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Abstract
To account for differences in susceptibility to alcoholic liver disease (ALD), tobacco smoking should be evaluated 

as a potential cofactor given the very high percentage of heavy drinkers also smoke, and the NNK tobacco-specific 
nitrosamine was shown to cause steatohepatitis and exacerbate molecular and biochemical effects of alcohol on the 
liver. Since one of the key factors linked to ALD progression is dysregulated lipid metabolism, we examined effects 
of cigarette smoke (CS) exposures on hepatic lipid profiles using matrix-assisted laser desorption and ionization 
imaging mass spectrometry (MALDI-IMS). Adult male A/J mice were exposed to air (8 weeks; A8), CS for 4 (CS4) or 8 
(CS8) weeks; or CS8 with 2 weeks recovery (CS8+R). MALDI-IMS demonstrated broad CS-associated reductions in 
hepatic phospholipids that were partly ameliorated by short-term recovery. Principal component analysis revealed CS-
associated shifts in phospholipid profiles that also partly normalized with recovery. Heatmaps demonstrated striking 
effects of CS with graded responses to exposure duration and recovery. Importantly, several of the CS-induced lipid 
profile alterations persisted after air recovery, suggesting that the responses had become permanent, whereas others 
worsened with CS exposure duration and were either sustained or revered with recovery.
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Introduction
Alcohol abuse is a leading cause of liver related morbidity and 

mortality [1-3] due to progression of steatohepatitis to escalating 
chronic disease states that culminate in cirrhosis and eventually 
liver failure [4-6]. In alcoholic liver disease (ALD), hepatic function 
deteriorates due to adverse interactive effects of insulin resistance [7-9], 
cytotoxic and lipotoxic injury [10-13], inflammation [10,14], oxidative 
and ER stress [15-18], metabolic and mitochondrial dysfunction [5,19], 
decreased DNA synthesis [8,20], and increased cell death [11]. 

Since progressive ALD occurs in only a percentage of individuals 
who regularly consume alcohol, increased understanding of its 
pathogenesis, including the role of co-factors, could help improve 
preventive, diagnostic and therapeutic approaches. In this regard, it 
is noteworthy that a very high percentage (~80%) of heavy drinkers/
alcoholics also abuse tobacco products, typically by cigarette smoking 
[21,22], yet little is known about non-carcinogenic, degenerative 
effects of smoking, apart from cardiovascular and pulmonary diseases. 
Nonetheless, the potential role of tobacco smoke as a cofactor in ALD 
was suggested by the findings that: 1) chronic low level exposures to 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone or nicotine-derived 
nitrosamine ketone (NNK), one of the most abundant nitrosamines 
present in tobacco smoke [23-26], cause steatohepatitis with insulin 
resistance, along with most other abnormalities present in ALD [27]; 
2) chronic exposures to ethanol and NNK caused striking and partially 
overlapping alterations in hepatic lipid profiles as demonstrated
by matrix-assisted laser desorption and ionization-imaging mass
spectrometry (MALDI-IMS) [28]; and 3) both ethanol and NNK cause 
hepatic insulin resistance with impaired signaling through PI3K-
Akt pathways, DNA damage, lipid peroxidation, pro-inflammatory
cytokine activation, and ceramide accumulation, and dual exposures
worsened the severity of steatohepatitis and associated molecular and
biochemical abnormalities compared with either exposure alone [27].

The present work directly examines the effects of cigarette smoke 
(CS) exposures on liver function, using MALDI-IMS to focus on 

alterations in hepatic lipid profiles. This approach was taken to assess 
the degree to which CS exposures cause metabolic dysfunction, and 
whether the abnormalities could be reversed by short-term smoking 
cessation. 

Methods 
Experimental model 

These studies utilized an A/J mouse model similar to the one 
developed in 2002 [29]. The A/J strain was used because of its high 
susceptibility to lung defects after tobacco smoke exposure [30]. 
Furthermore, the A/J model replicates the human experience in 
that following chronic (5 months) tobacco smoke exposure, plasma 
cotinine levels are comparable to those in active human smokers, and 
the mice develop emphysema and lung tumors [29,31]. However, the 
relatively short-term exposures that we employed do not produce these 
end-point diseases [31-33].

