----	----

An01g15200	uncharacterized	strong similarity to mature penicillin V amidohydrolase PVA of patent US5516679-A - <i>Fusarium</i> <i>oxysporum</i> [truncated ORF]	1551 ± 24	1626 ± 657	351 ± 58	146 ± 9	92 ± 0	108 ± 31	Down
An13g01880	uncharacterized	strong similarity to cephalosporin esterase - <i>Rhodosporidium toruloides</i>	407 ± 104	3000 ± 374	3350 ± 147	96 ± 37	194 ± 69	155 ± 2	Down
An01g00210	uncharacterized	hypothetical protein	105 ± 13	174 ± 37	91 ± 31	36 ± 2	37 ± 0	50 ± 8	Down
An02g11890	uncharacterized	strong similarity to hypothetical protein An14g01330 - <i>Aspergillus</i> <i>niger</i>	61 ± 14	161 ± 33	124 ± 11	24 ± 1	30 ± 1	29 ± 2	Down
An08g04630	uncharacterized	hypothetical protein	361 ± 349	674 ± 706	305 ± 86	51 ± 1	48 ± 13	36 ± 1	Down
An15g02250	uncharacterized	hypothetical protein	1220 ± 1202	1162 ± 905	78 ± 37	47 ± 2	49 ± 6	50 ± 9	Down
An06g01000	uncharacterized	strong similarity to hypothetical protein AN5357.2 - <i>Aspergillus</i> <i>nidulans</i>	201 ± 49	252 ± 68	397 ± 160	601 ± 188	760 ± 179	892 ± 307	Up
An11g00040	uncharacterized	weak similarity to cDNA for 59-kDa readthrough protein RT - Sorghum chlorotic spot virus	780 ± 377	869 ± 597	1222 ± 357	3463 ± 134	3264 ± 0	2983 ± 97	Up
Protein products	identified in wild	d-type without signal sequen	ce for secretio	n					
An14g01790	uncharacterized	hypothetical protein	93 ± 2	199 ± 15	220 ± 21	37 ± 4	54 ± 8	47 ± 16	Down
An01g00610	uncharacterized	weak similarity to hypothetical protein yukJ - <i>Bacillus subtilis</i>	455 ± 238	550 ± 223	1226 ± 644	47 ± 3	40 ± 6	73 ± 6	Down

Table 8: Hybridization values of 87 differentially regulated genes whose protein products were identified in the secretome of xylose-grown sandwiched colonies of the $\Delta flbA$ [8] strain and/or the wild-type [7] of *A. niger.* *Description of gene name or its closest homologue. Sm: Similar; A. nid: *A. nidulans.*

proteins (6) (Table 8). Futhermore, 2 and 5 genes were up- and downregulated, respectively, of the genes encoding 30 proteins of the $\Delta flbA$ secretome [8] that were absent in the wild-type secretome [7], and that are predicted to be secreted via non-classical secretion (15) (SecP), or have no prediction for secretion (15) [8] (Table 8). The secretome of the cycloheximide treated wild-type strain contained 55 proteins [7] that were absent in the $\Delta flbA$ secretome [8], of which 35 encoding genes were differentially expressed. The two up-regulated genes in the $\Delta flbA$ strain encode uncharacterized proteins. The 33 down-regulated genes encode carbohydrate degrading enzymes (17), phytases (2), proteases (5), oxidase (1) and other/unknown proteins (5) (Table 8). Of the 37 proteins that were identified in both the wild-type and $\Delta flbA$ secretome, 6 and 14 encoding genes were found to be 2-fold higher and lower expressed in the $\Delta flbA$ strain, respectively (Table 8). The up-regulated genes consist of putative cell wall/ morphogenesis enzymes (3), carbohydrate degrading enzymes (1), a protease (1), and a superoxide dismutase (1), while the down-regulated genes encode putative carbohydrate degrading enzymes (11), a cell wall/ morphogenesis enzyme (1), a phospholipase (1) and a lipase (1).

