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Abstract
Neuronal apoptosis represents an intrinsic suicide program, by which a neuron orchestrates its own destruction. 

Although engagement of apoptosis requires transcription and protein synthesis, the complete spectrum of genes 
involved in distinct temporal domains remained unknown until the advent of genomics. In the last ten years, the 
genome sequences and the development of high-throughput genomic technologies, such as DNA microarrays, 
have offered the unprecedented experimental opportunities to explore the transcriptional mechanisms underlying 
apoptosis from a new systems-level perspective. The present review will go over this genomic approach and illustrate 
its use to dissecting the multigenic program underlying neuronal apoptosis of cerebellar granule neurons.
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Introduction
Neuronal apoptosis represents an intrinsic suicide program, by 

which a neuron orchestrates its own destruction. It is characterized 
by specific morphological and biochemical events, including 
fragmentation of nuclear DNA, breakdown of the cellular cytoskeleton, 
and the bulging out of the plasma membrane (blebbing), which may 
lead to the detachment of the so-called apoptotic bodies [1,2]. During 
normal nervous system development, physiologically appropriate 
neuronal loss contributes to a sculpting process that removes 
approximately one-half of all neurons born during neurogenesis 
[3]. Neuronal loss subsequent to this developmental window is 
physiologically inappropriate for most systems and can contribute 
to neurological deficits, e.g., neurodegenerative diseases such as 
Alzheimer’s and Parkinson disease [1,4,5]. Elucidating the molecular 
mechanisms underlying neuronal apoptosis hence may contribute 
to our understanding of basic developmental biology and to human 
neuropathology. 

Although an extensive number of studies have implicated 
individual genes or genetic pathways during apoptosis, the complete 
spectrum of genes involved in distinct temporal domains remained 
mostly unknown until the advent of genomics. In the last ten years, the 
genome sequences and the development of high-throughput genomic 
technologies, such as DNA microarrays, have offered the unprecedented 
experimental opportunities to explore the transcriptional mechanisms 
underlying apoptosis in different in vitro paradigms [6-16]. The present 
review will briefly introduce this genomic approach and then illustrate 
its use to dissecting the multigenic program underlying neuronal 
apoptosis of cerebellar granule neurons (CGNs), an in vitro paradigm 
that has been extensively utilized to examine the signal transduction 
mechanisms underlying neuronal apoptosis.

Transcriptional Analysis by DNA Microarray 
Technology

The most remarkable technology for genome-wide expression 
analysis is nowadays DNA microarray technology, which permits the 
quantitative and simultaneous monitoring of the expression levels 
of thousands of genes under different conditions. DNA-microarray 
is an orderly arrangement of DNA spots, each containing a unique 
DNA sequence. DNA spots contain either DNA oligomers or a 
longer DNA sequence designed to be complementary to a particular 

mRNA of interest. When a microarray is hybridized to fluorescence-
tagged complementary DNAs or RNAs derived from messenger or 
total RNA, each spot is a target for the mRNA encoded by a gene. 
Following hybridization, a laser excites the bound cDNAs or cRNAs, 
and fluorescence intensities from each spot on the slides are collected 
by a scanner. The intensity of the fluorescence at each array element is 
proportional to the expression levels of an mRNA. The thing that makes 
DNA microarrays the most remarkable technology for genome-wide 
expression analysis is the number of DNA probes that it is possible to 
place on a microarray. Today, whole-genome microarrays are available 
for different species and permit the quantitative and simultaneous 
monitoring of the expression levels of thousands of genes at different 
time points, under different conditions or tissues. The knowledge of 
when and under what conditions a gene or a set of genes are expressed 
often provides strong clues as to their biological role or function. It 
should be emphasized, however, that expression DNA microarrays 
measure steady-state mRNA levels, reflecting the equilibrium between 
mRNA synthesis and degradation. In addition, when the immobilized 
DNA sequence is complementary to more than one mRNA, such as in 
the case of alternative splice variants, the fluorescence signal represents 
a single consensus value for all transcripts. The main challenge in 
DNA microarray analysis is to extract relevant information from the 
large amount of data produced. A variety of analytical approaches 
are available to interpret microarray data and for a more detailed 
description of microarray technology, the reader is referred to other 
reviews [17-20]. 

Transcriptional Changes in Apoptotic Cerebellar 
Granule Neurons

Cerebellar granule neurons (CGNs) are the most abundant 
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neuronal cell type in the mammalian brain and represent, both in vivo 
and in vitro, a model of election for the study of neuronal apoptosis 
[21,22]. Apoptosis of CGNs can be regulated by loss of neurotrophic 
supply and/or activity-dependent survival signals. The relative 
contribution of each component varies according to neuronal type and 
age. During early postnatal development, apoptosis of granule cells 
is thought to reflect the failure of these neurons to obtain adequate 
amounts of specific neurotrophic factors [23,24], whereas in the adult, 
apoptosis of CGNs following mossy fiber axotomy points out to the 
crucial role of afferent inputs on the survival of these cells. 

