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Abstract

Among atomic-bomb (A-bomb) survivors of Hiroshima and , incidence of thyroid cancer significantly increased
after exposure to nuclear radiation. This review will focus on the initiating gene alterations in the development of
adult-onset papillary thyroid cancer (PTC) among A-bomb survivors. The effects of A-bomb radiation on
chromosomal rearrangements (RET and NTRK1 rearrangements) and point mutations (BRAF and RAS mutations)
after exposure were different. In contrast to PTC cases with point mutations, PTC cases with chromosomal
rearrangements were observed more frequently among those exposed to high radiation doses compared to low
doses, and these cases developed cancer earlier after exposure than did cases with point mutations. Interestingly,
PTC cases with non-detected gene alterations were found more frequently among patients who were exposed to
high radiation doses and who developed cancer earlier after radiation exposure than did the cases with BRAF point
mutation. This suggests that heretofore non-detected gene alterations may also be involved in adult-onset PTC
among A-bomb survivors.

Keywords Mutations; Anaplastic lymphoma kinase; Nuclear
radiation; Thyroid cancer

Introduction
Thyroid cancer is one of the malignancies most closely associated

with radiation exposure. External radiation exposure is related to
papillary thyroid cancer (PTC) based on data from atomic-bomb (A-
bomb) survivors in Hiroshima and , and also among people exposed to
medical radiation sources. Epidemiological studies on the Life Span
Study (LSS) cohort of A-bomb survivors have revealed that the excess
relative risk (ERR) of thyroid cancer was significantly high and that it
linearly increased with radiation dose [1,2]. The patients who received
external radiation therapy for either benign or malignant diseases e.g.
tinea capitis (Israel), enlarged thymus gland, benign head and neck
conditions, lymphoid hyperplasia, childhood cancer, and cervical
cancer (USA)showed an increased incidence of thyroid cancer [3,4].
Those radiation-associated thyroid cancers also showed a tendency
toward a higher ERR associated with younger age at the time of
exposure [1,4]. In addition, cohort studies on subjects who were
exposed to ionizing radiation after the Chernobyl nuclear accident in
1986 indicate a very strong association between radiation exposure in
childhood or adolescence and the development of thyroid cancer in
heavily contaminated areas in Belarus, Northern Ukraine, and [5-7].

Histologically, thyroid cancer among cohorts exposed externally
or internally to ionizing radiation is mainly papillary type much like
sporadic thyroid cancer. However, there are differences in subtypes of
PTC between A-bomb survivors and post-Chernobyl children. Among
A-bomb survivors, the thyroid cancers were largely conventional
papillary in nature [8], which is also the case for sporadic thyroid
cancer in the general Japanese population. In addition, adult-onset
PTC among A-bomb survivors included infrequent follicular variants
and no solid variants, which are subtypes of PTC. For children

internally exposed in Chernobyl, however, malignant thyroid tumors
are principally PTC, and include frequent follicular variants and solid
variants [9-11], but these morphologic characteristics may have been
related to low dietary iodine levels and childhood cancer types [12].

Radiation types and PTC Gene Alterations
Both sporadic PTC and radiation-associated PTC are characterized

by the constitutive activation of the mitogen-activated protein kinase
(MAPK) signaling pathway. The major factors involved in the
activation of this signaling pathway are RET/PTC rearrangements and
BRAF point mutation [13-17]. It is well known that RET/PTC
rearrangements were frequently found in PTC among children from
areas contaminated by [11,14,18,19]. However, since sporadic
childhood PTC with no radiation history shows a high incidence of
RET/PTC rearrangements [11,14,20-22], it is difficult to distinguish
whether the high prevalence of RET/PTC rearrangements in PTC
from post-Chernobyl children is due to internal radiation exposure or
childhood cancer. On the other hand, some reports have found a
higher frequency of RET/PTC rearrangements in PTC from adult
patients who had received external radiotherapy than in those without
any radiation history [23,24]; other reports have disputed such
findings [22,25]. As seen above, radiation effects on molecular events
at an early stage of papillary thyroid carcinogenesis remain undefined.
This ambiguity may be due to the different radiation conditions,
namely whether internal exposure or external exposure, and whether
single exposure or repeated exposures. In addition, radiation effects
may differ depending on age at exposure and/or age at onset of PTC.
Such differences make comparative analysis difficult and prevent the
deepening of our understanding of radiation effects on initiating
molecular events in PTC. On the other hand, A-bomb survivors were
exposed externally to A-bomb radiation. Cases of PTC developing
among LSS cohort members of A-bomb survivors are derived from
adult patients with known radiation exposure. Therefore, we believe
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that adult-onset PTC among LSS cohort members is a good model for
examination of the relationship between radiation dose and gene
alterations at early stages of papillary thyroid carcinogenesis. This

