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Abstract

This short communication describes our research which demonstrates that TNF-α causes a rapid decline in
mitochondrial function, leading to neuronal cell death. As such, this neurotoxic proinflammatory cytokine may play a
role in brain damage from stroke and neurodegeneration in chronic conditions such as Alzheimer’s disease (AD)
and Parkinson’s disease. We have extended this initial observation by demonstrating that TNF-α stimulates a
microRNA (miR-34a) which we have shown reduces five key proteins in the mitochondrial electron transport chain
through base-pair complementarity. miR-34a is increased in affected brain regions of Alzheimer’s patients and
transgenic AD mouse models. We have further shown that oligomeric amyloid beta 42 (oAβ42) stimulates miR-34a.
Collectively, these data suggest that TNF-α, oAβ42, and miR-34a participate in a vicious cycle, resulting in
mitochondrial dysfunction, which is critical to the neuropathology of AD.
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Short Communication
In the report by Doll et al. [1], we demonstrated that administration

of pathophysiologically relevant doses of TNF-α to cultured cells leads
to a rapid decline in mitochondrial function as expressed by decreases
in basal respiration, ATP production, and maximal respiratory
capacity. This effect was seen as early as 1.5 hours after exposure in
both a hippocampal cell line (HT-22) and in primary neurons. This
effect appears to be mediated through TNF-α receptor 1 (TNF-R1),
subsequent increase in caspase 8 activity, and decline in mitochondrial
membrane potential, which resulted in a release of cytochrome C from
the mitochondria into the cytosol. Cytochrome C shuttles electrons
between Complexes III and IV in the mitochondrial electron transport
chain (ETC), and with its diminished availability, the ETC is no longer
able to function properly and decreases in basal respiration, ATP
production, and maximal respiratory capacity are observed.

TNF-α is a proinflammatory cytokine, known to be increased
during inflammation [2] and can play a role in brain damage from
stroke [3,4]. Doll et al. [1] indicate a potential mechanism by which
TNF-α can exacerbate stroke damage: through a rapid and profound
decline in neuronal mitochondrial function.

With this knowledge, we can speculate that mitochondrial
dysfunction may play a role in brain damage associated with periods of
neuroinflammation, including both acute brain damage from stroke
and traumatic brain injury, as well as in chronic neurodegenerative
conditions like Alzheimer’s disease (AD) and Parkinson’s disease. It is
well established that neuroinflammation plays a role in AD, but
whether it be a bystander or key perpetrator is still widely discussed
within the scientific community. Post mortem brain analyses have
shown elevated levels of proinflammatory cytokines, including TNF-α,

in AD brains when compared to non-demented controls [5]. Chronic
neuroinflammation observed in AD may be the result of activation of
the innate immune system from oligomeric amyloid β 42 (oAβ42), [6],
a key component for the formation of neuritic plaques.

Mitochondrial dysfunction and global reductions in energy
metabolism have been implicated in AD for several decades [7,8].
Evidence suggests that energy deficits stemming from dysfunctional
mitochondria may cause the amyloid precursor protein to be processed
in a pathological, amyloidogenic pathway, resulting in the
oligomerization of Aβ42 [9-11]. This increases inflammation and
subsequent release of pro-inflammatory cytokines like TNF-α from
neurons, microglia, and astrocytes [12]. Our laboratory has observed
suppression of mitochondrial function in primary rat neuronal
cultures after exposure to oAβ42 [13], and we speculate that this effect
is mediated through induction of TNF-α.

TNF-α binding to TNF-R1 can activate the transcription factor
NFκB. Our laboratory has recently observed an NFκB binding site on
the promotor region of microRNA-34a (miR-34a). MicroRNAs (miRs)
are small, non-coding RNAs that repress protein translation by base-
pairing with mRNAs and inhibiting translation or targeting mRNA for
degradation [14-16]. Precursor miRs created within the nucleus are
transported to the cytoplasm for processing by DICER, resulting in
mature miRs; these can either be loaded into the RNA-induced
silencing complex (RISC) to exert their repressive effects on mRNAs
within the parent cell, or be packaged into multi-vesicular bodies
(MVBs) [17]. Sorting of miRs into MVBs may occur from the
interaction of raft-like regions on MVB limiting membranes with
specific miR motifs or RNA binding protein (RBP)-miR complexes
[17,18]. These interactions result in the internalization of miRs as
intraluminal vesicles (ILVs), which can be released from the cell as
exosomes when the MVB fuses with the plasma membrane of the cell
[17-19].
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Figure 1: Functional effects of ectopically expressed miR34a on oxidative phosphorylation and glycolysis in primary neurons. (A) ATP
synthesis, spare respiratory capacity, maximal respiration, and proton leak was measured in rat primary neurons (E18, 7DIV) 36 h after
transfection with empty vector or with three increasing concentration of miR-34a-expression vector. (B) Representative western blot of
oxidative phosphorylation proteins, NDUFC2, SDHC, UQCRB, UQCRQ, and COX10 probed with respective protein specific antibody in
protein samples isolated from the transfected primary neurons. β-actin was used as normalization controls. (C) Densitometric quantification
of respective protein levels are shown in the adjacent bar graph as fold difference, average of control =1, data are mean 7 ± SEM, n=3
independent transfection experiments. (D) Glycolysis rate was measured in rat primary neurons (E18, 7DIV) thirty six hour after transfection
with empty vector and with three increasing concentrations of miR-34a-expression vector. (E) Representative western blots of enzymatic
glycolysis proteins, H6PD, PFK1, PFK2, and LDHA probed with respective protein specific antibody in protein samples isolated from the
transfected primary neurons. β-actin was used as normalization controls. (F) Densitometric quantification of respective protein levels are
shown in the adjacent bar graph as fold difference, average of control =1, data are mean 7 ± SEM, n=3 independent transfection experiments.
(G) Viability of the miR34a expression plasmid transfected neurons were determined by CalceinAM assay. Level of miR-34a in transfected
neurons (H) and in exosomes isolated from the transfected cell culture medium (I) were determined by qRT-PCR. *p 0.05, **p 0.01 and ***p
0.001. Reprinted from: Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, et al. (2016) Expression of microRNA-34a in Alzheimer’s disease
brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Research 1646: 139-151.
Copyright (2016), with permission from Elsevier.
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Loading of miRs into exosomes appears to be dependent on levels of
both miR and the target mRNAs within the parent cell, i.e. if a cell
begins producing high levels of a specific miR and its intracellular
target levels remain the same, there will be a higher amount of miR
detected in secreted exosomes [17]. In conjunction with these data,
recent work from our laboratory has demonstrated similar findings
[20]. Primary neurons were transfected with three levels of a miR-34a
construct and we observed a 10-20 fold increase of miR-34a
intracellularly, however we observed a robust increase of 50-250 fold
when measuring levels of miR-34a in secreted exosomes (Figure 1)
[20]. Exosomes have been viewed as intercellular communicators for
some time now, and there are several ways in which they can interact
with recipient cells, with most resulting in endocytosis of the exosome
[17,18], allowing its contents to exert their effects on the recipient cell.