Adult (8 weeks old) A/J male mice (N=5-6/group) were exposed 
to cigarette smoke (CS) or air as follows: 1) 8 weeks of room air only 
(A8); 2) 4 weeks CS (CS4); 3) CS8; 4) CS8 followed by 2 weeks recovery 
(CS8+R) [32,33]. CS was generated from research grade Kentucky 
3R4F cigarettes (Tobacco Research Institute, University of Kentucky, 
Lexington, KY) using an industry standard Teague Enterprises, TE-
10 Smoking Machine (Davis, CA). The cigarettes contained 11 mg of 
total particulate matter (TPM) and 0.73 mg of nicotine. Side-stream 
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and mainstream smoke were mixed in a ratio of 89% to 11%, which is 
similar to environmental tobacco smoke exposures. Six cigarettes were 
puffed simultaneously, one time per minute for 9 puffs. The cigarettes 
were burned for 6 hours/day, 5 days/week and for 4 or 8 weeks duration. 
Mice were adapted to CS by ramping up concentration and exposure 
period in the first week. 

The chamber atmosphere was monitored for total suspended 
particles. The smoke exposure system involved burning of cigarettes 
in one location, and then delivering the smoke to exposure chambers 
that housed the mice. In the vicinity where cigarettes were burned, the 
CO levels reached 24 ppm, which is well above natural air (less than 0.5 
ppm) but comparable to the amounts present in tobacco smoke exhaled 
by humans (25-30 ppm) [34]. The atmosphere within the mouse CS 
exposure chambers had 21% oxygen and approximately 3 ppm of 
CO. Before use, the cigarettes were kept for 48 h in a standardized 
atmosphere humidified with 70% glycerol-30% water. Throughout the 
experiment, mice were housed under humane conditions and kept on a 
12-hour light/dark cycle with free access to food. All experiments were 
performed in accordance with protocols approved by the University of 
Southern California’s Institutional Animal Care and Use Committee, 
and conformed to guidelines established by the National Institutes of 
Health.

Liver tissue collection and lipid extraction 

Freshly harvested liver tissue was snap frozen and stored at -80°C 
for biochemical studies. Lipids were extracted from fresh frozen tissue 
with 2:1 chloroform-methanol [35].

Sample preparation for Matrix-Assisted Laser Desorption/
Ionization Imaging Mass Spectrometry (MALDI-IMS) 

Fresh frozen tissue (3-5 mm diameter) samples were equilibrated 
to -20°C and mounted onto cryostat chucks using the minimum 
amount of Optimal Cutting Temperature Compound (OCT; Tissue-
Tek®; Sakura Finetek, Torrance, CA, USA) that avoided contamination 
of the slide. Frozen sections (10 µm thick) were thaw-mounted onto 
indium tin oxide (ITO)-coated slides (Delta Technologies, Loveland, 
CO) and vacuum dried for 2 hours in a desiccator. After washing with 
HPLC grade ammonium formate (50 mM, pH 6.4) to remove salts and 
enhance lipid analysis [36], the slides were re-dried and sublimed with 
2,5-dehydroxybenzoic acid (DHB; Sigma-Aldrich Co, St. Louis, MO) 
[37] as the matrix [38].

MALDI-IMS/Time of Flight and Data Analysis for Lipid Ions 

Imaging was performed with a reflectron geometry MALDI-TOF/
TOF mass spectrometer (Ultraflextreme, Bruker Daltonics, Bremen, 
Germany). Analyses were performed by focusing a Smartbeam II 
Nd:YAG laser onto a ~100 µm area, and Imaging data were acquired 
in the negative ion mode at a lateral resolution of 100 μm, summing 
500 shots/array position at a laser repetition rate of 1000 Hz. Data were 
processed using FlexAnalysis v3.4 and visualized with FlexImaging 
software v4.0. Results were normalized to total ion count, which 
prevents ion suppression and variation across tissue sections and 
matrix preparations, and analyzed statistically using ClinProTools 
v3.0. Post-imaged and adjacent sections fixed in formalin and stained 
with H&E were used to co-register regions of interest (ROI) with the 
MALDI-IMS. Lipids were identified by comparing the precursor and 
product ion m/z values with those catalogued in the LIPID MAPS 
prediction tool database (http://www.lipidmaps.org/tools/index.html). 
Their identities were confirmed by tandem mass spectrometry (MS/
MS) in the LIFT-TOF/TOF mode.