review will focus on characteristics of early molecular events in
pathogenesis of adult-onset PTC among A-bomb survivors (Table 1).

Radiation-associated

PTC

Chromosomal rearrangements Point mutations

A-bomb survivors (Our
study)

Non-exposed

RET/PTC

4%

TRK &TRK-T1,2,3

0%

AKAP9-
BRAF

0%

BRAFV600E

70%

K, H, N-RAS

4%

Exposed 18% 2% 0% 56% 0%

Post-Chernobyl 34-87%

[11,14,18,19,
27,52,
53,66,67]

[11,14,18,19,
27,52,
53,66,67]

3%

[19]

11%*

[28]

0-20%

[27,28,61,65-67]

0%

[52,54,65,73,74]

Radiotherapy 51-84%

[22-25]

19%

[56]

4%

[68]

40-50%

[54,75,76]

Sporadic PTC Adult-onset 3-61%

[13,14,16,17,
20,26,
51,54,55,64]

6-12%

[20,26,56,57]

1%

[28]

28-83%

[15-17,26,28,
61-64,67]

0-58%

[16,17,54,64,70, 71,76]

Childhood 30-71%

[11,14,20-22,50,66]

0-11%

[20,57]

0-6%

[65-67]

0-7%

[65,72]

Table 1: Gene alterations in radiation-associated and sporadic PTC (*detected only in PTC developed 5-6 years after radiation exposure).

Constitutive Activation of MAPK Signaling Pathway
A major early molecular event in the development of PTC is

believed to be the constitutive activation of the MAPK signaling
pathway, which is caused by gene alterations including rearrangement
of RET, NTRK, and BRAF genes, and point mutation of BRAF and
RAS genes. Furthermore, those gene alterations are well known to
occur in a mutually exclusive manner, and they were found in more
than 70% of PTC [16,17,26-28]. Specific activation of RET/PTC1 or
RET/PTC3 (types of RET rearrangements), TRK-T1 (one type of
NTRK1 rearrangements), c-Ha-Ras, or BRAFV600E in transgenic
mice produced thyroid cancer with characteristic papillary features
[29-34]. In addition, a part of microscopic PTC (microcarinoma) is
known to harbor RET/PTC rearrangements, BRAFV600E point
mutation, or NTRK1 rearrangement [35-41], which suggests that a
single alteration of these genes involved in the MAPK signaling
pathway may be the most important initiating event and may play a
causative role in the pathogenesis of PTC. In addition to the MAPK
signaling pathway, activation of the phophatydylinositol 3-kinase
(PI3K)/AKT pathway through alterations of PIK3CA and PTEN genes
was reported to be implicated in the development of not only follicular
carcinoma but also some PTC [42-45].

Chromosomal Rearrangements
Gene rearrangements reported so far in PTC are RET/PTC,

NTRK1, and BRAF/AKAP9 rearrangements. Among those, RET
rearrangements are the most common, especially in PTC developed in
subjects with a radiation exposure history, which is supported by
several studies indicating the induction of RET/PTC1 and RET/PTC3

rearrangements in human thyroid cells by X-ray or γ-ray irradiation,
both in vitro and in vivo, as tissue transplants in severe combined
immunodeficient mice [46-49].