Primary cultures of CGNs have been extensively utilized to examine 
the signal transduction mechanisms underlying neuronal apoptosis. In 
this in vitro paradigm, CGNs undergo rapid apoptotic cell death within 
24 h after removal of serum and lowering of extracellular potassium 
from 25 to 5 mM [22]. Engagement of apoptosis requires transcription 
and protein synthesis and the process becomes irreversible during the 
first 6 hours following induction. Before this “commitment point” 
CGNs can be rescued by the activation of specific signal transduction 
pathways or by the treatment with specific neurotrophic factors, such 
as insulin-like growth factor-1 (IGF1) [22,25] and pituitary adenylyl 
cyclase-activating polypeptide 38 (PACAP) [26].

Distinct Temporal Gene Expression Profiles Associated 
with Apoptosis of CGNs

To decipher the transcriptional regulatory elements controlling 
apoptosis of CGNs, genome-wide expression profiling has been 
performed in CGNs during the pre-commitment period of apoptosis 
(Figure 1). By using oligonucleotide microarrays, mRNA expression 
profiles were monitored in CGNs 3 and 6 h after induction of apoptosis 
by low [K+] (5 mM) and serum deprivation (-KS) [7]. Among the 8740 
genes interrogated by the microarrays, 421 genes showed significant 
changes of gene expression [7]. Among these, 69 were down-regulated 
and 152 up-regulated at 3 h, whereas 93 genes were down-regulated 
and 204 were up-regulated at 6 h.

To investigate and interpret gene expression data sets, cluster 
analysis is usually employed in DNA microarray analysis. By grouping 
together genes that have similar expression profiles, cluster analysis 
is used for extraction of regulatory motifs, inference of functional 
annotation, and classification of cell types or tissue samples [8,27]. 
Most cluster analysis techniques are hierarchical and the resultant 
classification has an increasing number of nested classes and the 
result resembles a phylogenetic classification as illustrated in figure 1. 
An example of hierarchical clustering applied to genes differentially 
expressed after induction of apoptosis in CGNs is shown in figure 2. 

Transcriptional and Post-Transcriptional Regulatory 
Mechanisms

As previously stated, DNA microarrays measure steady-state levels 
of mRNAs to observe which of those genes differentially expressed 
after induction of apoptosis were regulated at the transcriptional or 
post-transcriptional level, gene expression profiles of CGNs during 
potassium and serum deprivation were compared in the absence 
or presence of a transcription inhibitor, Actinomycin-D (ActD) 
[7]. This analysis demonstrated that most of the gene expression 
changes observed during apoptosis was under transcriptional control. 
Treatment with ActD, in fact, reduced the mRNA-expression of most 
of the genes which were up- or down-regulated during apoptosis. Few 
of the genes, however, were not affected or actually increased following 
ActD treatment, indicating the existence of post-transcriptional 

regulatory mechanisms. A comprehensive picture of transcriptional 
and post-transcriptional changes associated to CGNs apoptosis is 
shown in figure 2.

Pathways Analysis of Transcriptional Changes
Apoptosis depend on the activity of an integrated network of 

genes and their encoded proteins, which almost never work alone but 
interact with one another in highly structured and incredibly complex 
ways. In this integrated network it is not important the activity of the 
single gene and their encoded protein, but the entire components 
and their interactions. Thus, genes do not act by themselves, but they 
function in gene networks and molecular pathways and their effects 
are not independent but often modified by one or several other genes 
(epistasis) [28]. 

Identification of differentially expressed genes, as shown in the 
previous section, represents only the tip of the “iceberg” of a genomic 
analysis. When genes are analyzed individually, small changes in 
expression may not pass stringent statistical cut off. Those small 
changes, however, may show a statistical significance when analyzed, 
for example, in the context of a pathway. The next paragraphs will 
illustrate how a more integrated picture of the transcriptional changes 
during neuronal apoptosis can be obtained by gene ontology and 
pathway enrichment.

