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Editorial
Abiotic stresses like salinity and drought cause a plethora of 

deleterious impacts at various stages of development in plants. Drought 
constitutes the central feature of any form of environmental stress. The 
phytohormone abscisic acid (ABA) is the key regulator in mediating 
abiotic stress tolerance, since it promotes stomatal closure to conserve 
water under desiccating conditions [1]. Since plants are sessile, their 
adaptive features to such hostile situations involve morphological and 
physiological plasticity and reprogramming their signaling cascades 
in order to up regulate specific osmotic stress-responsive (OR) 
genes, most of which are ABA-inducible. The first group of OR genes 
constitutes those responsible for the accumulation of several classes 
of compatible solutes (including proline, reducing sugar and higher 
polyamines like spermidine and spermine), antioxidants (enzymatic 
and non-enzymatic), together with the different groups of late 
embryogenesis abundant (LEA) proteins. The second group includes 
the genes necessary for the regulatory control in the signaling network 
like the transcription factors (TFs, mostly belonging to the basic 
leucine zipper, bZIP), mitogen-activated protein kinases (MAPKs), 
calcium-dependent protein kinases (CDPKs), protein phosphatases 
and proteinases like phosphoesterases and phospholipase C [2]. 
Following the two-component signaling pattern, the TFs are activated 
by these kinases through phosphorylation, thereby triggering covalent 
modification and stimulating their binding to the upstream regions of 
their target genes. 

Plants exhibit considerable varietal differences at the biochemical, 
genetic and molecular level with context to their susceptibility/tolerance 
to salinity and drought stress [3]. At the biochemical level, such 
differences could be accounted for by the higher level of endogenous 
accumulation of osmoprotectants and antioxidants and higher activity 
of reactive oxygen species-scavenging enzymes in the tolerant varieties 
as compared to the sensitive ones [4]. For almost over a decade, 
our group has been focusing on such varietal differences in stress 
tolerance, with indica rice (Oryza sativa L.) as the experimental model. 
Genotypic variation in rice is enormous with the varieties like IR-29, 
IR-64, M-1-48, etc. being the sensitive ones, while Pokkali, Nonabokra, 
Oormundakon, etc. being the tolerant varieties. The endogenous ABA 
level enhanced 10-50 folds in the leaves of salt-tolerant rice varieties 
like Pokkali and Nonabokra, in comparison to the salt-sensitive 
variety Taichung Native 1 (TNI) [5]. At the genetic level, such varietal 
difference is studied by the comparative transcriptome profiling of a 
wide array of ABA-inducible genes, in response to multiple stresses, 
focusing on concentration-dependent or time-kinetic analysis. This 
gives us a holistic approach regarding the behavior and/or effect of the 
same gene(s) (whose role in tolerance to a particular stress is known) 
to multiple stresses (which is the actual situation in the agricultural 
field) [6]. The expression study of a diverse group of such stress-related 
genes made by our group showed very low transcript levels in the 
sensitive varieties, inducible only by the stressors, while much higher 
and constitutive level of gene expression in the tolerant varieties [7]. 
The generality of stress responses at the transcriptional level was mostly 
time-dependent [6]. 

Most of the ABA-inducible genes are characterized by an 8 bp 
conserved cis-regulatory sequence called the abscisic acid responsive 
elements (ABREs) with ACGT core, together with certain GC-rich 

sequences called coupling elements (CEs), synergistically constituting 
the abscisic acid responsive complex (ABRC), to which the bZIP 
factors bind to form a homomeric or heteromeric complex. The 
multimerization of ABRE or ABRC motifs were found to strengthen the 
promoter efficiency as analyzed by the assay of the reporter gene gusA 
in transgenic tobacco [8]. Our earlier work has highlighted OSBZ8 as 
the master regulatory bZIP TF, binding to the Motif I (typical ABRE) 
and Motif II (CE-like sequences) of the Group II lea gene, Rab16A, 
in the vegetative tissues of rice [9]. The Rab16A gene from the salt-
tolerant rice variety Pokkali, when overexpressed in tobacco showed 
enhanced salt tolerance through delayed development of oxidative 
damages and simultaneous increase in osmolytes, antioxidants and 
a high K+/Na+ ratio [10]. The likewise introgression of the same gene 
in the salt-sensitive indica rice variety, Khitish contributed towards 
increased salt tolerance [11]. The overexpression of the trans-acting 
factors like TRAB-1 and OSBZ8 which target Rab16A and regulate 
its expression also holds a great promise in generating salt/drought-
tolerant transgenic plants in future [12]. The casein kinase II (CKII)-
like kinases have been shown to phosphorylate OSBZ8 [9], as well as 
maize Rab17 (which possesses nuclear localization signal), shuttling it 
from cytoplasm to nucleus following phosphorylation [13].

Approaches like genomic-scale expressed sequence tags (ESTs), 
genomic sequencing and cDNA microarray analyses have tremendous 
potentiality in rapidly isolating the candidate genes of the ‘osmome’, 
‘xemome’ or ‘thermome’, i.e., the gene complements required to attain 
tolerance against osmotic stress, desiccation or temperature variation 
respectively. Datasets emerging from such experiments require to be 
merged so that comparisons between different cellular and glycophytic, 
halophytic and xerophytic plant models can be chalked out. Such data 
mining can be a systematic supply agenda for functional genomics 
with the use of tagged mutant collections, complementation and 
overexpression tests, accompanied by microarray analyses to reveal 
hierarchical relationships between specific signaling components and 
downstream effector genes [3].
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