
Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Bajnaid et al., J Inform Tech Softw Eng 2015, 5:3
DOI; 10.4172/2165-7866.1000160

Research Article Open Access

Towards Ontology-based SQA Recommender for Agile Software
Development
Nada O Bajnaid1*, Rachid Benlamri2, Algirdas Pakstas3 and Shahram Salekzamankhani4

1King Abdulaziz University, Saudi Arabia
2Lakehead University, Ontario, Canada	
3,4London Metropolitan University, UK

*Corresponding author: Nada O Bajnaid, King Abdulaziz University, Saudi
Arabia, Tel: +966567747640; E-mail: nbajnaid@kau.edu.sa

Received September 25, 2015; Accepted October 12, 2015; Published October
26, 2015

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards
Ontology-based SQA Recommender for Agile Software Development. J Inform
Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Copyright: © 2015 Bajnaid NO, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Keywords: Agile software development; Context-awareness;
E-learning; Ontology-based reasoning; Software quality assurance

Introduction
Software is a key element in daily human activities. Areas such as

communications, transportation, health, finances, and education are
highly dependent on software systems that range from simple to highly
complex life critical systems. People are increasingly relying on software
and demanding higher quality products than ever before. Therefore,
producing high quality software based on Software Quality Assurance
(SQA) techniques and standards becomes one of the most important
objectives of software development and maintenance activities.
Furthermore, as the complexity of producing software increases, the
need for training highly qualified software engineers became critical.
This is mainly due to: (a) the fast changing discipline; (b) inability
to deal with large complex problems in a limited educational setup;
and (c) the variety of methods, techniques, and technological tools
used in this field [1,2]. Moreover, educators in this area have different
backgrounds, programming language preferences, and usually
use different jargons which lead to a variety of understanding and
overlapping of meanings of the same software engineering terms or
concepts. This may results in a lack of communication between the
same team members and ambiguity in understanding requirements
and defining system specifications. Therefore, the need for new support
learning tools in the workplace is crucial.

Another challenge for software development is related to current
rapid changes in technical and business environments with the need
to deliver high quality software quickly which resulted in moving
from traditional software development methods to agile development
methods [3]. Although, the Agile Manifesto claims fast and light
software development process while maintaining high quality, it is
however, not very clear how current agile practices and methods attain
quality under time pressure and unstable requirements. Developers
need to know how to revise or tailor their agile methods in order to
attain the required level of quality [4]. Knowledge quickly becomes
outdated as a result of the shortened product life spans. In such rapidly
changing environments, while companies struggle to keep their staff
knowledgeable about the new technologies, training departments
have to provide training and learning tools at the workplace that are
efficient and adapted to current technological needs [5]. One way of
achieving this goal is to embed quality tasks in every action and step of
the software development process from requirement definition to post-
delivery evolution [6]. In practice, this is a challenging task, due to the

fact that developing software within schedule and budget has usually
higher priority than achieving quality characteristics. In addition,
achieving quality requires combining knowledge of different Software
Engineering (SE) sub-disciplines, from software analyst to SQA experts
[7].

In this paper an attempt is made to address the above-mentioned
problems using an ontological approach in developing a process-
driven recommender system that supports practitioners towards
developing SQA compliant software. The focus of the paper is on the
SQA ontology development that includes both domain (SQA concepts)
and operational (SQA Processes) knowledge. Such ontology is used as
the backbone to build a context-aware SQA recommender system that
suggests useful resources, called in this paper Learning Objects (LOs)
that deal with all SQA aspects of learner’s current software development
process [8]. The proposed process-driven recommender provides, just-
in-time, and in a contextualized way, all necessary resources to enable
software developers deal with SQA issues immediately after coding so
that they can refactor while the code is still fresh in their mind. Such
facility is a key requirement to address the role of SQA in agile software
development.

The rest of the paper is organized as follows: the proposed SQA
ontology model is presented in section 2 and an evaluation of the
model is discussed in section 3. Section 4 presents experimental results
of the developed system. Related work is given in section 5, and finally,
section 6 summarizes the main findings of this study and suggests
furthers research work.

Modelling the SQA Domain Knowledge
Standardization plays an important role in software engineering

Abstract
Agility is heavily dependent on tacit knowledge, skilled and motivated employees, and frequent communications.

Although, the Agile Manifesto claims fast and light software development process while maintaining high quality, it
is however not very clear how current agile practices and methods attain quality under time pressure and unstable
requirements. In this paper, we present an ontological approach for process-driven Quality Assurance support for
agile software development. Challenges related to the role of Quality Assurance in agile projects are addressed by
developing a process-driven recommender that provides tailored resources to user’s queries. The proposed ontological
model embeds both conceptual and operational SQA knowledge about software processes and their requirements,
including quality attributes, SQA measurements, SQA metrics and related SQA techniques and procedures.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 2 of 14

In Table 2, we provide details of the various properties used in the
SQA ontology. For each property, the table presents its domain, range,
inverse property (if any) and cardinality. Quality sub-characteristics and
their measures are crucial aspects of the SQA ontology. Measurement
(quality sub-characteristics in ISO/IEC 20510) plays an important part
in software development as it indicates the quality of the product being
developed [11]. For any software quality product, measures associated
with its attributes should collectively reflect likely user satisfaction with
the use of the product and therefore the product entire quality [12]
(Tables 1 and 2) (Figure 1).

According to Pressman’s categorization of software metrics,
quality metrics measure the extent to which customer requirements
are fulfilled and indicate how closely software conforms to explicit
(Functional Requirements - FR) and implicit (Non-FR) customer
requirements. In this study, software measurements and measures
are at the heart of the SQA ontology design. All aspects of SQA
measurement and measures, as described in the ISO/IEC 25010 and
ISO/IEC 25023 standards, are reflected in the proposed SQA ontology.
In practice, these are instantly retrieved at the request of the software
developer while engaging in a related software process. To the best of
our knowledge, the proposed SQA ontology is the first to cover all SQA
measurements and measures of the ISO/IEC quality standard. Due to
space limitation, only measurements associated with “Maintainability”
and “Reliability” quality attributes are chosen for illustration in Table 3.