A gene or its encoded protein has not only a name/symbol or an 
expression value, but several ontologies or functional annotations 
[8,27]. Common functional annotations are those listed in the Gene 
Ontology (GO) database (www.geneontology.org), a controlled 
vocabulary of terms that describes the roles of genes and proteins in 
all organisms [29]. GO is comprised of three independent ontologies: 
1) biological process describes biological goals accomplished by 
one or more ordered assemblies of molecular functions; 2) cellular 
component describes locations, at the levels of subcellular structures 
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Figure 1: The genomic approach used for uncovering transcriptional 
mechanisms underlying apoptosis of CGNs. Primary cultures of CGNs 
undergo rapid apoptotic cell death within 24 h after removal of serum and 
lowering of extracellular potassium [22]. Engagement of apoptosis requires 
transcription and protein synthesis and the process becomes irreversible 
during the first 6 hours following induction. Expression profiling by microarray 
analysis of CGNs during the pre-commitment period of apoptosis (3 and 6 h) 
was used to decipher the transcriptional changes underlying apoptosis [7]. The 
genomic approach starts with RNA extraction, moves through DNA microarray 
analysis, and ends with the identification of deregulated genes and pathways.
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and macromolecular complexes; 3) molecular function describes 
activities, such as catalytic or binding activities, at the molecular level. 
Biological process, molecular function and cellular component are all 
attributes of genes, gene products or gene-product groups and each of 
these may be assigned independently. The relationships between a gene 
product (or a gene-product group) to biological process, molecular 
function and cellular component are one-to-many, reflecting the 
biological reality that a particular protein may function in several 
processes, contain domains that carry out diverse molecular functions, 
and participate in multiple alternative interactions with other proteins, 
organelles or locations in the cell. Through the use of GO terms, a 
number of software tools (http://www.geneontology.org/GO.tools.
shtml) are able to perform gene ontology enrichment analysis of high-
throughput experimental results, such as gene expression microarray 
data, and discover statistically significantly enriched GO terms among 
a given gene list. 

In addition to the GO terms described above, many other 
annotations are nowadays linked to a specific gene/protein. Examples 
of these are the associated disease of phenotype (OMIM Links), 
publications (Medline links), chromosomal location, interacting drug, 
functional domain, and functional pathway. This last, in particular, 
represents a set of consecutive signals or metabolic transformations 
that have been confirmed as a whole by experimental data. Thousand of 
pathways are nowadays available (for a list of biological pathway related 
resources see: http://www.pathguide.org/) and different informatics 
tools have been developed that enable to analyze gene expression 
changes in the context of pathways. Some of these public and private 
resources are described below. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [30] is 
a free resource that contains a comprehensive collection of databases 
for genes, pathways and ligands for several organisms, together with 
web-accessible tools for the retrieval of pathways and the annotation of 
gene lists. The Gene Map Annotator and Pathway Profiler (GenMAPP) 
[31] are freely available programs for viewing and analyzing gene 
expression data in the context of biological pathways. Examples 
of private resources include MetaCore (http://www.genego.com/), 
Ingenuity Pathways Analysis (http://www.ingenuity.com/), Pathway 
Assist (http://www.ariadnegenomics.com/) and Genespring (www.
agilent.com).

Most of the genes differentially expressed in CGNs after induction 
of apoptosis can be assigned to functional categories, subcellular 
compartments and pathways based on their translated products. Some 
of them have been previously related to apoptosis in CGNs or other 
cellular systems, whereas others provide a significant number of unique 
and novel entry points. In many cases, genes with common biological 
functions or in the same metabolic pathway showed coordinated 
expression [7]. For space limitation, only two examples of pathways 

differentially affected following induction of apoptosis of CGNs will be 
discussed in the following paragraphs and in figures 3 and 4.

Fatty acid metabolism 

The coordinated increase of seven enzymes that are key regulators 
of beta-oxidation of fatty acids, were found in apoptotic CGNs: Acadl 
(acyl-CoA dehydrogenase, long chain), Acsl1 (acyl-CoA synthetase 
long-chain family member 1), Cpt1a (carnitine palmitoyltransferase 
1a), Cpt1b (carnitine palmitoyltransferase 1b), Cpt2 (carnitine 
palmitoyltransferase 2), Decr1 (2,4-dienoyl CoA reductase 1), and Eci1 
(enoyl-CoA delta isomerase 1) (Figure 3). Induction of this pathway 
may reflect an increased demand in energy production during the 
energy-requiring apoptotic program, also in view of the rapid and 
progressive impairment of oxidative phosphorylation during the same 
time period [32].

