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Abstract
The current diet and lifestyle are commonly known contributing factors of atherosclerosis, which is the 

underlying disorder in patients with cardiovascular disease. An identification of any kinds of foods that may exert 
the cardioprotective or cardiotoxic influence and deeper understanding their molecular mechanisms of action has 
become an object of interest due to their importance. Through largely epidemiological evidence, trans fatty acids 
(TFAs) intake has been associated with a variety of the cardiovascular complications, including atherosclerosis. The 
excessive intake of TFAs has detrimental effect on lipid profile. However, the association between the consumption 
of TFA and the risk of cardiovascular disease are much greater, than predicted by the effect on serum lipids alone, 
suggesting that the TFAs intake may also affect the other, non-lipid risk factor. Evidences from many studies indicate, 
that TFA induce the inflammatory response and endothelial dysfunction. In the following review we present a current 
knowledge concerning the chemistry of TFAs, their dietary source, their association with cardiovascular disease and 
the possible mechanisms explaining their effect on atherosclerosis.
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Introduction
Cardiovascular disease, in particular coronary heart disease, is 

the principal cause of mortality worldwide. Atherosclerosis is the 
underlying disorder in the majority of patients with coronary heart 
disease. The development of atherosclerotic plaque in the arteries is a 
result of multiple risk factor including both non-modifiable risk factor 
(family history gender and age) and modifiable risk factor which are 
associated with life style choice, particularly poor diet habits [1-3]. In 
recent years, the eating habits of highly industrialized societies changed 
radically thanks to new technologies in the food industry, that allow 
consumption of products containing large amounts of trans fatty acids. 

Trans fatty acids are unsaturated fats, that contain at least one 
double bound [4]. In contrast to naturally occurring unsaturated fatty 
acids, which have the cis configuration (hydrogen atoms on the same 
side of the acyl chain), TFAs contain at least 1 double bound in the 
trans configuration (hydrogen atoms on opposite sides of the acyl 
chain). The type of bond affects the shape of the fatty acid chain. A 
cis bond creates a bent chain, whereas trans results in much straighter 
molecules similar to that of saturated fatty acids. Although the chemical 
composition of a cis and Trans fat may be identical, this change in the 
configuration will induce obvious effects on the packing of the lipid in, 
for example, phospholipid bilayer and on the function of both lipids 
and proteins in a membrane structure. 

Recently, the use and presence of TFA in the diet has been the 
object of much public health discussions. This article focuses on TFAs 
as modifiable dietary risk factor for atherosclerosis, reviewing the 
evidence for lipid and non-lipid effects. 

Sources of dietary trans fatty acids

Trans fatty acids occur naturally in ruminant fats, in which small 
amount of TFAs are produced by bacteria in the stomach of grass grazing 
sheep and cattle [5]. Therefore, sheep and cattle meats as well as dairy 
products (cheese, milk and butter) contain ruminant trans fatty acids 
(rTFAs). The most dietary trans fatty acids are the result of industrial 
processing by partial hydrogenation of vegetable or fish oils to produce 

partially hardened fats and food products [4,6]. During the partial 
hydrogenation of vegetable oils a number of double bonds is reduced, 
while approx. 30-50% of unsaturated fatty acids are transformed from 
cis into trans. Hydrogenation is used by food industry to increase 
their viscosity (changing vegetable fats from a liquid to a semi-liquid 
or solid) and/or extend their shelf life (decreasing susceptibility to 
oxidation). It also increases the fat’s melting point, making the product 
more suitable for frying. 

The main fatty acid formed in the process of vegetable oil 
solidification is elaidic acid (C18:1, trans-9) [7]. However, the process 
of frying or baking food in vegetable oils results in the generation 
of linoelaidic acid (C18:2; trans-9,12) [8]. The high temperature 
accompanying this process causes the conversion of the double bond 
from the cis configuration into the trans one. Major dietary sources 
of the industrial TFA include margarines (1.2-7.85% TFA content per 
weight basis), snacks such as biscuit, cakes and popcorn (5-10%) and 
frying oils (23-30%) [8]. The most predominant trans isomer in rTFA 
is vaccenic acid (C18:1; trans-11) [9]. A smaller amount of conjugated 
linolenic acid (C18:2; 9-cis,11-tras)(CLA) can also be formed from 
vaccenic acid.