Transcriptional changes associated to transcription factors: Pel et al. [18] described 623 *A. niger* transcription factors, of which 20 and 18 are found to be up- and down-regulated in the $\Delta flbA$ strain, respectively (Figure 4D, Table 9, Supplemental Table 1). Of these genes, 28 encode transcription factors with an unknown function, while 3 are homologous to transcription factor genes of *A. oryzae* and 1 to *A. fumigatus*. These orthologues encode *atfB* (An14g06250), *xlnR* (An11g06290), *amyR* (An01g06900) and *rosA* (An04g07400), respectively. Moreover, the regulator of extracellular protease *prtT* was found to be down-regulated in the $\Delta flbA$ strain. In contrast, *pacC* that is activated upon exposure to alkaline pH and *acuB* that activates acetate metabolism are \geq 2-fold higher expressed in the $\Delta flbA$ strain. Similarly, *abaA* and *flbD*, both involved in reproductive development (see above), are upregulated in $\Delta flbA$.

Discussion

Colonies of an *A. niger* strain in which *flbA* is inactivated do not sporulate. Instead, they grow throughout the colony and show secretion in a large part of the mycelium [8]. Moreover, cell walls of the $\Delta flbA$ strain are thinner than those of the wild-type [8]. The molecular mechanisms underlying these phenomena are not known. Here, the impact of inactivation of *flbA* on spatial gene expression in a sandwiched grown *A. niger* colony was assessed with emphasis on genes encoding secreted proteins, genes involved in cell wall synthesis, genes involved in asexual and sexual development and genes encoding transcriptional regulators. The latter genes may control spatial growth and secretion, cell wall synthesis or may have a role in reproduction.

Genes that could account for a sexual pathway have been identified in A. niger [18]. However, so far only asexual reproduction has been shown to occur in this fungus. Asexual development involves the formation of conidia forming conidiophores. This process has been studied in most detail in A. nidulans [3,26]. Based on its genome, A. niger is expected to have similar mechanisms underlying conidiophore development. Indeed, the central regulator of conidiophore formation brlA, as well as flbA have a similar role in asexual development in A. niger and A. nidulans [8,27]. Inactivation of flbA of A. niger does not have a major impact on the expression of genes involved in asexual development, at least in colonies grown as a sandwiched culture as used in this study. Of the 68 genes implicated in reproduction, only 13 were differentially expressed when compared to the wild-type. Genes *flbD* and *sfaD* (Figure 1) were among the 6 genes that were up-regulated \geq 2-fold in the $\Delta flbA$ strain. Notably, flbD and sfaD expression was not increased in the $\Delta flbA$ strains of A. nidulans and A. oryzae [28,29]. Transcripts of brlA were absent in wild type A. niger colonies, while some *brlA* expression was observed in the center of $\Delta flbA$ colonies. In contrast, FlbA directly or indirectly stimulates expression of brlA in A. nidulans [9], A. oryzae [29] and A. fumigates [30]. It can thus be concluded that the sporulation pathway of A. niger is similar but

not identical to that of *A. nidulans, A. oryzae* and *A. fumigatus.* Our data also indicate that FlbA represses asexual reproduction in zones of *A. niger* colonies that do no longer have the potential to sporulate. It might be that this also occurs in other *Aspergilli.* This should be studied by extracting RNA of zones rather than the whole mycelium, as is routinely done.

[18]. Of these genes, only 10 and 2 were found to be up- and downregulated in the $\Delta flbA$ strain, respectively. It is tempting to speculate that these genes are involved in the changed spatial distribution of growing hyphae in the colony. In this respect, the up-regulation of two chitin synthase genes is of particular interest. The *chsD* homologue of *A. nidulans* is expressed throughout the *A. niger* colony. This gene is upregulated in all zones of $\Delta flbA$ colonies. The *chsF* chitin synthase gene is even more interesting. This gene is periphery specific in wild-