SQA conceptualization is supplemented with an additional
semantic layer that describes SQA operational knowledge, mainly
SQA processes for both standard and agile software development.
To support agility which relies on individual’s tacit knowledge that
is very much based on usual work practices and methods, some agile
software development resources [13,14] were used to encode related
SQA processes in the ontology as shown in Table 4 and highlighted in
boldface font in Figure 1 (Tables 3 and 4).

Evaluating the SQA Ontology
High quality ontology can easily be reused and shared with

confidence among applications and domains. Additionally, in case
of re-use, the ontology may help to decrease maintenance costs [15].
To assess these two qualities, it is important to conduct an evaluation
study that should also include assessing the usefulness of the ontology

by providing organizations with agreed upon and well-organized
practices that assists users of software development methods in their
work. There has been many progress made by different bodies to
develop Software Engineering standards, resulting in the forming of
the ISO/IEC Joint Technical Committee 1 (JTC1) workgroup in order
to guarantee consistency and coherency among standards. Moreover,
the IEEE Computer Society and the ISOJTC1-SC7 agreed to harmonize
terminology among their standards. However, despite all these
efforts, inconsistencies and terminology conflicts still appear between
standards even within the same organization. Besides, there is still no
single standard that embraces the whole Software Quality Assurance
(SQA) knowledge. This paper presents two main contributions.
The first contribution is an SQA ontology model that includes new
conceptual knowledge based on the latest quality standards (ISO/
IEC 20510 [9] and ISO/IEC 20523 [10]) and operational knowledge
about SQA software development with special focus on agility. The
second contribution however, is a recommender system that provides
contextual SQA knowledge to support the software process being
developed.

In this study we have used the ISO, all IEEE standards (ISO 20510,
ISO 20523, IEEE 12207, IEEE 610.12, IEEE 00100, PMBOK 2008,
CMMI v1.2) and SWEBOK to build a consistent SQA ontology that
includes both domain and operational knowledge. Table 1 shows the
main SQA-related classes that were extracted from the SWEBOK with
their instances. The conceptual structure of the proposed SQA ontology
is illustrated in Figure 1. The latter shows the various relationships
used to define all SQA concepts, SQA-related software development
processes, SQA measurements and SQA metrics. The main class in the
domain ontology is SQA Concept class which is used to conceptualize
and to represent the knowledge of the SQA domain. The figure also
shows the major sub-classes of “SQA Concept”. The arrows represent
relationships (object properties) between domain classes (head of the
arrow) and range classes (tail of the arrow). The “is-a” property linksan
SQA concepts to its instances (individuals).

Figure 1 does not show all instances of the SQA measures due to
space limitation and readability purpose. Also, applicable SQA sub-
characteristics and measures are not limited to the ones listed in the
ontology. The ontology is designed so that additional measures can be
easily added for particular purposes to allow the ontology to evolve.

SQA Ontology Class List of Individuals
SQAProcess Validation, verification, audit, review, inspection, joint review, technical review, management review, testing, quality assurance, SW design

quality evaluation.
Quality Characteristic Functional Suitability, Performance Efficiency, Compatibility, Usability, Reliability, Security, Portability
Sub-characteristic Functional Completeness, Functional Correctness, Maturity, Capacity, Fault Tolerance, Recoverability, Learnability, Operability, Installability,

Interoperability, Appropriateness Recognizability, Time Behavior, Resource Utilization, Accessibility, User Error Protection, Availability,
Functional Appropriateness, Adaptability, User Interface aesthetics, Analyzability, Modifiability, Testability, Non-repudiation, Replaceability,
Coexistence, Confidentiality, Integrity, Accountability, Authenticity, Modularity, Reusability

Measure Functional implementation coverage, Correctness, Computational accuracy, Functional appropriateness measure, Response time,
Turnaround time, Throughput, CPU utilization, Memory utilization, I/O devices utilization, No. of online requests, No. of simultaneous access,
Bandwidth of transmission system, Available coexistence, Connectivity with external system, Data exchangeability, Description completeness,
Demonstration capability, Completeness of user documentation, Operational consistency, Message clarity, Customizing possibility, Input
validity checking, Avoidance of incorrect operation, Appearance customizability of user interface, Physical accessibility, Fault removal,
Test coverage, Mean time between failure MTBF, Service time ratio, Mean down time, Failure avoidance, Redundancy, Mean recovery
time, Access controllability, Data encryption, Data corruption prevention, Utilization of digital signature, Access auditability, Authentication
methods, Condensability, Execution of reusability, Audit trial capability, Diagnosis function sufficiency, Localization degree of correction
impact, Modification complexity, Modification success rate, Functional completeness of embedded test functions, Autonomous testability,
Test restartability, Hardware environment adaptability, System software environmental adaptability, Organizational environment adaptability,
Installation time efficiency, Ease of Installation, User support function consistency, Functional inclusiveness, Continuous usage of data,

Deliverable Operation report, problem report, audit strategy, design, fault removal report, requirement specification, QA plan, source code, review report,
test cases, test report, test specification, user manual, user monitoring record, validation plan, verification plan.

Resource Check list, complexity analysis, control flow analysis, meeting, prototyping, simulation, use cases, walk through.

Table 1: List of SQA Ontology Classes and their Instances.