Heatmap statistics 

Heatmaps were constructed using Version 3.2 of R software [39,40]. 
Exploratory data analysis verified the quality of observed data. The data 
were imported into R as a comma delimited values table, excluding the 
control genes (Actin and HPRT). Several transformations were applied 
to the row values. To scale the data, row means were subtracted from 
each cell. The resulting values were further divided by the standard 
deviation in order to obtain a z-score of each individual cell yielding 
row values with a mean of 0 and S.D. of 1. The resulting values were 
plotted using a cosmetically modified version of a latent R heatmap 
function using a 6-color palette. We also applied hierarchical clustering 
algorithm using Euclidean distance function on the overall table to 
display a dendrogram of mRNAs.

Results
Matrix-assisted Laser Desorption Ionization-Imaging Mass 
Spectrometry (MALDI-IMS)

MALDI-IMS approach: MALDI-IMS enables visualization of 
specific molecules, including drugs, lipids, peptides, and proteins 
in tissue sections [41,42]. MALDI-IMS is remarkably sensitive and 
specific as it enables detection of ions with known mass/charge 
(m/z) characteristics [43,44]. Importantly, MALDI-IMS can be 
used to examine tissue biochemical abnormalities, complementing 
histopathological and molecular studies. Hepatic steatosis and 
steatohepatitis are among the most challenging disease entities in 
which we lack the ability to decipher pathogenesis and understand 
the contributions of various exposures to disease. Lipids have great 
structural diversity [45] yet despite their relative structural simplicity, 
the cellular lipidome’s composition is complex and its functions are 
diverse. For example, lipids have critical roles in providing structural 
integrity to membranes; they serve as energy reservoirs (triglycerides); 
and they are used to generate precursor molecules for second messenger 
signaling [46].

MALDI-IMS analysis of hepatic lipid profiles: Whole slice images 
were obtained by MALDI-IMS in the negative ion mode, and adjacent 
Hematoxylin and Eosin (H&E)-stained sections were used to delineate 
standardized size and shape regions of interest (ROI) for co-registration 
with the MALDI images. The Peak Statistic report identified 67 distinct 
m/z lipid ions (m/z=705.54-1061.87) within the ROIs (Supplementary 
Table 1). We performed tandem mass spectrometry (MS/MS) using 
MALDI-LIFT-TOF/TOF (negative ion mode) to identify 15 selected 
lipid ions directly in liver tissue. Following laser desorption/ionization 
and time-of-flight m/z detection, the lipid ion fragmentation patterns 
were analyzed using the LIPID MAPS prediction tool. Thirteen of the 
lipid ions were identified as phospholipids, i.e., phosphatidylserine 
(PS), phosphatidylethanolamine (PE), or phosphatidylinositol (PI); 
however, the remaining two lipid ions could not be assigned due to 
their low abundances/intensities. The main treatment effects were that 
1) CS exposures broadly reduced phospholipid ion intensities relative 
to control; 2) phospholipid levels were reduced to greater extents in CS4 
and CS8+R compared with CS8 livers; and 3) phosphatidylinositols 
were the dominant phospholipid species altered by CS exposure.

Structural assignment of phospholipids 

In the negative ion mode of LIFT-TOF/TOF, phospholipids 
characteristically lose neutral carboxylic acid (RCOOH) and ketone 
(R2CH=C=O) from their precursor ions ([M-H]-), and acyl chain 
assignment is enabled by loss of the neutral fragment and fatty acid 
anions.
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Phosphatidylserine identification: Phosphatidylserines (PS) were 
identified by loss of the serine group from the negative ion product 
spectrum, and resultant generation of a characteristic [M-H-serine]- 
ion fragment. For example, the most abundant fragment peak in the 
MS/MS spectrum for PS (38:4) had an m/z of 723.8 corresponding to 
the [M-H-serine]- ion (Figure 1A). PS acyl chains were identified by 
assigning fatty acids based upon 5 criteria, including: 1) neutral loss of 
the substitution nucleophile 1 (sn1) carboxylic acid and serine from the 
precursor ion ([M-H]) at m/z 439; 2) neutral loss of the sn2 carboxylic 
acid and serine from precursor ion at m/z 419; 3) loss of sn1 acyl chain 
as a ketene (RCH=C=O) and serine from precursor ion at m/z 457 (not 
shown), 4) loss of sn2 acyl chain as a ketene (RCH=C=O) and serine 
from precursor ion at m/z 437, and 5) the presence of sn1 carboxyl ion 
at m/z 283 and sn2 carboxyl ion at m/z 303.