Classical apoptotic pathway 

Several genes conventionally designated as apoptosis regulators 
were found differentially expressed in CGNs and are represented in 
figure 4. Two of these genes encode Tnfrsf21 (tumor necrosis factor 
receptor superfamily, member 21; also known as DR6) [33] and Igf1r 
(insulin-like growth factor 1 receptor) [34], two receptors implicated 
in neuronal apoptosis. An inhibitor of the NF-κB pathway, Nfkbia 
(nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor, alpha), was up-regulated following induction of CGNs, 
supporting the inhibitory role of NF-κB in CGN apoptosis [35-41]. 
Reduced expression of the anti-apoptotic Bcl2l1 (Bcl2-like 1, also 
known as Bcl-xl) was observed following induction of CGN apoptosis. 
This gene encodes a Bcl-2 family protein that prevents apoptosis [42-
45]. In apoptotic CGNs, another Bcl-2 family member, Hrk (Harakiri, 
also known as neuronal death protein DP5), was found up-regulated. 
Activation of Hrk is known to occur in a c-jun dependent manner during 
apoptosis of CGNs [46-48]. Consistent with these and other studies 
[49,50] is the observed up-regulation of c-jun (jun proto-oncogene) 
following induction of apoptosis in CGNs. Differential expression of 
another transcriptional regulator, Myc (myelocytomatosis oncogene) 
[51] was found in apoptotic CGNs. Increased expression of Casp3 
(caspase 3), a cysteine-aspartic acid protease that is considered an 
important regulator and a marker of apoptotic processes [38,52] was 
evident both at 3 h and 6 h after induction of apoptosis. Finally, an 
increased expression of Irf1 (interferon regulatory factor 1) was also 
evident after induction of CGN apoptosis. Although the role of Irf1 in 
CGNs is unknown, the over-expression of this tumor suppressor gene 
has been linked to apoptosis in other cell types [53,54].

Conclusion
While demonstrating the utility of a genomic approach as a means 
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Figure 2: Genes differentially expressed after induction of apoptosis in CGNs. To induce apoptosis, cultures were switched in serum-free medium containing 5 
mM KCl in the absence (-KS) or presence of 10 μM Actinomycin D (-KS + ActD). Control cells (control) were maintained in complete medium. 421 genes showed 
significant changes of gene expression following induction of apoptosis at 3 h and/or 6 h [7]. A hierarchical clustering algorithm (similarity measure: euclidean; linkage 
rule: complete) was used to order these genes in a dendrogram, in which the pattern and length of the branches reflects the relatedness of the expression levels in 
different experimental conditions. Data are presented in a matrix format: each row represents a single gene and each column an experimental condition. The averaged 
normalized intensity from replicates is represented by the color of the corresponding cell in the matrix. Blue, white and red cells, respectively, represent transcript levels 
below, equal or above the median abundance across all conditions. Color intensity reflects the magnitude of the deviation from the median (see scale at the bottom).
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Figure 3: Beta-oxidation pathway. The coordinated increase of seven enzymes that are key regulators of beta-oxidation of fatty acids, were found in apoptotic CGCs: 
Acadl (acyl-CoA dehydrogenase, long chain), Acsl1 (acyl-CoA synthetase long-chain family member 1), Cpt1a (carnitine palmitoyltransferase 1a), Cpt1b (carnitine 
palmitoyltransferase 1b), Cpt2 (carnitine palmitoyltransferase 2), Decr1 (2,4-dienoyl CoA reductase 1), and Eci1 (enoyl-CoA delta isomerase 1). Differentially 
expressed genes are highlighted in yellow and their expression in four experimental conditions are indicated with bar graphs (Control 3 h, first bar in red; -KS 3 h, 
second bar in orange; Control 6 h, third bar in yellow; -KS 6 h, fourth bar in grey).
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of dissecting the multigenic program underlying neuronal apoptosis, 
the studies illustrated represent just a glimpse of this complex 
phenomenon. It should be emphasized that the microarray provides 
estimates of changes in mRNA levels that cannot be correlated with 
the amount and function of the gene products. Translation and post-
translational modifications of many gene products and protein turnover 
have dramatic effects on function, and these cannot be inferred from 
expression analysis alone.

Most of the changes observed in CGNs seem to be pro-apoptotic, 
while others could be adaptive and represent an attempt for survival. Each 
of them, having a larger or smaller specific weight may contribute to the 
development of life or death. The exact role and functional relationships 
of the genes implicated are presumably those we cannot yet recognize. 
Gene expression profiles unlock virtually unexplored frontiers and we 
will learn as we explore them. Systematic characterization of expression 
patterns associated with apoptosis in different pathophysiological 
conditions and in distinct temporal domains will provide a framework 
for interpreting the biological significance of the expression patterns 
observed in CGNs. Such a challenging task has just begun by 
characterizing gene expression profiles in cortical neurons exposed to 
amyloid b-protein (b−AP) [9], whose toxicity is considered the leading 
mechanism proposed for neuronal death in Alzheimer’s disease. 
Among the genes differentially expressed following bAP treatment, 70 
were in common with those differentially expressed during apoptosis 
of CGNs [7]. Although preliminary, these data suggest the existence 
of both common and diverse mechanisms responsible of neuronal cell 
death. Knowledge of the mechanisms and pathways that determine 
apoptosis and are aberrant in pathological conditions will pave the way 
for new pharmacological approaches.
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