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 3 of 14

Class

SQAProcess

Class

Deliverable
Class

Project

Class

Resource

hasProcess

Class

Quality
Characteristic

uses

Functional
Suitability

Performance
Efficiency

Compatibility

Usability

Reliability

Security

Portability

is-a

is-a

isInputTo

is-a

hasQualityAttribute

Class

Sub-
characteristic

measures

Class

Measure
hasMeasure

is-a

conductedUsing

Validation

Verification

Inspection

Audit

Testing

Review

Technical Review

Joint Review

Management Review

Quality Assurance

SW Design Quality
Evaluation

is-a

Class
 Procedure

Class
 Technique

Class
 Method

is-a

is-a
 Functional Correctness

Capacity
 Maturity

Fault Tolerance

Recoverability

Learnability
 Operability
 Installability
 Interoperability
 Appropriateness Recognizability
 Time Behavior
 Resource Utilization
 Accessibility
 User Error Protection

Availability
 Functional Appropriateness

User Interface aesthetics

Analyzability

Modifiability

Testability

Adaptability

Replaceability

Coexistence

MTBF

Precision

Ease of Installation
 Authentication Methods

Data Exchangeability

Access Controllability

Failure Resolution

Fault Density

Test Coverage

Fault Removal
 Availability
 Restartability
 Restorability
 Test Restartability
 Description Completeness
 Demonstration Capability
 Operational Consistency
 Message Clarity
 Service Time Ratio
 I/O Utilization
 Accuracy to Expectation
 Mean Down Time
 Redundancy
 Mean Recovery Time
 Access Controllability
 Data Encryption
 Access Auditability

invokes

Data Flow Analysis

Complexity Analysis

is-a

Class

Requirement

produces

Class

Functional
Requirement

Class

NonFunctional
Requirement

is-a

hasDeliverable

hasRequirement
enforces

isInputTo
Measurement

Functional Completeness

 is-a

Confidentiality
 Integrity
 Non-repudiation
 Accountability
 Authenticity
 Modularity

Audit Strategy

Design

QA Plan

Req. Specification

Review Report

Source Code

Test Cases

Test Report

User Manual

Validation Plan

Verification Plan

Test Specification

Operation Report

User Monitoring Record

Problem Report

FaultRemoval Report

Walk Through

Prototyping

Check List

Meeting

Use Cases

Simulation

Pair
Programming

User Stories

Generic OO
Design

Practices

Continuous
Integration

Case
Dependent

On-site

Customer

Iterative
Incremental
Developmen

Reusability

Figure 1: The SQA Conceptual Model.

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 4 of 14

Name Domain Range Cardinality Inverse Property
hasProcess Project SQAProcess Multiple: a project may have more than one process -
Enforces SQAProcess Quality Characteristic Multiple: a process may have more than one attribute enforced By
uses SQAProcess Resource Multiple: a process may use more than one resource is Used By
isInputTo Deliverable SQAProcess Multiple: a process may have more than one deliverable as input has Input
measures Sub-characteristic Quality

Characteristic
Single: a quality sub-characteristic can be used to measure
specific quality characteristic

is Measured By

invokes SQAProcess SQAProcess Multiple: a process might invoke other processes -
produces SQAProcess Deliverable Multiple: A process might produce one or more products is Produced By
hasMeasure Quality

Characteristic
Measure Multiple: a quality sub-characteristic may have one or more

measures
is Measurement Metric of

conductedUsing Measure SQAProcess Multiple: a quality measure may be conducted using one or more
process(es)

-

Table 2: SQA Ontology Properties.

Quality characteristic Sub-characteristic Measure Input to measure ISO/IEC 12207 Ref.
Maintainability Analyzability Audit trial capability Problem report

Operation report
Testing

Diagnostic function support Problem report
Operation report

Testing

Modifiability Change access rate
Modification complexity Problem report

Operation report
Maintenance report

Testing

Localization degree
Testability Test restartability

Reliability Maturity Fault removal Test report Testing
Validation
Quality Assurance

Mean Time Between Failure Test report
Operation report

Testing

Test Coverage Req. specification
User manual
Test report
Operation report

Testing
Validation
Quality Assurance

Fault tolerance Failure avoidance Test report
Operation report

Testing
Validation

Recoverability Mean recovery time Test report
Operation report

Testing
Validation

Restartability Test report
Operation report

Testing
Validation

Table 3: Maintainability and Reliability Knowledge as in ISO/IEC 20510/25023.

Term Ontology Concept Related Ontology Concepts
User Stories Technique usedBy joint review and Verification
Pair Programming Technique usedBy Quality Assurance
Generic OO Design Practices Technique usedBy Quality Assurance
Continuous Integration Technique usedBy Validation and Verification
Case Dependent Technique usedBy Quality Assurance
On-site Customer Technique usedBy Joint Review
Iterative Incremental Development (IID) Technique usedBy Verification, Validation, Qualification Testing,

and Joint Review

Table 4: Agile Terminology and SQA Processes.

for the purpose it was built for, and evaluating other attributes such
conceptual coverage and clearness. A common approach is to evaluate
the ontology according to a set of ontology design principles and
criteria, such as those reported [16,17]. For example, it should be
possible to extend the ontology to cover new needs and uses. Also, it
is important to leave some representational choices (such as concept
roles, relations, and constraints) open so that they can be made available
at a late stage based on the actual needs of the problem solving or
application. However, the most important three assessments according
to Corcho [17] that should be conducted to evaluate an ontology are

verification, validation and assessment. Verification refers to building
the ontology correctly. In other word, it ensures that the ontology
functions correctly in the real world. Validation refers to whether the
ontology definitions really model the domain for which the ontology
was created for. Ontology validation ensures that the correct ontology
was built. The goal is to show that the world model is compliant with
the formal model. Finally, assessment focuses on judging the ontology
from users’ points of view (human judgment).

Many attributes were used to develop the above-mentioned three

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 5 of 14

ontology assessments. The most used attributes are:

•	 Completeness: all knowledge that is expected to be in the
ontology is either explicitly stated in it or can be inferred.

•	 Consistency: refers to whether a contradictory knowledge
can be inferred from a valid input definition.

•	 Conciseness: ensures that the ontology is free from any
unnecessary, useless, or redundant definitions.

•	 Expandability: refers to the ability to add new definitions
without altering the already stated semantic.

Many ontology evaluation approaches have been adopted in the
literature depending on the purpose of the evaluation and the type
of the ontology being evaluated [18]. In survey ontology evaluation
approaches are classified as follows [18]:

1.	 Those based on comparing the ontology to a “golden
standard” which might be an ontology itself;

2.	 Those based on using the ontology in an application and
evaluating the results (application-based ontology evaluation);

3.	 Those involving comparison with a source of data (e.g. a
collection of documents) about the domain to be modeled by the
ontology; and

4.	 Those where evaluation is done by humans who try, through
a survey for instance, to assess how well the ontology meets a set of
predefined user requirements and standards.