RET/PTC rearrangements
RET/PTC rearrangements are formed by the fusion of part of the

intracellular tyrosine kinase domain with the 5’-end of other genes.
RET/PTC fusion protein is constitutively expressed by promoter
activity of a partner gene, and is then activated by constitutive
dimerization. To date, at least 15 different types of RET/PTC
rearrangements resulting from RET fusion to 12 various partner genes
have been isolated, of which RET/PTC1 and RET/PTC3 are by far the
most common [14,50]. RET/PTC rearrangements have frequently
been found in childhood PTC with and without a radiation exposure
history [11,14,18,19-22,51-53]. In post-Chernobyl children with PTC,
RET/PTC3 rearrangement seemed to be strongly associated with solid-
variant PTC and/or with a short latent period after exposure, while
RET/PTC1 rearrangement was mainly found in conventional PTC
with a long latent period after exposure [11,18,19,53]. In contrast, the
frequency of RET/PTC rearrangements in adult-onset PTC in the
general population was not as high as that in childhood PTC
[13,14,54,55] (Table 1). In PTC from patients exposed to therapeutic
irradiation, the frequency of RET/PTC rearrangements was higher
than in PTC from non-exposed patients [23,24], although several
papers have reported that no significant difference was detected in the
frequency of RET/PTC rearrangement for adult-onset PTC with and
without a history of radiotherapy [22,25].
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NTRK1 and BRAF rearrangements
Rearrangements of the neurotrophic receptor-tyrosine kinase

NTRK have been observed in a small number of PTC cases in the
general population [20,56,57] (Table 1). NTRK1 rearrangements were
also found in a small number of PTC from post-Chernobyl children
[19] and patients with a radiotherapy history [56]. Rearrangement of
the BRAF gene (AKAP9-BRAF) was identified in post-Chernobyl
childhood PTC [28]: AKAP9-BRAF rearrangement was reported to be
related to post-Chernobyl PTC that developed shortly after exposure
[28].

Point Mutations

BRAF point mutation
Another major early event in the development of PTC is point

mutation of the BRAF gene. The BRAF point mutation identified in
PTC so far is almost exclusively in the thymine-to-adenine
transversion at nucleotide 1799, resulting in the substitution of
glutamate for valine at residue 600 (V600E). The V600E substitution is
thought to convert BRAF inactive conformation into its active form by
disrupting the residue-residue interaction between the activation loop
and the ATP binding site [58-60]. In adult-onset PTC general
populations, BRAFV600E mutation has so far been reported as
occurring at a high frequency [61-64], although very low frequencies
of BRAFV600E mutation were found in PTC among children and
adolescents with no radiation history [65-67] (Table 1). In addition,
radiation-associated PTC showed a very low frequency of BRAFV600E

mutation regardless of the age of patients [27,28,65-68] (Table 1).

RAS point mutations
The RAS point mutations are not restricted to PTC, unlike

RET/PTC rearrangements and BRAF point mutation, and have been
found with a wide range of frequency in follicular adenomas, follicular
thyroid carcinomas (FTC), PTC, and anaplastic carcinomas (ATC).
The prevalence of RAS point mutations in PTC among the general
populations is not as high as that in FTC and ATC [54,64,69-72].
Furthermore, no RAS point mutations (codons 12, 13, 61) have been
observed in post-Chernobyl children PTC [65,73,74]. Some PTC from
patients with a radiotherapy history are reported to have RAS
mutations [75,76] (Table 1).

Gene Alterations in A-bomb Survivors
To clarify the relationship between radiation exposure and

development of PTC, we attempted to identify preferentially occurring
gene alterations in radiation-associated PTC. Toward this end, we
analyzed RET/PTC, NTRK1, and BRAF rearrangements and BRAF
and RAS point mutations in 73 cases of adult-onset PTC (52 exposed
patients and 21 non-exposed patients) among A-bomb survivors. The
gene alterations detected in the exposed PTC cases were mutually
exclusive, although one non-exposed PTC case had both RET/PTC1
rearrangement and BRAF point mutation.