A total of 102 genes are predicted to be involved in cell wall synthesis

Annotation	Gene Name*	Description	wild-type zone 1	wild-type zone 3	wild-type zone 5	Δ <i>flbA</i> zone 1	Δ <i>flbA</i> zone 3	Δ <i>flbA</i> zone 5	Regulation
An04g08620	uncharacterized	similarity to heme activator protein HAP1 - <i>Saccharomyces cerevisiae</i>	1079 ± 14	1118 ± 11	942 ± 47	642 ± 42	512 ± 28	191 ± 21	Down
An12g01870	uncharacterized	similarity to positive regulator of the lactose- galactose regulon LAC9 - <i>Kluyveromyces lactis</i>	495 ± 135	1003 ± 137	720 ± 305	254 ± 24	271 ± 9	167 ± 16	Down
An16g08800	uncharacterized	similarity to the zinc finger transcription factor ACEI - <i>Trichoderma reesei</i>	543 ± 121	642 ± 119	310 ± 34	77 ± 17	78 ± 5	77 ± 1	Down
An15g00120	uncharacterized	similarity to Wilms tumor susceptibility protein WT1 - <i>Homo sapiens</i>	476 ± 307	442 ± 230	580 ± 259	112 ± 11	111 ± 1	65 ± 3	Down
An04g05060	uncharacterized	similarity to XFIN protein - <i>Xenopus laevis</i>	3584 ± 911	3946 ± 117	1943 ± 688	1248 ± 6	1042 ± 73	810 ± 91	Down
An04g07400	sm rosA- A. fum	strong similarity to C6 zinc finger transcription factor PRO1 - <i>Sordaria</i> <i>macrospora</i> [putative sequencing error]	120 ± 28	195 ± 76	562 ± 77	86 ± 3	83 ± 9	43 ± 6	Down
An13g01370	uncharacterized	strong similarity to the hypothetical protein An01g14540 - <i>Aspergillus</i> <i>niger</i>	568 ± 230	603 ± 155	359 ± 47	207 ± 8	157 ± 8	192 ± 26	Down
An11g07610	uncharacterized	strong similarity to the hypothetical protein encoded by An15g04740 - <i>Aspergillus</i> <i>niger</i>	226 ± 129	212 ± 48	104 ± 38	54 ± 1	43 ± 2	33 ± 0	Down
An11g06290	sm to xlnR -A. ory	strong similarity to transcriptional activator xlnR - <i>Aspergillus niger</i>	145 ± 30	141 ± 35	84 ± 17	54 ± 2	40 ± 4	30 ± 1	Down
An01g13790	uncharacterized	weak similarity to homeodomain protein Prep-1 - <i>Homo sapiens</i>	792 ± 126	685 ± 218	368 ± 78	220 ± 10	203 ± 29	317 ± 8	Down
An12g02880	uncharacterized	weak similarity to hypothetical protein SPBC530.05 - <i>Schizosaccharomyces pombe</i>	80 ± 51	80 ± 48	39 ± 1	24 ± 1	27 ± 0	31 ± 0	Down
An06g00830	uncharacterized	weak similarity to hypothetical transcription regulatory protein SPBC530.08 - <i>Schizosaccharomyces pombe</i>	121 ± 26	146 ± 14	221 ± 35	55 ± 6	67 ± 22	49 ± 8	Down
An08g03770	uncharacterized	weak similarity to mucin MUC5AC - <i>Homo sapiens</i>	85 ± 33	77 ± 21	132 ± 63	23 ± 2	19 ± 3	18 ± 2	Down
An07g07370	uncharacterized	weak similarity to PC-MYB2 - Arabidopsis thaliana	2629 ± 9	2410 ± 318	1104 ± 502	724 ± 44	649 ± 44	253 ± 2	Down
An04g01430	uncharacterized	weak similarity to the chitinase ChiA - Emericella nidulans	14247 ± 1226	12839 ± 0	6031 ± 975	4922 ± 660	3743 ± 121	3693 ± 284	Down
An01g06900	sm to amyR- A. ory	weak similarity to transcription activator amyR - <i>Aspergillus</i> oryzae	758 ± 96	1056 ± 406	654 ± 233	34 ± 8	25 ± 1	21 ± 1	Down
An14g06250	sm to atfB-A. ory	weak similarity to transcription factor atf1+ - <i>Schizosaccharomyces pombe</i>	269 ± 19	523 ± 113	434 ± 242	67 ± 0	67 ± 5	89 ± 8	Down
An04g06940	prtT	similarity to hypothetical transcriptional regulator SPAC1399_1 - Schizosaccharomyces pombe	2945 ± 971	3996 ± 1429	2983 ± 738	1702 ± 175	1499 ± 130	608 ± 77	Down