TFAs effect on cardiovascular risk factor

Growing evidence indicates, that increased consumption 
of industrial TFAs may be important modifiable risk factor in 
development of cardiovascular diseases, because they are associated 
with a higher risk of cardiovascular morbidity and mortality [10,11]. 
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disorders of lipid metabolis and positive correlation between plasma 
cholesterol or LDL and atherosclerosis is now well documented. 
Therefore, the potential for dietary TFAs to alter or promote this 
relationship was a possible mechanism for deleterious effects of TFAs 
on the cardiovascular system. The influence of trans fat on blood lipids 
has been well documented and reviewed [15,25,26]. The consumption 
of TFAs increases total and LDL cholesterol in the same way as the 
consumption of saturated fatty acids. Compared with MUFA and 
PUFA or SFA diet, the TFA intake decreases HDL-cholesterol. In 
meta-analysis of 13 randomized controlled trials observing the effect of 
isocaloric replacement of PUFA MUFA or SFA with TFA, a significant 
increase in LDL-cholesterol, total cholesterol to HDL-cholesterol ratio, 
the ratio of apolipoprotein B to apolipoprotein A and lipoprotein a was 
observed. Other studies have shown an increase in serum triglycerides 
and a reduction in size of the LDL particle. All of these changes in 
blood lipids caused by TFAs intake represent the independent risk of 
cardiovascular diseases. 

The mechanisms responsible for this alternation seem to be 
associated with the modulation of the liver function and metabolism 
of lipoprotein. In cultured human hepatoma cell lines, TFAs increased 
the LDL/HDL ratio, apolipoprotein A: apolipoprotein B apoA to 
apoB) ratio and cholesterol content both in LDL and HDL particles in 
comparison to SFA [27]. Moreover, TFAs increased a hepatic secretion 
of VLDL and their particle size.

The observed effect of TFAs on hepatoma cells may be partially 
responsible for the increase of LDL cholesterol and small dense LDL, 
which has been associated with a higher risk of cardiovascular disease 
than the large LDL [28]. 

Compared to PUFA and SFA, a consumption of TFAs increases 
the plasma activity cholesterol ester transfer protein, the main enzyme 
responsible for the transfer of cholesterol ester from HDL to very 
low density lipoprotein (VLDL) and LDL [13]. This may explain the 
changes occuring in lipid profile in people consumed diets rich in trans 
fatty acids. 

TFAs not only decrease plasma levels of HDL-cholesterol, but 
also may change the antiatherogenic activities of HDL. Recently it has 
been shown, that reconstituted HDL containing the elaidic acid lost 
its antioxidant ability and induced the highest uptake of oxyLDL into 
human macrophages [29]. 

Atherosclerosis and trans fatty acids

The studies above mentioned provided an indirect evidence of an 
atherogenic effect of TFAs. However, this had never been demonstrated 
until the study by Bassett and colleagues [30]. They showed, that 
supplementation of the diet of LDL receptor deleted mice with an 
industrial trans fat, elaidic acid, resulted in the independent and direct 
stimulation of atherosclerosis. Furthermore, they also shown, that an 
addition of elaidic acid to a cholesterol-supplemented diet did not 
induce an additive effect. 

Unexpectedly, in the study performed in the same model of 
experimental atherosclerosis a surprising anti-atherogenic action by 
the ruminant TFA, the vaccenic acid was detected [31]. A significant 
decrease in the area of the atherosclerotic plaques covered in the 
aortas from LDL receptor deleted mice was observed, when diets 
were supplemented with cholesterol and vaccenic acid in comparison 
to diets supplemented with both cholesterol and elaidic acid, or just 
cholesterol alone.