Chromosomal rearrangements in PTC among A-bomb
survivors

Only one non-exposed PTC case showed RET/PTC1
rearrangement, but among exposed PTC cases, RET/PTC
rearrangements and a NTRK1 rearrangement were detected in 11 PTC

cases and one case, respectively. In addition to eight PTC cases with
only RET/PTC1 and one with both RET/PTC1 and RET/PTC3, a
novel type of RET/PTC rearrangement as well as a rare RET/PTC8 was
identified in A-bomb survivors exposed to high radiation doses (1,500
mGy and 2,000 mGy, respectively) [77,78]. The frequency of
chromosomal rearrangements composed of RET and NTRK1
rearrangements among exposed subjects was higher than among non-
exposed patients, although the significance of this difference was only
marginal (Fisher’s exact test, P=0.09) (Figure 1A). And, no AKAP9-
BRAF rearrangement was detected in adult-onset PTC among A-
bomb survivors [77].

Point mutations in PTC among A-bomb survivors
Among three RAS genes (codons 12, 13 and 61), no RAS point

mutations were detected in adult-onset PTC of patients exposed to A-
bomb radiation, although only one PTC case among non-exposed
patients showed a K-RAS mutation (codon 61). BRAF V600E point
mutation was detected in a large number of both non-exposed and
exposed PTC cases (Table 1) [77,79], but the frequency of point
mutations consisting of BRAFV600E and RAS point mutation in
exposed PTC cases was lower than in non-exposed PTC cases (Figure
1A).

Figure 1A: Chromosomal rearragements.

Relationship between radiation dose and gene alteration
The associations between radiation dose, years elapsed since A-

bomb radiation exposure, and age at the time of A-bombing were
evaluated. When PTC cases were divided into three groups based on
chromosomal rearrangements, point mutations, and non-detected
gene alterations, radiation dose (three categories: low, 0+ ~100 mGy;
medium, 100+ ~500; high, 500+ ~ 2,760) responses of these groups
differed. “Non-detected gene alterations” indicates that alterations for
RET, NTRK1, BRAF and RAS genes could not be detected. Therefore
PTC with non-detected gene alterations is thought to carry gene
alterations other than those of RET, NTRK1, BRAF, and RAS genes.
The frequency of chromosomal rearrangements in exposed PTC cases
increased with increasing radiation dose. The rearrangements were
notably more frequent in PTC cases exposed to more than 500 mGy
(Figure 1B). The frequency of point mutations in adult-onset PTC
among A-bomb survivors decreased with increasing radiation dose,
and was especially infrequent for radiation dose more than 500 mGy
(Figure 1B). Interestingly, non-detected gene alterations tended to be
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more frequent with increased radiation dose (Figure 1B), suggesting
that in addition to RET and NTRK1 rearrangements, radiation-
associated gene alterations other than rearrangements of RET,
NTRK1, and BRAF might be involved in adult-onset PTC cases among
A-bomb survivors exposed to high radiation doses.

Relationship between years elapsed since exposure and gene
alterations

Three groups also showed different responses to time from
exposure to diagnosis (three categories: short, 11 ~ 20 years; medium,
21 ~30; long, 31 ~ 46) as shown in Figure 2A. Point mutations
increased with increased time since exposure, while non-detected gene
alterations tended to decrease with increased time since exposure
(Figure 2A). On the other hand, chromosomal rearrangements showed
a peak around 21-30 years after exposure (Figure 2A). Furthermore,
PTC cases with chromosomal rearrangements or non-detected gene
alterations developed cancer sooner following exposure than did the
cases with point mutations (modified from ref. 77). No AKAP9-BRAF
rearrangement was detected in adult-onset PTC among A-bomb
survivors exposed to high radiation doses. This might be due to the
difference in the time from exposure to diagnosis between post-
Chernobyl childhood and among A-bomb survivors’ PTC (since all
tissue specimens were derived from PTC that developed more than 10
years since A-bomb radiation exposure). Therefore, it remains unclear
whether AKAP9-BRAF rearrangement is involved in adult-onset
radiation-associated papillary thyroid carcinogenesis.