Because of base-pair complementarity, one miR can bind to and
regulate many mRNAs, and one mRNA can be regulated by many
miRs [16]. As stated above, of particular interest to both our laboratory
and AD research is miR-34a, as some of its targets include five key
proteins in the mitochondrial ETC; from Complex I: NDUFC2,
Complex II: SDHC, Complex III: UQCRB and UQCRQ, and Complex
IV: COX10. If miR-34a is preventing translation of these proteins’
mRNA, replacement after normal protein turnover will not occur,
leading to a collapse of the ETC and subsequent mitochondrial
dysfunction. Sarkar et al. [20] transfected primary neurons with a
miR-34a construct and subsequently observed reductions in the five
nuclear encoded ETC proteins described above, as well as substantial
mitochondrial dysfunction (Figure 1).

Preliminary unpublished data from our lab indicate that after 24
hours of exposure to TNF-α, there is a dose-dependent increase in
miR-34a (Figure 2) as observed in exosomes collected from the media
of exposed HT22 cells. In addition, we have preliminary evidence that
oAβ42 exposure also leads to a dose-dependent upregulation of
exosomal miR-34a after 24 hour exposure in HT22 cells (Figure 3).
Our next step is to determine intracellular levels of miR-34a after
exposure to these compounds, as well as determining whether or not
the observed oAβ42-induced miR-34a upregulation is mediated
through a pathway involving TNF-α.

Figure 2: Scatter plot (± SEM) depicting the relative fold change of
miR-34a levels in exosomes collected from media after a 24 hour
exposure of 0, 0.1, 1, and 10 ng/ml of TNF-α in cultured HT-22 cells
(**p<0.01). There is a relative increase in miR-34a content in
secreted exosomes that is proportional to increased concentrations
of TNF-α exposure.

Figure 3: Scatter plot (± SEM) depicting the relative fold change of
miR-34a levels in exosomes collected from media after a 24 hour
exposure of 0, 200, and 500 nM oAβ42, in cultured HT-22 cells
(*p<0.05, ***p<0.001). There is a relative increase in miR-34a content
in secreted exosomes that is proportional to increased
concentrations of oAβ42 exposure.

Figure 4: Proposed vicious cycle of AD progression. Mitochondrial
dysfunction occurs in the AD brain, leading to increases in oAβ42.
These aggregates lead to elevated inflammation, as seen by increases
in levels of TNF-α, which leads to the upregulation of miR-34a.
miR-34a inhibits translation of five key ETC proteins, preventing
their replacement after protein turnover, and leads to a collapse of
the ETC and therefore, mitochondrial dysfunction.

As discussed in the report by Doll et al. [1], TNF-α exposure leads
to rapid mitochondrial dysfunction in both HT22 cells and primary
neuronal cultures. Other work from our laboratory [13] has shown
that exposure of primary rat hippocampal neuronal cultures to 200 nM
oAβ42 induces mitochondrial dysfunction as well. We believe these
effects are mediated through the pathways depicted in Figure 4, in that
oAβ42 leads to increased release of TNF-α, which causes an
upregulation of miR-34a that then leads to mitochondrial dysfunction,
both within the parent cell and exosomal-recipient cells. Because
exosomes can mediate cell-cell communication, miR-34a-containing
exosomes secreted from a parent cell should theoretically be
endocytosed by a neighboring recipient cell and exert its energy-
impairing effects there as well. Once energy metabolism has been
disrupted in this cell, it is speculated that there will be an increase in
amyloid precursor protein processing towards a more amyloidogenic
pathway [9-11], resulting in increasing amounts of oAβ42. In line with
our hypothesis, we believe that increasing oAβ42 will increase
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inflammation, leading to the production of TNF-α, resulting in
increased miR-34a and therefore miR-34a-containing exosome
secretion. This vicious cycle will continue spreading throughout the
AD brain, leading to neuronal cell death and eventually, observable
symptoms in the patient.

Future work in our laboratory will focus on establishing these
relationships and determining the role of this proposed vicious cycle in
AD progression. We believe that by targeting certain aspects within the
cycle therapeutically, we may be able to slow or even halt disease
progression.
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