The first approach is not applicable in our case due to the lack of
a “golden standard” Software Engineering ontology. However, the
remaining three evaluation techniques have been used to assess the
proposed SQA ontological model. An application-based ontology
evaluation was conducted using the developed prototype recommender
system as shown in section 4.2. The third approach was adopted during
the ontology development stage where the evolving conceptual model
(shown in Figure 1) was compared to the sources of knowledge as
shown in section 4.1. The fourth approach was also used in this study by
developing an ontology assessment questionnaire that was distributed
among SE specialists. The results of the survey are presented in section 4.3.

Verifying the developed ontology

During implementation, the developed ontology was verified
for consistency using the Protégé consistency checker tool which
automatically checks the consistency and conciseness of the developed
ontology. Only inconsistent classes will be displayed by the tool. Figure
2 shows the result generated by Protégé and the Racer Pro reasoning
for the consistency checking [19] where no inconsistence classes are
listed. Syntax checking is performed by Protégé OWL (Web Ontology
Language) plug in which generates OWL statements during creation of
the ontology using the Graphical User Interface. The plug in ensures
that the generated OWL statements adhere to the rules of the OWL
language.

In addition, the visualization tab (another Protégé plug in), enables
a view of the graph representation of the ontology to ensure the
ontology is consistent with the conceptual model (Figure 2).

Validating the ontology using the SQAES web application

Application-based (or task-based) evaluations offer a useful
framework for measuring practical aspects of ontology deployment
such as the responses provided by the system, the degree of explanation
capability offered by the system, and the ease of use of the query
component [20]. A proof of concept prototype consisting of an SQA
recommender system has been designed and implemented [8]. To
develop some scenarios, we have built an upper ontology, mainly for
modeling learners’ profile and learners’ context. The upper ontology
consists of three interrelated sub-ontologies, namely Developer
(learner) Sub-ontology, Software Development Sub-ontology, and the
SQA Domain Sub-ontology. Figure 3 shows the general structure of
the upper ontology with the relationships among the sub-ontologies.
The Developer Sub-ontology represents the developer’s activity profile,
which consists of already consumed learning resources. The developer’s
activity profile and related knowledge are organized into ontology
concepts and relationships. This allows adapting and delivering LOs
relevant to the software process currently in hand.

The SQA Domain Sub-ontology captures general concepts and
properties about the SQA knowledge domain. The main class in this
ontology is SQA Concept that is used to conceptualize and represent

Figure 2: Protégé Consistency Checking Result for SQA Concepts.

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 6 of 14

Class

Developer

Class

SW Development Process

Class

Quality
Attribute

R

R

D

Object Property
makeQueryD

Software Development OntologyDeveloper Ontology

Object Property
invokesObject Property

produces

D

D

D

Class
SQA Measure

Class
Deliverable

Object Property

isInputTo

R

Class
ResourceClass

SQA Metric

Object Property
inputToMeasurement

Object Property
hasQualityAttribute

Object Property
uses

R

Object Property
measures

R

D

Object Property
hasMeasurementMetric

R

D

R

D

R

R SQA Ontology

Object Property
coveredConcept

R

D

R: Range
D: DomainD

Figure 3: SQA Upper Ontology.

Web Server
Apache Tomcat

Java Servlet
Eclipse SDK

1: Send Query
Jena

Framework

OWL Ontology
Global Ontology Space

Protégé 3.4

2a: Read
Ontology

Jess 7
2b: Retrieve

Keyword
Concept

Dom4j

Buffer Storage
Retrieved Los

XML

LO Repository
Learning Objects

XML 3a: Retrieve
Related LOs

3b: Save to
Buffer

Ontology Reasoning
SWRL-Jess Bridge

Java API
4b: Invoke
Reasoning

5: Filter LOs based on
Developer’s Context

6: Retrieve
Matched

LOs

7: Display Result

4a: Infer
Process Related

Concepts

Figure 4: Software Components of the Recommender System.

all concepts of the software quality ontology and related operational
knowledge. The property make Query associates process-related
keywords entered by the developer to the most relevant concept in the
Software Development Process Sub-ontology. The property is Mapped
To links the concept class to the learning object class. The property
is Mapped To is used to map learning objects’ metadata to the SQA

ontology concepts and thus allow sharing of resources. The property
Consumed Learning Object tracks LOs previously consumed by a
specific learner. The sequence of steps in a typical learning scenario is
illustrated in Figure 4 (Figures 3 and 4).

As illustrated in Figure 4, the sequence of steps in a typical learning

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 7 of 14

scenario is given below:

1.	 The developer navigates (or queries for) an SQA concept.

2.	 The system retrieves the SQA concept(s) related to the
developer’s queried one.

3.	 Then, the system retrieves associated LOs from the LO
repository using the term(s) extracted in step 2.

4.	 The system then infers other SQA related concepts using
relationships such as Necessary Requirement, Optional Requirement,
Used Resource, ensures QA, Produced Product, and Invoked Process.

5.	 LOs associated to new terms extracted in step 4 are retrieved
from the LO repository.

6.	 The system will then check for previously covered concepts
and LOs, which are then removed from the list of recommendations.

7.	 The suggested LOs are then provided to the developer for
investigation, and then the same cycle can be repeated again.

In the developed prototype recommender system, ontology
reasoning is performed to personalize software development services
based on the developer’s context. The system filters out the available
LOs based on the developer’s usage profile and guided by related
ontology-based reasoning. The output is a set of SQA resources that are
directly related to the developer selected query (i.e. SQA process being
developed). This developer centric adaptation is enabled by integrating
knowledge components from the three sub-onto logies. Ontological
rules are applied to dynamically infer metadata that can be used to
customize offered LOs.