Based on results from very well documented observational studies, 
the industrial TFAs consumption increases the risk of coronary heart 
disease on a per-calorie basis than any other dietary macronutrients, 
including saturated fatty acids [12,13]. A meta-analysis of 4 prospective 
cohort studies involving 140000 subjects showed, that a 2% increase in 
the consumption of TFAs was associated with the 23% increase in the 
incidence of CHD [14]. The Nurse Health Study found a 33% increase in 
the incidence of CHD among those participants in the highest quintile 
of TFA intake, compared with those in the lowest quintile [14]. A meta-
analysis of prospective studies showed a 24, 20, 27 and 32% higher risk 
of myocardial infarction or death from cardiovascular disease for a 
2% of the TFAs intake energy isocalorically replacing carbohydrate 
saturated fatty acids (SFA), cis-monounsaturated fatty acids (MUFA) 
and cis-polyunsaturated fatty acids (PUFA), respectively [15]. An 
evaluation of the TFA intake associated with mortality over 25 years 
in the seven countries study and Health Professionals Follow-up Study 
reported a positive correlation between trans fatty acids consumption 
and a risk of death from cardiovascular disease [16,17]. A strong 
correlation between the TFA intake and the coronary heart disease risk 
was confirmed in studies using biomarkers of a tissue concentration 
of TFAs. It was demonstrated, that TFAs concentration in plasma 
phospholipids and erythrocytes is associated with an elevated risk 
of cardiovascular diseases [18,19]. The Cardiovascular Health Study 
showed that elaidic acid concentration in plasma phospholipids was 
adversely associated with total mortality, mainly due to the increased 
risk of cardiovascular disease [20]. So far, there are merely few studies 
evaluating the serum concentration of TFAs. Recently it has been 
shown, that serum TFAs (elaidic and linoelaidic acids) concentration 
was elevated in young patients with coronary artery disease [21]. 
Moreover, serum TFA level had positive correlation with the body 
mass index, LDL-cholesterol, triglicerides and apoB48 and an inverse 
correlation with age and HDL-cholesterol.

The studies showed, that replacing a 2% of energy from 
carbohydrates with Trans-fat nearly doubled the relative risk of 
coronary heart disease [22]. Whereas a replacement of a 5% of energy 
from carbohydrates with saturated fat was associated with a 1.47-fold 
increase in relative risk. These results suggest on a gram-for-gram basis, 
that trans fat was associated with an approximately 15-times greater 
risk of coronary heart disease, than with the saturated fat. These results 
are somewhat ironic because commercial partially hardened fats, which 
are main source of trans fats, were originally introduced into the diet 
as a means to lower the risk of cardiovascular disease from saturated 
fat intake.

On the other hand the removal of TFAs from our diet has 
resulted in improvements in cardiovascular disease. After that Danish 
Government introduced a statuory provision for a limit of the amount 
of iTFAs acceptable in food, a 60% decline in cardiovascular diseases 
in Denmark was observed [23]. Mozaffarian and colleagues [13] 
estimated that a reduction of the commercial trans fat intake from 2.1% 
of energy to 1.1% or 0.1% of energy could prevent 72,000 or 228,000 
cardiovascular deaths per year in the United States, respectively. These 
results leave no doubt that trans fats have a significant, adverse effects 
on cardiovascular diseases.

By contrast, the results from observational studies concerning 
the intake of TFA and coronary heart disease demonstrate, that the 
rTFA intake has either not been associated with or has been negatively 
associated with the risk of cardiovascular disease [24]. 