Page 20 of 22

An08g06580	acuB / FacB	DNA binding protein facB - Aspergillus niger	364 ± 29	340 ± 18	400 ± 148	899 ± 47	929 ± 83	656 ± 14	Up
An07g05960	uncharacterized	similarity to finger protein msn2 - <i>Saccharomyces</i> <i>cerevisiae</i>	143 ± 21	220 ± 133	537 ± 288	759 ± 389	1226 ± 285	1125 ± 434	Up
An04g06950	uncharacterized	similarity to homeobox transcription factor hth - Drosophila melanogaster	102 ± 1	124 ± 6	67 ± 16	288 ± 24	302 ± 50	287 ± 54	Up
An08g06850	uncharacterized	similarity to hypothetical C2H2 zinc-finger protein SPBC1105.14 - <i>Schizosaccharomyces pombe</i>	66 ± 3	75 ± 1	129 ± 30	583 ± 676	787 ± 517	791 ± 668	Up
An06g02570	uncharacterized	similarity to nitrogen assimilation regulatory protein nit-4 - <i>Neurospora crassa</i>	56 ± 3	56 ± 10	114 ± 11	133 ± 0	144 ± 7	235 ± 27	Up
An03g05170	uncharacterized	similarity to sterol regulatory element binding protein-1 srebp-1 - <i>Homo sapiens</i>	352 ± 68	378 ± 126	574 ± 9	654 ± 59	806 ± 134	1485 ± 37	Up
An04g06430	uncharacterized	similarity to zinc finger protein BMZF3 of patent WO9962951-A1 - Homo sapiens	43 ± 3	45 ± 6	63 ± 23	103 ± 1	143 ± 1	147 ± 0	Up
An01g05630	uncharacterized	strong similarity to cytoplasmic aspartatetRNA ligase APS - Saccharomyces cerevisiae[possible sequencing error]	70 ± 1	75 ± 5	63 ± 0	189 ± 5	214 ± 24	164 ± 7	Up
An14g05810	uncharacterized	strong similarity to histone acetyltransferase GCN5 - Saccharomyces cerevisiae	63 ± 15	58 ± 2	46 ± 1	148 ± 17	140 ± 22	85 ± 2	Up
An01g04830	flbD	strong similarity to myb-like DNA binding protein flbD - Aspergillus nidulans	89 ± 18	91 ± 8	81 ± 20	238 ± 35	220 ± 32	107 ± 5	Up
An03g06760	uncharacterized	strong similarity to probable transcription activator SPAC139.03 - Schizosaccharomyces pombe	106 ± 0	112 ± 14	57 ± 13	158 ± 8	209 ± 42	193 ± 22	Up
An01g03750	abaA	strong similarity to protein abaA - Aspergillus nidulans	61 ± 9	71 ± 12	67 ± 17	113 ± 28	129 ± 3	182 ± 22	Up
An02g07890	pacC	transcription factor pacC - Aspergillus niger	263 ± 12	282 ± 35	184 ± 19	552 ± 69	552 ± 118	562 ± 23	Up
An07g09460	tan1	transposase Tan1 of patent WO9808960-A1 - Aspergillus niger	17 ± 4	16 ± 3	20 ± 2	38 ± 3	67 ± 10	51 ± 6	Up
An08g06030	uncharacterized	weak similarity to putative zinc finger transcription factor stzA - Aspergillus nidulans	232 ± 9	305 ± 46	394 ± 61	668 ± 211	801 ± 153	741 ± 116	Up
An04g00480	uncharacterized	weak similarity to the vitellogenin II precursor - <i>Gallus gallus</i>	469 ± 62	309 ± 76	266 ± 36	1222 ± 145	1525 ± 171	947 ± 325	Up
An11g10870	uncharacterized	weak similarity to transcription factor CHA4 - <i>Saccharomyces cerevisiae</i>	193 ± 83	180 ± 27	273 ± 6	626 ± 226	622 ± 163	560 ± 43	Up
An14g07040	uncharacterized	weak similarity to transcriptional activator of lysine pathway genes LYS14 - Saccharomyces cerevisiae	76 ± 5	71 ± 10	70 ± 1	178 ± 10	217 ± 56	141 ± 8	Up
An17g00800	uncharacterized	weak similarity to transcriptional activator prtT of patent WO200020596-A1 - Aspergillus niger	119 ± 48	89 ± 35	69 ± 5	201 ± 38	195 ± 22	142 ± 5	Up
An02g06000	uncharacterized	weak similarity to ZMS1 - Saccharomyces cerevisiae	471 ± 242	481 ± 196	683 ± 362	980 ± 41	1338 ± 83	1688 ± 256	Up