Besides the OWL ontology reasoning rules (sub Class of, sub
Property of, inverse of, etc.) which are necessary to navigate and search
for ontology concepts and properties, the SQA knowledge base is
extended with a set of user defined rules to allow inferring higher-level
conceptual context from relevant low-level ones.

The prototype system aims at guiding software developers through
the necessary SQA practices by providing resources that deal with SQA
related aspects of the software process in hand and hence improves
product quality in an agile software development environment. This
is achieved by sensing the developer’s current activity and suggesting
relevant LOs (e.g. recommendations for good practices, example code,
and graphical description of a related methodology/process) that deal
with all SQA aspects related to the currently developed software process.
The developer centric adaptation achieves its functionality in two steps.
First, the reasoning unit of the proposed recommender system infers
the core LOs that are directly related to the queried concept through
the object property is Mapped To using the Core Learning Object rule
illustrated by:

Developer (?D) ^ make Query (?D,?C) ^ is Mapped To (?C,?LO) ^
consumed Learning Object (?D,?LO) core Learning Object (?C,?LO)

Related LOs are then inferred using different user defined SWRL
(Semantic Web Rule Language) rules and depending on user’s
task. The output is a sequence of LOs that are generated as learning
recommendations. Second, recommendations generated from the
previous step are then semantically refined and adjusted according
to the developer’s profile where the system removes LOs that have
already been consumed by the developer. The property consumed
Learning Object links the learner (Software developer) to the learning
objects that have already been consumed by the learner. The ontology
model has been validated by developing many user scenarios using the

prototype recommender system. Appendix A shows some of the SWRL
rules that have been used to infer learning resources for all possible
scenarios.

Ontology conciseness: The prototype recommender system
provides the developer with a list of recommended LOs based on the
initial query. However, this list may include many LOs that are out of
context and therefore, might not be necessary for the user. To ensure
conciseness, ontology axioms (i.e. a declaratively and rigorously
represented knowledge which has to be accepted without proof) were
added to prevent unnecessary knowledge. In ontology representation,
axioms can be used to represent the meaning of concepts rigorously,
and to answer questions on the capability of the built ontology using the
ontology concepts. For example when the user queries the Validation
concept, which is a process according to the SQA ontology, the system
retrieves the core LOs associated with the Validation concept from the
LO repository. Related concepts represent the list of recommended
SQA concepts to be provided to the user for further investigation.
However, this list may include some irrelevant LOs. In the example of
Validation, by firing the Invokes rule, LOs associated with all software
processes will be added to the list of recommendations. In theory (i.e.
as per IEEE 12207 standard), only those processes that are associated
with Review and Audit should have been added to the list and not all
those listed in Figure 5.

To prevent such situation, recommendation refining is guaranteed
by adding the so called “blocking axioms” to the ontology model.
By referring back to our example related to Validation concept and
according to ISO/IEC 9126 [21] standard, a Validation process
produces Test Report and Validation Plan and requires Requirement
Specification, Source Code, Test Report and User Manual as inputs.
In addition, Validation has Efficiency and Functionality as quality
attributes and uses Use-Cases, Iterative Incremental Development,
Prototyping, Testing, Measurement, and Continuous Integration as
resources. The above knowledge can be represented with the following
axioms added to the Validation concept of the SQA ontology model:

∀Produces only (Test Report or Validation Plan)

∀ invokes only (Review or Audit)

∀ ensures QA only (Efficiency or Functionality)

∀uses only (Continuous Integration or Use case or Testing or
Iterative Incremental Development or Prototyping or Measurement)

∀has Input only (Requirement Specification or Source Code or
Test Report or User manual)

In Table 5 we show few more axioms added to some of the concepts
in the SQA ontology. The complete list of axioms cannot be presented
due to space limitation (Figures 5 and 6) (Table 5).

Assessing the quality of the SQA ontology

Ontology assessment was conducted by judging the ontology
content from SE specialists’ point of view. The ontological conceptual
model summarized in Figure 1 with a link to an assessment
questionnaire has been sent to domain specialists inviting them
to participate in the SQA ontology assessment process in order to
verify its SQA domain coverage, structure, clarity, and extendibility.
Collecting responses from domain experts was a challenging task due
to the limited number of available experts in the SQA domain. It took
more than seven months to get 16 responses out of a large number of
invitations to participate in the online assessment. Although the sample
is small, it is considered fairly acceptable to judge the developed SQA

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 8 of 14

Validation

LR4

Core Learning

Resources
Audit

Review

Test Report

User Manual

Source Code

Validation

Plan

Req. Specification

Related Concepts

LR3

LR2
LR1

LR6

LR8

LR5

LR7

Functionality

Efficiency

Testing

Use Cases

Iterative

Development

Continuous

Integration

Prototyping

 Figure 5: Process-Driven Recommendations for “Validation”.

Figure 6: Participants’ Assessments of the SQA Ontology.

Concept Axioms
Efficiency ∀ is Ensured By only (Validation or Verification or SW_Design_Quality_Evaluation)

∀measured By (Efficiency_Compliance or Resource_Utilization or Time_Behavior)
Failure Avoidance ∀Conducted Using only (Joint_Review or Qualification_Testing or Validation or Verification)

∀ is Measurement Metric of only (Fault_Tolerance)
∀ has Measurement MetricInput only (Requirement_Specification or Review_Report or Test_Report)

Data Exchangeability ∀Conducted Using only (Joint_Review or quality_Assurance or Validation)
∀ is Measurement Metric of only (Security)
∀has Measurement MetricInput only (Requirement_Specification or Review_Report or Test_Report or Design or Operation_Report or Source_Code)

Test Coverage ∀Conducted Using only (Qualification_Testing or quality_Assurance or Validation)
∀ is Measurement Metric of only (Maturity)
∀ has Measurement MetricInput only (Test_Report or Requirement_Specification or User_Manual)

Table 5: Some SQA Concepts with Related Axioms.

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 9 of 14

domain ontology. The results of the survey are summarized in Figure
6 and an analysis is presented below, including experts’ suggestions to
enhance the SQA ontology.