Phosphatidylethanolamine identification: Phosphatidylethanolamines 
(PE; Figure 1B) have an ethanolamine phosphate head group. The PE (38:4) 
was identified at m/z 766.8; its ethanolamine ion had an m/z of 140. PE acyl 
chains were identified by assigning fatty acids based on: 1) neutral loss of 
the sn2 carboxylic acid at m/z 462; 2) loss of the sn2 acyl chain as a ketene 
at m/z 480; 3) loss of the sn1 carboxylic acid (m/z 283); and 4) loss of the sn2 
carboxylic acid (m/z 303). 

Phosphatidylinositol identification: Phosphatidylinositols (PI) 
have inositol phosphate head group ions within the product ion 
spectra. Example data corresponding to the product ion spectrum of 
the m/z 885.7 [M-H] parent ion are depicted in Figure 1C. The inositol 
phosphate head group ion was identified at m/z 241, and with loss of 
a water molecule, the m/z was 223. Glycerophosphoinositol, with or 
without loss of a water molecule was identified at m/z’s of 297 and 315. 
Fragment ions of the fatty acyl chains were identified as follows: 1) 
m/z’s of 283 and 303 represented C18:0 and C20:5 fatty acid anions; 2) 
m/z products at 439 and 419 corresponded to the precursor ion with 
neutral loss of the inositol and sn1 or sn2 carboxylic acid; 3) m/z 437 
represents precursor ion with loss of the sn2 acyl chain as ketone and 
inositol; 4) m/z’s of 601 and 581 correspond to the precursor ion with 
neutral loss of the sn1 or sn2 carboxylic acid group; 5) m/z’s of 619 
and 599 represent precursor ion with loss of sn1 and sn2 acyl chains as 
ketone; and 6) m/z 723 resulted from loss of inositol from the precursor 
ion. 

CS exposure effects on phospholipid expression 

MALDI-IMS analysis demonstrated that CS exposures and 
durations differentially alter hepatic phosphatidylserine and 
phosphatidylinositol, but not phosphatidylethanolamine levels (Table 
1; Figures 2 and 3). The MALDI images and m/z 766.8 ion peak profiles 
demonstrate similar hepatic levels of PE(38:4) in all groups (Figures 2A 
and 3; Table 1). 

In contrast, CS4 livers had strikingly reduced levels of m/z’s 810.8, 
834.8, 857.8, 883.8, and 885.7 corresponding to PS(38:4), PS(40:6), 
PI(36:4), PI(38:5), and PI(38:4), while CS8 livers had similar or 
somewhat higher levels of the same phospholipids relative to control 
(Figures 2B and 3; Table 1). In the CS8+R livers, these phospholipid ion 
intensities and profiles were intermediate between CS4 and control. Two 
additional phospholipids with m/z’s of 910.8 and 912.9, representing 
PI(40:5) and PI(40:4) were abundantly expressed in control liver and 
similarly reduced in CS4, CS8 and CS8+R livers (Figure 2C; Table 1). 
Similar trends were observed with respect to PI(44:9)-m/z 958.9 and 
PI(44.8-m/z 960.9 (Table 1). Finally, phosphoinositol ions with m/z’s 
934.8 (PI(41:0)), 938.9 (PI42:5)), and 962.8 (PI(18:0/25:0)), and not 
further characterized phospholipid ions with m/z’s 932.7 and 947.7 

were similarly reduced by CS exposure, irrespective of duration and 
interval recovery (Table 1). 

Tandem mass spectrometry (MS/MS) with MALDI LIFT-
TOF/TOF was used to fragment lipids in the negative ion mode 
and lipid species assignment was achieved by searching the 
LIPID MAPS database. Abbreviations and codes: m/z=mass/
charge; PE=phosphatidylethanolamine; PS=phosphatidylserine; 
PI=phosphatidylinositol; A8=air exposure for 8 weeks (control); 
CS=cigarette smoke exposure for 4 weeks; CS8=cigarette smoke 
exposure for 8 weeks; CS8+R= CS8 followed by 2 weeks recovery; ↑ 
increased, ↓ decreased, or ↔ unchanged relative to control. 