Table 9: Hybridization values of 38 transcription factor genes [18] that are differentially expressed in wild-type when compared to the Δ*flbA* strain. Names of transcription factors are indicated that show homology to or that are encoded by *A. niger* genes. 'Description of gene or its closest homologue. Sm: Similar; A. fum: *A. fumigatus*; A. ory: *A. oryzae.*

type colonies, while it is expressed throughout $\Delta flbA$ colonies. Zonal expression of *chsF* thus correlates with growth in colonies of wild-type and $\Delta flbA$. The differentially expressed genes involved in cell wall synthesis may also impact cell wall thickness in the $\Delta flbA$ strain. This

may involve synthesizing activity, cell wall processing activity (i.e. crosslinking), as well as degradation activity.

The secretome of the wild-type and the $\Delta flbA$ strain was determined

by transferring 7-day-old colonies that had been grown on agar medium to a ring plate containing fresh medium. Proteins were released in the wells of the ring plate that had been formed during the 24 h incubation time. In addition, proteins are released that had been formed during the 7 days of growth on the agar plate and that slowly diffuse through the cell wall [4]. FlbA was shown to have a more complex secretome when compared to the wild-type [8]. Out of 138 secreted proteins of the $\Delta flbA$ strain [8], 101 had not been identified in the secretome of wild-type colonies [8]. Cycloheximide treatment releases proteins into the culture medium that had been trapped in the cell walls of the wild-type strain [8]. Still, 70 secreted proteins were found in the $\Delta flbA$ secretome that were absent in the medium of cycloheximide treated wild-type colonies. Of these proteins, 23 were differentially expressed, of which 22 were up-regulated in the $\Delta flbA$ strain. This shows that part of the differences in the secretome are caused by transcriptional control during the 7 days of growth on the agar medium. Another part of the differences may be explained by induction of genes after transfer to fresh medium and by (post)-translational regulation. Moreover, we can not exclude that part of the proteome is still trapped in or associated with the wild type cell wall after cycloheximide treatment. 55 proteins were identified in the wild-type secretome that were absent in the culture medium of the $\Delta flbA$ strain [8]. Of the genes encoding these proteins, 35 were differentially expressed, of which 33 were downregulated in the $\Delta flbA$ strain. This shows that transcriptional control during growth on the agar medium has a major impact on genes encoding proteins that are released by the wild-type strain but not by the $\Delta flbA$ strain. Finally, 20 out of 37 genes encoding proteins that were released both in wild-type and the $\Delta flbA$ secretome were differentially expressed. Quantitative proteomics should reveal whether this differential expression also results in quantitative differences in levels of these proteins in the medium. In this study, A. niger was grown on xylose. XlnR is the xylanolytic regulator that controls expression of at least 16 genes [19-25]. All encoded proteins were identified in the wild-type secretome after cycloheximide treatment, whereas 15 out of 16 proteins were identified in the $\Delta flbA$ secretome. 6 out of 16 XlnR regulated genes were down-regulated in the $\Delta flbA$ strain. This is not in conflict with the proteomics data per se, since quantitative proteomics was not performed on wild-type versus $\Delta flbA$. Moreover, proteomics was performed on colonies that had been transferred to fresh medium (see above).