Completeness: The majority of participants (81.3%) agreed that
the ontology developed in this research covers the major concepts of
the SQA domain. Few respondents however, think that it is missing
“Testing” related concepts (unit testing, black and white box testing,
system testing, etc.). Though, the current ontology is not heavily focused
on testing techniques, it is worth investigating this aspect in future
developments. Another suggestion was made to add concepts such as
Software type, Software life cycle model, Architecture, Configuration
management. However, we strongly believe that these are not SQA
concepts. Nevertheless, these concepts can be added to the ontology if
the latter is to be mapped to other SE areas or to an upper-level general
purpose SE ontology.

Structure: A reasonable majority of the respondents (62.5%) agreed
with the ontology taxonomy as is, while the remaining respondents did
not have real disagreements. There were few remarks such as having
Design comes after Review Report in the list of instances of the class
Deliverable, which we consider semantically insignificant.

Clarity: This criterion obtained a borderline score (50%), just
around the mean (3.13). However, we believe that this is a reasonably
fair opinion due to the large number of overlapped and redundant SQA
terms in available proposals and sources of SQA knowledge. It was
noted that most reported disagreements were related to the confusion
between Measurements and Metrics. A significant suggestion, which
we have taken into consideration and have been incorporated in
the ontology design, is to use the terms Quality Characteristic and
Sub-characteristic instead of Quality Attribute and Measurements
respectively. It was also suggested to replace the term Measurement
Metric with the term Measure as per the latest quality standard ISO/
IEC 25010. These recommendations were very useful in enhancing the
ontology for clarity purpose.

Consistency: A reasonable majority of the responses (68.8) agreed

that the developed ontology is consistent. Ontology consistency was
verified using the Protégé consistency checker plug in.

Expandability: A good ontology is assumed to cover necessary
concepts of the domain and structure them in a way that adding
evolving concepts would not affect the existing structure. A satisfactory
result was obtained for this criterion as the majority (75%) agreed
on the expandability of the developed ontology. Some suggestions to
include agile terminology with new quality measurements and metrics
(as in ISO/IEC 25010) were taken into consideration and incorporated
into the current SQA ontology design.

Experimental Results
In this section, we first present few working scenarios to show

the most important features of the system. Then, we focus on another
scenario that shows agile-based SQA software support features.

Working scenarios

In the first scenario we show the importance of using axioms in
filtering relevant learning resources. The prototype recommender
system provides the user with a recommendation list based on the
initial query. The recommendations of the LOs suggested by the system
include the core LOs of the queried concept and a few related topics
based on the inferred SWRL rules. Figure 7 is a screen shot of the
system when the user queries about the Validation process without the
use of the ontology axioms.

In Figure 7 the system displays all SQA processes as invoked
processes by the Validation process. Irrelevant knowledge have been
prevented by adding axioms to the SQA ontology model. The results
in Figure 8 show the system robustness when using ontology axioms
as only contextually relevant resources are filtered. This validates the
ontology conciseness and correctness when using ontology axioms
(Figures 7 and 8).

In another scenario, the learner wants to know more about the
Software Failure Avoidance concept. The screen shots shown in

Figure 7: SQAES Response to the User’s Query without Ontology Axioms.

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 10 of 14

Figure 8: SQAES Response to the User’s Query using Ontology Axioms.

Figure 9a: The SQAES System.

Figures 9a-9d present the results from the system when the user
queries “Software Failure Avoidance”. The system initially provides
all core LOs of the queried concept and a few related LOs generated
when the reasoning system infers processes used to conduct the
Failure Avoidance concept. These are related to software quality sub-
characteristic that uses the Failure Avoidance measure and inputs
to the Failure Avoidance measure. In this learning scenario (Figures
9a-9d), we show the system recommendations when the user viewed

a LO related to the core knowledge of Failure Avoidance, and then,
the learner further investigation about the SQA concept “Validation”
where already consumed LOs are shown (Figures 9a-9d).

Agile software development scenario

Although agile methods produce software faster, they need to
attain quality products. While quality software is the output of quality
process, it is not clear how current agile practices and methods attain

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 11 of 14

Investigated in Fig 8c

Investigated in Fig 8d

Figure 9b: The SQAES System.

Figure 9c: The SQAES System.

quality under time pressure and in an unpredictable requirements
environment. As an extension of the use of the prototype recommender
system, the latter can be used to provide agile developers with, just-
in-time and in a contextualized way, all necessary resources that deal
with SQA related aspects of the software process at hand and hence

improve quality in an agile software development environment. To
support agility, which relies on individual’s tacit knowledge that is
very much based on usual work practices and methods, some agile
software development resources [12,13] were used to encode related
SQA concepts in the developed ontology. It should be noted that the

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 12 of 14

Figure 9d: The SQAES System.

Figure 10: Combined view of the SQAES System for Agile SW Development.

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 13 of 14

inclusion of the agile terminology into the SQA ontology did not
affect the concepts and relationships of the original ontology and thus
confirms the expandability of the ontology.

To use the system in an agile development environment, the
ontology is first used to annotate software development related
keywords. Once a keyword is annotated, the system triggers a drop-
down menu with all possible queries that can be generated from the
ontology concept that is related to that keyword as shown in Figure 10.
The example in Figure 10 shows a combined view with the drop-down
menu displaying learning resources related to Validation and its SQA
related concepts (invoked processes, produced deliverables, required
inputs and used resources). In this case, the user would like to know
more about Continuous Integration techniques that are used by the
Validation process (Figure 10).