Heatmap analysis

The heatmap generated with hierarchical clustering illustrates 
overall effects of CS exposures on hepatic lipid ion expression (Figure 
4). The dendrogram shows 3 main clusters (a, b, c) and 8 sub-clusters. 
In the Cluster a, lipid ion expression was lowest in A8. In Sub-Cluster 
a1, lipid ion levels were either unchanged or increased moderately in 
CS4, then further increased in CS8. CS8+R resulted in similar or higher 
lipid ion levels compared with CS8. In Sub-Cluster a2, the general trend 
was that lipid ion levels gradually increased from A8 to CS4, then CS8 
and finally CS8+R. In Cluster b, A8 livers had moderate to high lipid 
ion levels, whereas CS4 had sharply lower levels. Sub-Cluster b1 was 
associated with persistently low lipid ion levels in CS8, while b2 showed 
recovery or elevated lipid ion expression. In both b1 and b2, CS8+R had 
nearly normalized lipid ion expression relative to A8. In Cluster c, the 
largest, A8 samples nearly always had the highest lipid ion levels, and 
CS exposures mainly reduced hepatic lipid ion expression. Sub-Clusters 
c2a and c2b showed similar or higher lipid ion levels in CS4 relative to 
A8, sharply reduced expression in the CS8 group, and either partial 
recovery (c2a) or sustained inhibition (c2b) in CS8+R. Sub-Cluster 
c2c was characterized by sustained inhibition of lipid ion expression 
with CS exposures, while c2d was associated with progressive declines 
in lipid ion expression from A8 to CS4 followed by CS8. Within c2d, 
low lipid ion expression was either sustained further reduced in CS8+R 
relative to CS8. In essence, CS exposures had clear effects on the broad 
array of lipid expressed in liver. Some lipid ions were increased but 

m/z Lipid 
assignment CS4 CS8 CS8+R

766.8 PE(38:4) ↔ ↔ ↔
810.8 PS(38:4) ↓ ↔ ↓
834.8 PS(40:6) ↓ ↔ ↓
857.8 PI(36:4) ↓ ↔ ↓
883.8 PI(38:5) ↓ ↔ ↓
885.7 PI(38:4) ↓ ↔ ↓
910.8 PI(40:5) ↓↓ ↓ ↓↓
912.9 PI(40:4) ↓↓ ↓ ↓↓
932.7 ND ↓↓ ↓ ↓↓
934.8 PI(41:0) ↓ ↓ ↓
938.9 PI(42:5) ↓ ↓ ↓
947.7 ND ↓ ↓ ↓
958.9 PI(44:9) ↓↓ ↓ ↓↓
960.9 PI(44:8) ↓↓ ↓ ↓↓
962.8 PI(43:0) ↓ ↓ ↓

Table 1: Lipid assignments by tandem mass spectrometry. Tandem mass 
spectrometry (MS/MS) with MALDI LIFT-TOF/TOF was used to fragment lipids in 
the negative ion mode and lipid species assignment was achieved by searching 
the LIPID MAPS database. Abbreviations and codes: m/z=mass/charge; 
PE=phosphatidylethanolamine; PS=phosphatidylserine; PI=phosphatidylinositol; 
CS=cigarette smoke exposure for 4 weeks; CS8=cigarette smoke exposure for 
8 weeks; CS8+R=CS8 followed by 2 weeks recovery; ↓ decreased, ↓↓ sharply 
decreased, or ↔ unchanged relative to control.
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Figure 1: MALDI LIFT-TOF/TOF identified lipid signals in the negative ion mode. Fragment ions were searched in the LIPID MAPS dataset and identified (A) phosphatidylserines 
based on an m/z 810.8 and a characteristic [M-H-serine]- fragment ion m/z peak of 723.8, (B) phosphatidylethanolamine am/z 766.8, and (C) phosphatidylinositols (C18:0/
C20:5) with m/z 885.7, inositol phosphate ion (m/z 241 or m/z 223 with loss of water), and glycerophosphoinositol minus water had m/z’s of 297 or 315.
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Figure 2: Representative MALDI-IMS results showing regional distributions and levels of 8 distinct m/z phosphatidylethanolamine (PE), phosphatidylserine (PS), or 
phosphatidylinositol (PI) species in livers from A/J adult mice exposed to air for 8 weeks (A8), cigarette smoke for 4 (CS4) or 8 (CS8) weeks, or CS8 followed by 2 weeks 
recovery on room air (CS8+R). Images were acquired in the negative ion mode. Lipid ion intensities are represented by the color scale and relative differences from 
control are indicated with directional arrows. Also see Table 1. Results are clustered into patterns reflecting relative effects of CS: A) no effect; B) phospholipids reduced 
most strikingly by CS4, unchanged or somewhat increased by CS8 and reduced to levels intermediate between those measured in CS4 and CS8 livers; and C) very high 
levels in A8 and similarly reduced by CS exposure, independent of duration and recovery.

most were reduced. Some responses were modulated by duration of 
CS exposure. The short period of recovery had three different effects, 
yielding similar or further shifted expression levels relative to CS8, or 
tended to reverse effects of CS exposures toward control.