Spatial growth and secretion and cell wall synthesising, modifying and degrading activities are most probably regulated by transcriptional regulators. In total, 38 transcriptional regulators were found to be differentially regulated in the $\Delta flbA$ strain. Most of these regulators have not been characterised. However, the list includes 9 genes with a known function or that are homologous to a transcription factor that has been characterized in other Aspergillus species. Genes that have homology to rosA of A. fumigatus and atfB of A. oryzae (both downregulated in $\Delta flbA$), and to flbD and abaA of A. nidulans (both upregulated in $\Delta flbA$) are involved in development (*rosA*, *flbD*, and *abaA*) and stress tolerance of conidia (attB) [3,31-33]. Genes homologous to xlnR and amyR of A. oryzae, prtT [34] and acuB [35,36] (all downregulated in $\Delta flbA$) are predicted to be involved in degradation of polysaccharides, proteins and acetate. Gene prtT has been shown to be the transcriptional activator of protease genes in A. niger [34]. Its down-regulation in $\Delta flbA$ colonies is in agreement with the finding that only 6 protease geneswere up-regulated in $\Delta flbA$, while 13 were down-regulated. The transcriptional regulatory gene pacC [36] was found to be up-regulated at the periphery of $\Delta flbA$ colonies. It is not known how *pacC* expression is exactly regulated in *Aspergillus*. The pH does not seem to regulate its expression or that of the six pH-sensing pal components [37]. However, PacC protein is abundant in alkaline growth conditions, where it is activated by proteolytical cleavage [37-39]. At alkaline pH, alkaline-associated genes of A. nidulans are activated by PacC (palD, prtA, xlnA, acvA, ipnA, pacC, sidA, mirA, mirB) [40], while acid-associated genes (pacA, xlnB, abfB, gabA, and stcU) are repressed [41]. These genes are not fully annotated in A. niger, but homologues of mirA (An02g14190), mirB (An03g03560) and sidA (An05g00220) are up-regulated in $\Delta flbA$, whereas xlnB, putative gabA (An12g10000) and xlnA are down-regulated when compared to wildtype. This might be explained by the overexpression of PacC since the pH of the agar-medium underneath wild-type sandwiched colonies was 3, while it was 6 in the case of the $\Delta flbA$ strain. Genes An11g06290 and An01g06900 are homologous to the xylanolytic and amylolytic regulatory genes xlnR and amyR of A. oryzae, respectively. However, they do not encode the XlnR and AmyR regulators of A. niger since these functions have been attributed to An15g05810 [20,24,25] and An04g06910, respectively [42]. The xlnR gene of A. niger was downregulated 1.5 fold, which may explain the high number (i.e. 9 out of 16) of xylanolytic genes that are down-regulated compared to wild-type. Apart from the 9 transcriptional regulatory genes with a predicted function, there are 29 of such genes with an unknown role in growth and development of A. niger [43]. One or more of these genes may be involved in spatial growth, spatial secretion, cell wall formation and asexual development. As such, they are of interest to improve A. niger as a cell factory.

References

- 1. Bennett JW (2010) An overview of the genus *Aspergillus*: Molecular biology and genomics. Caiser Academic Press, Portland, USA.
- Finkelstein DB, Rambosek J, Crawford MS, Soliday CL, McAda PC (1989) Protein secretion in Aspergillus niger. Genetics and molecular biology of industrial microorganisms. American Society of Microbiology, Washington DC, USA.
- Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Müller WH, et al. (2013) Development in Aspergillus. Stud Mycol 74: 1-29.
- Levin AM, de Vries RP, Wösten HA (2007) Localization of protein secretion in fungal colonies using a novel culturing technique; the ring-plate system. J Microbiol Methods 69: 399-401.
- Wösten HA, Moukha SM, Sietsma JH, Wessels JG (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137: 2017-2023.
- Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, et al. (2007) Spatial differentiation in the vegetative mycelium of *Aspergillus niger*. Eukaryot Cell 6: 2311-2322.
- Krijgsheld P, Altelaar AF, Post H, Ringrose JH, Müller WH, et al. (2012) Spatially resolving the secretome within the mycelium of the cell factory *Aspergillus niger*. J Proteome Res 11: 2807-2818.
- Krijgsheld P, Nitsche BM, Post H, Levin AM, Müller WH, et al. (2013) Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of *Aspergillus niger*. J Proteome Res.
- Wieser J, Lee BN, Fondon Jw 3rd, Adams TH (1994) Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 27: 62-69.
- D'Souza CA, Lee BN, Adams TH (2001) Characterization of the role of the FluG protein in asexual development of *Aspergillus nidulans*. Genetics 158: 1027-1036.
- Yu JH, Rosén S, Adams TH (1999) Extragenic suppressors of loss-of-function mutations in the *Aspergillus* FlbA regulator of G-protein signaling domain protein. Genetics 151: 97-105.
- Yu JH, Wieser J, Adams TH (1996) The Aspergillus FIbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15: 5184-5190.
- 13. Bos CJ, Debets AJ, Swart K, Huybers A, Kobus G, et al. (1988) Genetic

Page 21 of 22

analysis and the construction of master strains for assignment of genes to six linkage groups in *Aspergillus niger*. Curr Genet 14: 437-443.