Related Work
In this section we survey recent work in the area of developing

ontologies for SE knowledge representation with special focus on
those developed for the SQA domain. Software Engineering Body Of
Knowledge - SWEBOK-guide provides an international recognized
consensus in software engineering terminology. SWEBOK has been
used by many researchers to develop partial or sub-domain ontologies
tailored to different purposes. However, comprehensive domain
ontology in SE does not yet exist. Wille et al. [22] were the first to
present a formal approach for designing ontology for SWEBOK. Their
work was limited to modeling the taxonomy of software engineering as
defined by SWEBOK knowledge areas. Also, their ontology is tightly
designed to the SWEBOK naming space, which makes it difficult for
mapping with externally defined concepts. Calero et al. [23] have
developed a Software Measurement Ontology (SMO) to provide
a coherent terminology among different software measurement
proposals and standards. Unlike the ontology developed by Wille [22],
the SMO ontology includes detailed knowledge about the measurement
process, their attributes and results, while it does not link them to their
SQA metrics and standards.

In the area of software testing, Barbosa et al. [24] have used the ISO/
IEC 12207 [25] standard to develop Onto Test, an ontology based on a
common well-defined vocabulary for software testing that can be useful
to develop supporting tools and to increase interoperability among
software testing tools. In our paper, we have borrowed few aspects of
the Onto Test ontology, especially those related to testing processes,
resources, and procedures [24]. In another related area, Kassab [26]
proposed an ontological representation of the software Non-Functional
Requirements (NFRs), their refinements, and their interdependencies.
The ontology focuses mainly on the SQA measurement process,
highlighting the mechanisms for measurable NFRs. For a complete
classification of developed ontologies for software engineering [27].

Conclusion
In this paper we presented an ontological approach for developing

a process-driven context-aware recommender to support agile
software development. The SQA ontology developed in this study
embeds both domain and operation knowledge about SQA processes
and their requirements, including SQA quality attributes, metrics and
SQA measurements based on the ISO/IEC 25010 and ISO/IEC 25023
standards. The system provides users with tailored SQA resources
to support them developing the software process in hand in a timely
manner. Context-awareness is achieved through a set of reasoning tools
that take into account user’s profile and learning history to recommend
SQA resources needed for the task in hand. Also, reasoning axioms are

dynamically added to the ontology for refining the list of recommended
LOs. An evaluation study was performed to check the developed
SQA ontology in terms of consistency, clarity, and completeness and
the results were very promising. Future research is directed towards
developing an excessive ontology assessment from experts’ point of
view. An ontology evaluation questionnaire has been developed and
the ontology is currently being extended based on suggestions provided
by SQA specialists.

Acknowledgment

The authors would like to thanks reviewers for their assessments, comments,
and suggestions that helped improve the current work.

References

1.	 Boehm B, Chulani S, Verner J, Wong B (2009) Seventh workshop on Software
Quality. International Conference on Software Engineering, ICSE-Companion,
Vancouver, Canada 449-450.

2.	 Saiedian H, Weide B (2005) The New Context for Software Engineering
Education and Training. The Journal of Systems and Software 74: 109-111.

3.	 Kalermo J, Rissanen J (2002) Agile Software Development in Theory and
Practice. Software Business program, Masters Thesis.

4.	 Huo M, Verner J, Babar AM, Zhu L (2004) How Does Agility Ensure Quality?
Proc. 2nd Workshop on Software Quality, Scotland.

5.	 Wang M, Jia H, Sugumaran V, Ran W, Liao J (2011) A Web-based Learning
System for Software Test Professionals. IEEE Transactions on Education 54:
263-272.

6.	 Bourque P, Dupuis R (2004) Guide to the Software Engineering Body of
Knowledge. SWEBOK, Computer Society Press.

7.	 Kusters RJ, Van Solingen R, Trienekens JJM (1999) Strategies for the
Identification and Specification of Embedded Software Quality. Proc. STEP’99:
Software Technology and Engineering Practice 33-39.

8.	 Bajnaid N, Benlamri R, Cogan B (2011) Context-Aware SQA E-learning
System. Proc. of the Sixth International Conference on Digital Information
Management ICDIM 2011, Melbourne, Australia.

9.	 (2011) Systems and Software Engineering-Systems and software Quality
Requirements and Evaluation (SQuaRE)-System and software quality models
ISO/IEC 25010.

10.	(2011) Systems and Software Engineering-Systems and software Quality
Requirements and Evaluation (SQuaRE) – Measurement of system and
software product quality ISO/IEC 25023.

11.	Pressman RS (2005) Software Engineering: a Practitioner’s Approach,
(6thedn). McGraw-Hill Inc.

12.	Bishop R, Lehman MM (1991) A View of Software Quality. IEEE Col. on
Designing Quality into Software Based Systems. London.

13.	Mnkandla E, Dwolatzky B (2006) Defining Agile Quality Assurance. Proc.
ICSEA-International Conference on Software Engineering Advances, Tahiti.

14.	Abrahamsson P, Salo O, Ronkainen J, Warsta J (2002) Agile Software
Development Methods: Review and Analysis. (VTT Publication 478). Technical
Research Centre of Finland, Espoo, Finland.

15.	Vrandečić D (2009) Ontology Evaluation. Handbook on Ontologies. International
Handbooks in Information Systems, (2ndedn), Springer, Heidelberg 293-313.

16.	Gruber T (1995) Towards principles for the design of ontologies used for
knowledge sharing. Int. Journal of Human-Computer Studies 43: 907-928.

17.	Pérez G, Lopez F, Corcho O (2004) Ontological engineering: with examples
from the areas of knowledge management, e-commerce and the semantic
Web. Springer-Verlag, New York, London.

18.	Brank J, Grobelnik M, Mladenic D (2005) A survey of ontology evaluation
techniques. Proc. of 8th Int. multi-conf. Information Society, Ljubljana, Slovenia.

19.	Haarslev V, Hidde K, Möller R, Wessel M (2011) The RacerPro Knowledge
Representation and Reasoning System. Semantic Web 1: 1-5.