Trans fatty acids: lipid profiles and lipoprotein metabolism

One important factor in the pathogenesis of atherosclerosis is 
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Atherosclerosis is initiated by the subendothelial retention of low-
density lipoprotein (LDL), followed by physicochemical modifications 
such as oxidation [32,33]. Macrophages located in the arterial intima 
layer present several scavenger receptors, that uptake modified LDL. 
Progressive macrophage lipid accumulation leads to foam cell formation. 
Lipid-laden macrophages release many of chemoattractants and 
inflammatory mediators, leading to a lesion progression. Macrophage 
lipid homeostasis is determined by the balance between the cholesterol 
uptake and the efflux of excess cholesterol to extracellular acceptors, 
such as high density lipoprotein (HDL) and apolipoprotein A-I (apo 
A-I) [34]. HDL particles or apoA-I interact with cells to promote the 
efflux of cholesterol from arterial macrophages via binding to ATP-
binding transporters A-1 (ABCA-1) and G-1 (ABCG-1. Fournier at al. 
[35] reported that elaidic but not vaccenic acid reduced the ABCA1-
mediated cholesterol efflux from the mouse and human unloaded or 
cholesterol-loaded macrophages, similarly to palmitic acid. A recent 
study conducted in LDL receptor knockout mice revealed that elaidic 
acid increased the lesion area, macrophage infiltration and arterial total 
cholesterol content [36].

Trans fatty acids and inflammation.

The vascular inflammation is a primary event in the pathogenesis 
of atherosclerosis [32,37]. Furthermore, an activation of inflammation 
can elicit acute coronary syndromes. Some inflammatory markers are 
key risk factors for atherosclerosis [38]. Some studies have shown, 
that inflammatory disease markers such as C-reactive protein (CRP) 
are better predictors of future cardiovascular events than lipid and 
lipoprotein levels alone [39]. 

Both, observational and randomized studies showed that TFAs 
have pro-inflammatory effects. It was well documented and reviewed 
in several papers [15,40]. The increased TFAs consumption has been 
associated with the increased circulating concentration of inflammatory 
markers, such as tumor necrosis factor (TNFα), interleukin 6 (IL-
6) or CRP. In patients with the established heart disease and higher 
inflammatory marker level, erythrocyte membrane concentration of 
TFAs (a biomarker of dietary intake) were associated with higher level 
of IL-6, TNFα, soluble TNFα receptors and monocyte chemoatrractant 
protein-1. Randomized trial involving hypercholesterolemic patients 
showed greater production of IL-6 and TNFα in cultured mononuclear 
cells, gained from participants consuming a one-month diet high iTFA, 
compared with the cells taken from members of control group.

Monocytes/macrophages present in atherosclerotic change are a 
major source of inflammatory cytokines in atherosclerosis [41]. It can 
be speculated that pro-inflammatory treatment with TFA is the result 
of their modulating effect on monocyte and macrophage activity.

However, adipokines synthesized in the fat tissue are actually 
becoming recognized as important mediators of inflammatory 
pathways for this reason that they are a vital source of inflammatory 
mediators within the atherosclerotic process [38,42]. Therefore, 
it is possible, supposing that TFAs are deposited within a fat tissue, 
then this change in the fatty acid composition may influence the 
adipokine synthesis and ultimately, any inflammatory actions related 
to atherogenesis. 

The cellular and molecular mechanisms, whereby the TFAs 
consumption influences the inflammatory response are not well 
established yet. NF-κB is the transcription factor, which plays an 
important role in development of inflammatory responses by up-
regulating the expression of many inflammatory mediators [43]. The 
role of this transcription factor in the pathogenesis of atherosclerosis 

has been indicated by studies showing that its active form is present in 
atherosclerotic lesions [44]. It has been suggested, that NF-κB is a redox-
sensitive transcription factor, because reactive oxygen species (ROS) 
may regulate its activity [45]. We have recently demonstrated that 
TFAs have a direct pro-inflammatory effect in endothelial cells through 
the ROS-dependent NF-κB activation [46]. Our results also indicate 
that TFAs increase the intracellular ROS production. As suggested 
from the studies by Cassagno and colleagues [47], a diet rich in TFAs 
may intensify an oxidative stress. In mice fed with the diet rich in TFAs, 
a reduction of plasma vitamin E levels with the concomitant increase 
in F2-isoprostanes (a marker of oxidative stress in vivo) was observed. 
This observation may also explain the high risk of cardiovascular 
disease associated with the TFAs intake, because oxidative stress has 
been associated with a development of atherosclerosis most likely 
through the vascular inflammatory response [45].