Clustered lipid profiles based on CS durations and CS 
withdrawal

Principle component analysis (PCA) of the phospholipid ion 
profiles generated three distinct clusters: The A8 (control) cluster 
was separate from the three CS clusters, CS4 and CS8+R overlapped 
extensively but could be delineated with respect to sub-populations 
of lipid ions, and CS8 had its own dominant clustering with modest 
overlaps with CS8+R (Figure 5). Therefore, despite MALDI-IMS trends 
reflecting changes in various phospholipid ion intensities, the PCA 
revealed distinct effects of 4-week versus 8-week CS exposures and 
partial reversal of the CS8 effects by a short period of recovery (CS8+R). 

Discussion
Tobacco smoke contains hundreds of volatile and non-volatile 

toxins, in addition to tobacco-specific nitrosamines. The two most 
abundant and potent tobacco-specific nitrosamines present in CS 

are 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N’-
nitrosonornicotine (NNN) [26,47,48]. In just one cigarette, tobacco-
specific nitrosamine levels range from 1 µg and 9 µg, and other classes of 
nitrosamines can be as high as 8 µg of [49]. Furthermore, bystander, i.e., 
second-hand exposures can be up to 2 µg of nitrosamine products from 
burning tobacco. Until recently, most research on pathogenic effects of 
nitrosamines have centered on carcinogenesis; however, an emerging 
concept stemming from our research is that low-level nitrosamine 
exposures also threaten health by causing degenerative diseases linked 
to tissue injury, inflammation, impairments in insulin/IGF signaling 
through cell survival and metabolic pathways, oxidative and nitrosative 
stress, and dysregulated lipid metabolism [27,28,50-55]. Accordingly, 
we have shown that NNK and NDEA cause steatohepatitis, and can 
worsen liver injury caused by alcohol or chronic high dietary fat diet 
intake [27,52,53].

The present work drives at the main clinical and epidemiological 
concerns about the potential role of CS exposures as a mediator 
of chronic liver disease, and potential contributing factor in ALD 
pathogenesis. The research was focused on lipid biochemistry as a 
relatively novel method of characterizing metabolic liver diseases. We 
used MALDI-IMS to visualize, characterize and semi-quantify lipid 
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Figure 3: Relative intensity (abundance) of selected phospholipid species in livers from A8, CS4, CS8, and CS8+R A/J adult male mice. The boxes highlight the 
dominant peaks for 6 lipid ions. The vertical comparisons graphically display the findings by MALDI-IMS shown in Fig. 2. The relative intensities of the lipid ions detected 
from m/z 770 to 890 Da reveal prominent reductions in the CS4 group, relatively unchanged or slightly increased levels in the CS8 livers, and moderately reduced levels 
in livers from CS8+R mice. Note the change in scale needed for the m/z 890 profile compared with the one used for the other 5 phospholipid ions.

profile shifts that occurred following CS exposures and recovery. Data 
were analyzed using Clin-Pro Tools software, PCA, and R-generated 
heatmaps. With these approaches, responses to CS exposures and 
recovery were non-uniform. In selected groups of abundantly expressed 
lipid ions, we detected striking reductions in multiple phospholipids 
in the CS4 group, paradoxical partial normalization of responses in 
CS8 livers, but worsening of responses in the CS8+R group (Figures 
2 and 3). However, from the PCA and heatmap figures (Figures 4 and 
5), quite different responses were detected showing either similar or 
progressive (from CS4 to CS8) alterations in lipid ion expression, with 
similar or differential responses in the CS8+R group (see below). These 
findings suggest that while several aspects of hepatic lipid biochemistry 
may be adaptable/reversible from short- (4 weeks) to long-term (8 
weeks) CS exposures, others changes persist or worsen, and are not 
consistently ameliorated by cessation of CS exposure. To some degree, 
the worsening of some hepatic lipid profiles that occurred after the 
recovery period could reflect withdrawal effects as can be seen with 
many drugs. 