20.	Obrst L, Ceusters W, Mani I, Ray S, Smith B (2007) The Evaluation of
Ontologies: Toward Improved Semantic Interoperability. Chapter in: Semantic

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5071056
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5071056
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5071056
http://dl.acm.org/citation.cfm?id=1045927
http://dl.acm.org/citation.cfm?id=1045927
http://www.cs.jyu.fi/sb/Publications/KalermoRissanen_MastersThesis_060802.pdf
http://www.cs.jyu.fi/sb/Publications/KalermoRissanen_MastersThesis_060802.pdf
http://www.lero.ie/content/howdoesagilityensurequality
http://www.lero.ie/content/howdoesagilityensurequality
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5487435&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F13%2F4358717%2F05487435.pdf%3Farnumber%3D5487435
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5487435&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F13%2F4358717%2F05487435.pdf%3Farnumber%3D5487435
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5487435&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F13%2F4358717%2F05487435.pdf%3Farnumber%3D5487435
http://www.math.unipd.it/~tullio/IS-1/2007/Approfondimenti/SWEBOK.pdf
http://www.math.unipd.it/~tullio/IS-1/2007/Approfondimenti/SWEBOK.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=798477
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=798477
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=798477
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6093327&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6093327
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6093327&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6093327
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6093327&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6093327
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://highered.mheducation.com/sites/0072853182/information_center_view0/index.html
http://highered.mheducation.com/sites/0072853182/information_center_view0/index.html
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=181940&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel3%2F1659%2F4633%2F00181940.pdf%3Farnumber%3D181940
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=181940&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel3%2F1659%2F4633%2F00181940.pdf%3Farnumber%3D181940
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4031821&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4031778%2F4031779%2F04031821.pdf%3Farnumber%3D4031821
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4031821&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4031778%2F4031779%2F04031821.pdf%3Farnumber%3D4031821
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://link.springer.com/chapter/10.1007/978-3-540-92673-3_13
http://link.springer.com/chapter/10.1007/978-3-540-92673-3_13
http://dl.acm.org/citation.cfm?id=219701
http://dl.acm.org/citation.cfm?id=219701
http://www.springer.com/us/book/9781852335519
http://www.springer.com/us/book/9781852335519
http://www.springer.com/us/book/9781852335519
http://www.bibsonomy.org/bibtex/28c910a2d3f6708b23e03e06ff843c8a8/dbenz
http://www.bibsonomy.org/bibtex/28c910a2d3f6708b23e03e06ff843c8a8/dbenz
http://franz.com/agraph/cresources/white_papers/swj109_3.pdf
http://franz.com/agraph/cresources/white_papers/swj109_3.pdf
http://link.springer.com/chapter/10.1007%2F978-0-387-48438-9_8
http://link.springer.com/chapter/10.1007%2F978-0-387-48438-9_8

Volume 5 • Issue 3 • 1000160J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Bajnaid NO, Benlamri R, Pakstas A, Salekzamankhani S (2015) Towards Ontology-based SQA Recommender for Agile Software
Development. J Inform Tech Softw Eng 5: 160. doi:10.4172/2165-7866.1000160

Page 14 of 14

Web 139-158.

21.	(2003) Software Engineering – Product Quality, Part1: Internal Metrics ISO/
IEC 9126-9133.

22.	Wille C, Dumke RR, Abran A, Desharnais E (2004) E-Learning Infrastructure for
Software Engineering Education: Steps on Ontology Modeling for SWEBOK.
Proceedings of the IASTED International Conference on Software Engineering
520-525.

23.	Calero C, Ruiz F, Piattini M (2006) Ontolgies in Software Engineering and
Software Technology. Springer.

24.	Barbosa EF, Nakagawa EY, Maldonado JC (2006) Towards the establishment
of an ontology of software testing. 18th Int. Conf. on Soft. Engineering and
Knowledge Engineering (SEKE’06) , San Francisco.

25.	 (2008) System and Software Engineering – Software Life Cycle Processes.
JTC 1 Information technology ISO/IEC 12207.

26.	Kassab M (2009) Formal and quantitative approach to non-functional
requirements modeling and assessment in software engineering. PhD thesis,
Concordia University, Canadas.

27.	Zhao Y, Dong J, Peng T (2009) Ontology Classification for Semantic-Web-
Based Software Engineering. IEEE Transactions on Services Computing 2:
303-317.

http://link.springer.com/chapter/10.1007%2F978-0-387-48438-9_8
http://www.researchgate.net/publication/220901401_E-Learning_Infrastructure_for_Software_Engineering_Education_Steps_in_Ontology_Modeling_for_SWEBOK_Software_Measurement_European_Forum
http://www.researchgate.net/publication/220901401_E-Learning_Infrastructure_for_Software_Engineering_Education_Steps_in_Ontology_Modeling_for_SWEBOK_Software_Measurement_European_Forum
http://www.researchgate.net/publication/220901401_E-Learning_Infrastructure_for_Software_Engineering_Education_Steps_in_Ontology_Modeling_for_SWEBOK_Software_Measurement_European_Forum
http://www.researchgate.net/publication/220901401_E-Learning_Infrastructure_for_Software_Engineering_Education_Steps_in_Ontology_Modeling_for_SWEBOK_Software_Measurement_European_Forum
http://www.springer.com/us/book/9783540345176
http://www.springer.com/us/book/9783540345176
http://www.researchgate.net/publication/221389585_Towards_the_Establishment_of_an_Ontology_of_Software_Testing
http://www.researchgate.net/publication/221389585_Towards_the_Establishment_of_an_Ontology_of_Software_Testing
http://www.researchgate.net/publication/221389585_Towards_the_Establishment_of_an_Ontology_of_Software_Testing
http://www.iso.org/iso/catalogue_detail?csnumber=43447
http://www.iso.org/iso/catalogue_detail?csnumber=43447
http://spectrum.library.concordia.ca/976579/
http://spectrum.library.concordia.ca/976579/
http://spectrum.library.concordia.ca/976579/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5161251&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5161251
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5161251&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5161251
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5161251&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5161251

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Modelling the SQA Domain Knowledge
	Evaluating the SQA Ontology
	Verifying the developed ontology
	Validating the ontology using the SQAES web application
	Assessing the quality of the SQA ontology

	Experimental Results
	Working scenarios
	Agile software development scenario

	Related Work
	Conclusion
	Acknowledgment
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9a
	Figure 9b
	Figure 9c
	Figure 9d
	Figure 10
	References