Trans fatty acids and dysfunction of endothelial cells

Endothelial cell dysfunction plays a key role in the pathogenesis 
of atherosclerosis [48]. A hallmark of endothelial dysfunction is an 
impairment of a vasodilatation, which is caused by the diminished 
synthesis and release of NO and prostacyclin. The branchial artery 
flow-mediated vasodilatation (FMD) is a functional measurement of 
the NO-dependent vasodilatation capacity of endothelia. 

The randomized study, conducted on 29 healthy volunteers 
subjected to a 4-week diet containing either the trans fatty acids or 
saturated fatty acids have shown, that TFAs contributed to the reduction 
of the endothelium-dependent vascular relaxation [49]. A comparison 
of the two diets revealed, that the diet containing trans fatty acids has 
led to a 29% reduction of the FMD. Iwata et al. [50] have demonstrated, 
that both elaidic and linoelaidic acids impaired the endothelial insulin 
signaling and NO production in cultured endothelial cells. On the other 
hand, transvacenic acid was not associated with such a response. In 
the cultured endothelial cells, TFAs inhibited a conversion of linoleic 
acid to arachidonic acid, resulting in the suppression of prostacyclin 
synthesis [51]. Recently published study, in which the endothelial 
cells were cultured in fat mixtures containing different proportions of 
linoleic acid and elaidic acid, showed that supermarket margarines had 
levels of trans fats similar to those that suppressed prostacyclin by 35-
54% [52].

Endothelial dysfunction is also manifested by shifts, from the 
anti-adhesive to pro-adhesive phenotype, which essential for both 
progression of atherosclerosis, as well as for the inflammatory 
process taking place in the vessel wall [53]. This feature of endothelial 
dysfunction is associated with the appearance of adhesion molecules 
on their surface as mediators of interactions between cells of the 
vascular wall and leukocytes. Thus, these interactions are essential 
for the adhesion and trans-endothelial migration of leukocytes. The 
family of endothelial adhesion molecules includes: selectins E and P, 
intercellular adhesion molecule-1 (ICAM-1), ICAM-2, vascular cell 
adhesion molecule-1 (VCAM-1). Concentrations of soluble forms 
of these molecules in the serum are suitable markers of endothelial 
dysfunction and activity of the inflammatory process.

In the study among overweight women, the higher intake of TFAs 
was associated with the higher plasma levels of soluble form of ICAM 
and VCAM-1 [54]. There is also in vitro study, demonstrating that 
TFA play a essential role in the induction of the proinflammatory effect 
of TFAs on endothelial cells. We and other have been demonstrated, 
that TFAs treatment induced the ICAM-1 and VCAM-1 expression in 
cultured endothelial cells [46,55].
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Endothelial dysfunction is also associated with the prothrombotic 
activation of the endothelial cells. Recently it was shown, that a high-
TFAs induced prothrombotic phenotypic changes in the endothelial 
cells. Namely, in the cultured endothelial cells TFAs decreased the 
expression levels of antithrombotic molecules like thrombomodulin as 
well as the tissue factor pathway inhibitor while vice versa increased the 
prothrombotic molecules [56].

Potential mechanisms

Although the molecular mechanisms underlying the effect 
of TFA on inflammation and endothelial cell function are not 
well established, pathways of influence of other dietary fatty acids 
suggest, that effects on both cell membrane and gene transcription 
are likely to be important. Dietary fatty acids are incorporated into 
phospholipids in all cell membrane [57,58]. The fatty acid composition 
of the membrane can strongly exert the influence on its biophysical 
characteristics. In particular, unsaturated and saturated fatty acids 
can act as potent regulators of membrane fluidity due to differential 
actions of phospholipids on cholesterol affinity and incorporation 
[59]. Cholesterol content in the cell membrane affects many important 
properties of the cell membrane, such as permeability, transport 
functions, membrane enzyme activity, and availability of membrane 
components as substrates as well as conformation changes of 
membrane proteins [60]. 