Relationship between age at the time of bombing and gene
alteration

Groups with different types of gene alterations also revealed
different responses based on age at the time of the bombings (age
ATB) (three categories: childhood/adolescence, 0 ~ 19; young adult,
20~39; middle age, 40~47), as shown in Figure 2B. Prevalence of PTC
cases with point mutations increased with age ATB, while
chromosomal rearrangements showed a small decrease with age ATB
(Figure 2B). However, the PTC cases with chromosomal
rearrangements showed younger age ATB than did those with point
mutations (modified from ref. 77). PTC cases with no detected gene
alterations showed no association with age ATB.

Figure 1B: Chromosomal rearragements.

Figure 2A: Chromosomal rearrangements showed a peak.

Figure 2B: Different types of gene alterations.

Implications from findings in PTC among A-bomb survivors
Thus, more than 70% of all radiation-exposed PTC cases with RET/

PTC rearrangements were in the group with >500 mGy, and a RET/
PTC8 rearrangement and a novel type of RET/PTC rearrangement
were also identified besides RET/PTC1 in these high-radiation dose-
exposed cases [77]. One NTRK1 rearrangement was also found in a
survivor with a high radiation dose. Interestingly, many RET/PTC
rearrangements were observed in PTC cases having a relatively short
time since radiation exposure. Those findings strongly suggest that
chromosomal rearrangements, especially RET/PTC rearrangements
that were possibly caused by radiation exposure, are strongly involved
in adult-onset radiation-associated papillary thyroid carcinogenesis.

All initiating gene alterations occurring in PTC cannot be
categorized with only the rearrangements of RET, NTRK1, and BRAF
genes, and point mutations of BRAF and RAS genes. Interestingly,
adult-onset PTC without any gene alteration of RET, NTRK1, BRAF,
or RAS among A-bomb survivors was marginally more frequent in
cases who were exposed to high radiation dose (>500 mGy) and in the
cases with shorter time since exposure (<20 years), compared with
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non-exposed cases. Those results raise the possibility that there are
radiation-related gene alterations other than rearrangements of RET,
NTRK1, and BRAF genes in radiation-associated PTC. To understand
the mechanism of adult-onset radiation-associated PTC, it is essential
to identify gene alterations occurring in such PTC cases. Figure 3
indicates a model of initiating molecular events in radiation-associated

adult-onset papillary thyroid carcinogenesis in A-bomb survivors
exposed to high radiation doses. Recently, echinoderm microtubule-
associated protein-like 4 (EML4)- anaplastic lymphoma kinase (ALK)
fusion gene was discovered in some PTC cases among atomic bomb
survivors that carried no alterations in RET, NTRK1, BRAF, and RAS
genes [80].

Figure 3: Molecular events in radiation-associated adult-onset papillary thyroid carcinogénesis.

Future Prospects
The molecular oncology study of PTC in A-bomb survivors

suggests that, in addition to the important roles of RET/PTC and
NTRK1 rearrangements in adult-onset radiation-associated papillary
thyroid carcinogenesis, gene alterations other than RET/PTC, NTRK1
and AKAP9-BRAF rearrangements are involved in development of
some radiation-associated PTC of adult patients who were exposed to
high radiation or whose cancer developed in a relatively short time
since exposure. EML4-ALK fusion gene may be one of candidates.
Identification of gene alterations in PTC besides RET, NTRK1, BRAF,
and RAS genes is crucial for understanding the mechanisms of the
development of PTC, not only among A-bomb survivors but also for
other adult patients who were externally exposed to radiation. If the
molecular analysis of adult-onset PTC in patients exposed in
childhood to Chernobyl is conducted and integrated with the analyses
of A-bomb survivors’ PTC, the mechanism of radiation-associated
adult-onset papillary thyroid carcinogenesis should become clearer.
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