- Jacobs DI, Olsthoorn MM, Maillet I, Akeroyd M, Breestraat S, et al. (2009) Effective lead selection for improved protein production in *Aspergillus niger* based on integrated genomics. Fungal Genet Biol 46: S141-S152.
- Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207-210.
- Ruepp A, Zollner A, Maier D, Albermann K, Hani J, et al. (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32: 5539-5545.
- de Bekker C, van Veluw GJ, Vinck A, Wiebenga LA, Wösten HA (2011) Heterogeneity of *Aspergillus niger* microcolonies in liquid shaken cultures. Appl Environ Microbiol 77: 1263-1267.
- Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, et al. (2007) Genome sequencing and analysis of the versatile cell factory *Aspergillus niger* CBS 513.88. Nat Biotechnol 25: 221-231.
- van Peij NN, Gielkens MM, de Vries RP, Visser J, de Graaff LH (1998) The transcriptional activator XInR regulates both xylanolytic and endoglucanase gene expression in *Aspergillus niger*. Appl Environ Microbiol 64: 3615-3619.
- 20. van Peij NN, Visser J, de Graaff LH (1998) Isolation and analysis of xInR, encoding a transcriptional activator co-ordinating xylanolytic expression in *Aspergillus niger*. Mol Microbiol 27: 131-142.
- Gielkens MM, Dekkers E, Visser J, de Graaff LH (1999) Two cellobiohydrolaseencoding genes from *Aspergillus niger* require D-xylose and the xylanolytic transcriptional activator XInR for their expression. Appl Environ Microbiol 65: 4340-4345.
- 22. de Vries RP, Visser J (1999) Regulation of the feruloyl esterase (faeA) gene from *Aspergillus niger*. Appl Environ Microbiol 65: 5500-5503.
- 23. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65: 497-522.
- Hasper AA, Trindade LM, van der Veen D, van Ooyen AJ, de Graaff LH (2004) Functional analysis of the transcriptional activator XInR from Aspergillus niger. Microbiology 150: 1367-1375.
- 25. Hasper AA, Visser J, de Graaff LH (2000) The Aspergillus niger transcriptional activator XInR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. Mol Microbiol 36: 193-200.
- 26. Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62: 35-54.
- Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in *Aspergillus nidulans*. Cell 54: 353-362.
- Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, et al. (2011) Regulation of conidiation by light in *Aspergillus nidulans*. Genetics 188: 809-822.

- Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y (2010) Genetic analysis of conidiation regulatory pathways in koji-mold *Aspergillus oryzae*. Fungal Genet Biol 47: 10-18.
- Mah JH, Yu JH (2006) Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 5: 1585-1595.
- Vienken K, Scherer M, Fischer R (2005) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169: 619-630.
- 32. Sakamoto K, Arima TH, Iwashita K, Yamada O, Gomi K, et al. (2008) Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet Biol 45: 922-932.
- 33. Sheppard DC, Doedt T, Chiang LY, Kim HS, Chen D, et al. (2005) The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol Biol Cell 16: 5866-5879.
- Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, et al. (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45: 1591-1599.
- Meijer S, de Jongh WA, Olsson L, Nielsen J (2009) Physiological characterisation of acuB deletion in Aspergillus niger. Appl Microbiol Biotechnol 84: 157-167.
- Papadopoulou S, Sealy-Lewis HM (1999) The Aspergillus niger acuA and acuB genes correspond to the facA and facB genes in Aspergillus nidulans. FEMS Microbiol Lett 178: 35-37.
- Andersen MR, Lehmann L, Nielsen J (2009) Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol 10: R47.
- 38. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, et al. (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14: 779-790.
- van den Hombergh JP, MacCabe AP, van de Vondervoort PJ, Visser J (1996) Regulation of acid phosphatases in an Aspergillus niger pacC disruption strain. Mol Gen Genet 251: 542-550.
- 40. Espeso EA, Peñalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271: 28825-28830.
- Espeso EA, Arst HN Jr (2000) On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 20: 3355-3363.
- 42. vanKuyk PA, Benen JA, Wösten HA, Visser J, de Vries RP (2012) A broader role for AmyR in *Aspergillus niger*. Regulation of the utilisation of D-glucose or D-galactose containing oligo- and polysaccharides. Appl Microbiol Biotechnol 93: 285-293.
- 43. Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ (2010) An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11: 584.

Page 22 of 22