Phospholipids play critical roles in regulating cell membrane 
structural integrity, receptor functions, and microdomains (lipid 
rafts) [56-58]. Phosphatidylserines modulate cell cycle signaling by 
serving as cofactors that bind to signaling molecules, particularly those 
concerned with apoptosis [59]. Phosphatidylcholines are the most 
abundant phospholipids and critical to all cells. Phosphatidylcholine 
biosynthesis is regulated by methylation of phosphatidylethanolamine 
in the liver [59,60], and its degradation is mediated by Phopholipase D 
hydrolysis to phosphatidic acid and choline. Phosphatidylcholines have 

diverse functions as they: 1) circulate in peripheral blood as integral 
components of lipoproteins such as high density lipoprotein; 2) are 
precursors of sphingomyelin and regulate sphingomyelin metabolic 
pathways; 3) regulate signaling via plasmalogen and diacylglycerols; 
and 4) may have a functional role in liver repair. Phosphatidyinositides 
including stearic acid and arachidonic acid, have important roles in 
lipid signaling, membrane (vesicle) trafficking, and cellular signaling 
[61,62]. Phosphatidylethanolamines comprise nearly a quarter of all 
phospholipids in mammalian cells, and are even more abundantly 
expressed in central nervous system white matter where they comprise 
up to 45% of the phospholipids. Phosphatidylethanolamines regulate 
membrane curvature, increase membrane viscosity, and play important 
roles in lipoprotein secretion in liver [59,63].

Reduced phospholipid levels have been linked to insulin resistance, 
including in liver [64] and decreased phosphatidylinositol-3’-kinase 
[65] or increased phospholipase activity [66-69]. Therefore, CS-
mediated reductions in hepatic phospholipid levels could impair 
insulin/IGF signaling as occurs with NNK exposure [27,28]. Of note 
is that tobacco-specific nitrosamines decrease lung phospholipids 
(phosphatidylcholine, phosphatidylglycerol, and phosphatidylserine) 
by enhancing phospholipase A2 activity [70]. Moreover, nitrosamine-
induced reductions in phospholipids can be accompanied by increases 
in neutral lipids [71]. Therefore, tobacco-specific nitrosamines in CS 
may mediate their adverse effects on insulin/IGF signaling in liver 
by inhibiting phospholipid synthesis or maintenance via increased 
activation of Phospholipase B. Persistence or worsening of lipid ion 
profile shifts over time, despite CS withdrawal, suggests that CS-
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Figure 4: Heatmap illustrates hierarchical clustering of different lipid ion species. Results shown with the 6-color palette correspond to z-scores, which were scaled to 
have a mean of 0 and S.D. of 1. A hierarchical clustering algorithm was applied using the Euclidean distance function on the overall table to display a dendrogram of 
lipid ions. A8=control room air exposed x 8 wks; CS4=cigarette smoke exposed x 4 wks; CS8=cigarette smoke exposed x 8 wks; CS8+R=cigarette smoke exposed x 8 
wks followed by 2 wks recovery in room air.
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Figure 5: Principal component analysis (PCA) of IMS data acquired in the negative-ionization mode. PCA was performed using the total MS spectra generated from 
the ROI’s in each group using ClinProTools. Based on spectral similarities and hepatic lipid profiles, three distinct groupings were identified: the A8 control and C8+R 
overlapped, while CS4 and CS8 formed distinct clusters.

mediated impairments in phospholipid homeostasis may become 
irreversible.

Hierarchical heatmap dendrograms and PCA were used to 
examine effects of CS exposures on the full range of lipid ions 
detected in liver. Those complementary analyses demonstrated greater 
variability in the responses to CS exposures, duration of exposure, 
and recovery compared with the more targeted studies detailed above. 
Importantly, the expression levels of large clusters of lipid ions were 
either increased or decreased with CS exposures, and the effects of 
longer exposures were either greater or similar to those observed with 
shorter exposures. This suggests that hepatic lipid ion responses to CS 
exposures can be all-or-none, i.e., sustained or progressive. The finding 
that short-term recovery tended to normalize expression of some lipid 
ions is encouraging, and consistent with the concept that metabolic 
abnormalities cause by CS exposure are to some degree reversible. 
However, since most of the adverse effects of CS were not resolved, and 
in several instances they were made worse after the period of recovery, 
a major concern is that many abnormalities caused by CS exposure 
may be permanent, difficult to reverse, or prone to progress over time, 
even in the absence of continued CS exposures.
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