Cholesterol present in the cell membrane affects the formation of 
lipid rafts that consist of dynamic assemblies of cholesterol, lipids with 
saturated acyl chains, such as sphingolipids and glycosphingolipids 
in the exoplasmic leaflet of the membrane bilayer [61]. They are 
now emerging as an important cellular signaling mechanism in 
the regulation of a variety of cellular functions. For instance, LPS 
activation of macrophage results in transient Toll-like receptor 4 
(TLR4) trafficking to lipid rafts along with its cognate adaptor proteins 
and subsequent secretion of inflammatory cytokines and chemokines 
[62]. A different pro-oxidative stimuli may activate NADPH oxidation 
through assembling or aggregating its components bound to lipids 
rafts with the components present in the cytoplasm [63]. 

It has been proposed, that TFAs may altere subcellular pathways 
by incorporating into cell membranes and changing the cellular 
membrane fluidity. As shown by the studies of Harvey and colleagues 
[64], an incubation of endothelial cells with trans 18:2 and cis 18:2 
leads to the incorporation of those acids into the cell membrane 
phospholipids. The incorporation of Trans acid was twice as high as 
that of the cis form. The studies by Niu and colleagues [65] indicate 
that phospholipids containing acyl chains in the trans form take on a 
configuration allowing better interactions with cholesterol. Indeed, it 
has been shown, that the level of cholesterol in membrane phospholipids 
containing TFAs was 40-80% higher than in membranes containing cis 
fatty acid-phospholipids [65]. Due to the membrane cholesterol levels 
and membrane receptors are involved in the regulation of cholesterol 
homeostasis, the elevation in membrane cholesterol content and 
the lower receptor activation induced by the presence of TFA in the 
membrane could represent the mechanism responsible for the elevation 
of LDL cholesterol in the TFA supplemented diets.

Saturated fatty acids are known to induce inflammation and 
endothelial dysfunction through the TLR4 activation [66], an effect 
that appears to be caused by a recruitment of TLR4 into lipid rafts. As 
mentioned above, TFA induced the prothrombogenic phenotypes of 
endothelial cells. The results of these studies imply, that TFA impair 
an endothelial antithrombogenic functions through a TLR-mediated 

pathway. We have shown that TFA induced the intracellular ROS 
production in cultured endothelial cells through the activation of 
NADPH oxidase. Although, we do not investigate the effect of TFA 
on the membrane as we speculate that changes in the cell membrane 
structure may be responsible for the NADPH oxidase activation.

Transforming growth factor (TGF)-β is a pleiotropic cytokine, 
which is implicated to protect against atherosclerosis [67]. Studies on 
normal mice fed a high trans fatty diet have demonstrated, that this diet 
cause atherosclerosis by suppressing the TGF-β responses in vascular 
cells via an incorporation of a diet-derived TFAs into the plasma 
membrane phospholipids, with a resultanting increased integration of 
cholesterol into plasma membranes [68]. This process may cause an 
accumulation of the cell-surface of TGF-β–TGF-β receptor complexes 
in lipid rafts, facilitating a rapid degradation of these complexes, thus 
attenuating the TGF-β signaling. 

Similarly to other fatty acids [69], TFA may bind to nuclear 
receptors, including the peroxisome proliferator-acivated receptor 
(PPAR), liver X receptor and sterol regulatory element-binding 
(protein-1, regulating a gene, that affects a cardiovascular risk factor 
through a lipid and non-lipid-related action. In adipocytes TFAs also 
alter the gene expression for PPARγ, resisitin and lipoprotein lipase 
[70]. 

Still, the cellular and molecular mechanisms whereby TFAs affects 
the atherosclerosis and cardiovascular disease are not well established 
and merit further investigation.
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