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Introduction
In the field of evolutionary algorithm, Differential Evolution (DE) 

has gained a great focus due to its strong global optimization capability 
and simple implementation. Differential evolution (DE) is an efficient 
and powerful population-based stochastic search technique for solving 
optimization problems over continuous space, which had been widely 
applied in many scientific and engineering fields. The carbon dioxide 
capture has been the focus in this application.

Differential Evolution (DE) algorithm is a new heuristic approach 
mainly having three advantages; finding the true global minimum 
regardless of the initial parameter values, fast convergence and using 
few control parameters. DE algorithm is a population based algorithm 
like genetic algorithms using similar operators; crossover, mutation 
and selection. However, the success of DE in solving a specific problem 
crucially depends on appropriately choosing trial vector generation 
strategies and their associated control parameter values. Employing 
a trial-and-error scheme to search for the most suitable strategy and 
its associated parameter settings requires high computational costs. 
Moreover, at different stages of evolution, different strategies coupled 
with different parameter settings may be required in order to achieve 
the best performance. The NRTL-electrolyte model has been used for 
CO2 absorption by MDEA where DE has been applied to have a better 
optimization of the model.

Scalable simulation, design, and optimization of the CO2 capture 
processes start with modeling of the thermodynamic properties, 
specifically vapor-liquid equilibrium (VLE) and chemical reaction 
equilibrium, as well as calorimetric properties. Accurate modeling of 
thermodynamic properties requires availability of reliable experimental 
data. For the rational gas treating processes the knowledge of VLE of the 
acid gas over alkanolamine solution is required besides the knowledge 
of mass transfer and kinetics. The major problem concerning the VLE 
measurements of aqueous alkanolamine-acid gas systems, in general, 
is that lack of consistency and regularity in the numerous published 
values.

Excess Gibbs energy-based activity coefficient models provide 
a practical and rigorous thermodynamic framework to model 

thermodynamic properties of aqueous electrolyte systems, including 
aqueous alkanolamine systems for CO2 capture [1,2] Austgen et 
al. [3] and Posey [4] applied the electrolyte NRTL model [5-7] to 
correlate CO2 solubility in aqueous MDEA solution and other aqueous 
alkanolamines. 

Kuranov et al. [8], and Kamps et al. [9], used Pitzer’s equation 
correlate the VLE data of the MDEA-H2O-CO2 system. Faramarzi et 
al. [10], used the extended UNIQUAC model [11] to represent VLE 
for CO2 absorption in aqueous MDEA, MEA, and mixtures of the two 
alkanolamines. Arcis et al. [12] also fitted the VLE data with Pitzer’s 
equation and used the thermodynamic model to estimate the enthalpy 
of solution of CO2 in aqueous MDEA. 

In this work, we used the electrolyte NRTL model as the 
thermodynamic framework to correlate experimental data for CO2 
absorption in aqueous MDEA solution. The present work requires 
solving multivariable optimization problem to determine the 
interaction parameters of the developed VLE model. In the present 
paper, DE algorithms [13] have been used for estimation of interaction 
parameters of the VLE model over a wide range of temperature, 
CO2 partial pressure, and amine concentration range. Differential 
evaluation (DE) is a generic name for a group of algorithms, which 
is based on the principles of GA (Genetic Algorithm) but have some 
inherent advantages over GA, like its simple structure, ease of use, 
speed, and robustness.

We expand the scope of the work of Austgen et al. [3] and Posey
[4] to cover all thermodynamic properties. Much new data for

Abstract
Carbon dioxide capture by absorption with aqueous alkanolamines is considered an important technology to 

reduce CO2 emissions and to help alleviate global climate change. To understand more the thermodynamics of some 
of the CO2-Amines, the NRTL electrolyte model has been used to simulate the behavior of carbon dioxide absorption 
by MDEA. VLE, heat capacity and excess enthalpy data have been used to regress the interactions parameters of the 
model by minimizing the objective function using differential evolution algorithm (DE), an evolutionary computational 
technique.

 Differential Evolution algorithm (DE) is compared with other techniques such as annealing (SA) and Levenberg–
Marquardt (LM) using one set of experimental data for MDEA-H2O system. The results show that its standard 
deviations are lower than those of SA and LM algorithms.

Journal of 
Thermodynamics & CatalysisJo

ur
na

l o
f T

he
rmodynamics &
Catalysis

ISSN: 2157-7544



Citation: Vivier J, Kamalpour S, Mehablia A (2012) Thermodynamics of CO2-MDEA using eNRTL with Differential Evolution Algorithm. J Thermodyn 
Catal 3:114. doi:10.4172/2157-7544.1000114

Page 2 of 10

Volume 3 • Issue 2 • 1000114
J Thermodyn Catal
ISSN: 2157-7544 JTC, an open access journal 

thermodynamic properties and calorimetric properties have become 
available in recent years, and they cover wider ranges of temperature, 
pressure, MDEA concentration and CO2 loading. The binary NRTL 
parameters for MDEA-water binary are regressed from the binary 
VLE, excess enthalpy, and heat capacity data. The binary NRTL 
parameters for water-electrolyte pairs and MDEA-electrolyte pairs and 
the standard-state properties of protonated MDEA ion are obtained by 
fitting to the ternary VLE, heat of absorption, heat capacity and NMR 
spectroscopic data. 

With the use of the electrolyte NRTL model for the liquid-phase 
activity coefficients, the PC SAFT [14,15] equation of state (EOS) is 
used for its ability to model vapor-phase fugacity coefficients at high 
pressures, which is an important consideration for modeling CO2 
compression, where its parameters used in Zhang and Chen [16], Gross 
and Sadowki [15] and AspendataBank [16]. The PC-SAFT parameters 
used in this model are given in Table 1.

PC-SAFT is described more in detail by Goss and Sadowsky [14].

Thermodynamic Framework
Chemical and phase equilibrium

Carbon dioxide solubility in aqueous amine solutions is 
determined by both its physical solubility and the chemical equilibrium 
for the aqueous phase reactions among CO2, water, and amines. The 
equilibrium of CO2 in vapor and liquid phases is expressed in the 
following chemical equilibrium 

( )2 2 ) (CO v CO l↔                                                                                 (1)

where it an been expressed in Henry’s law by the following formula

2 2 2 2 2
*

CO CO CO CO COPy H x γ∅ =                                                                (2)

where ØCO2 the CO2 fugacity coefficient in the vapor phase, HCO2 the 
Henry’s law constant of CO2 in the mixed solvent of water and amine, 

2
*
COγ  the unsymmetrical activity coefficient of CO2 in the mixed solvent 

of water and amine, P is the system pressure, 
2COy the mole fraction of 

CO2 in the vapor phase, and 
2COx the equilibrium CO2 mole fraction in 

the liquid phase. 

And, the Henry’s constant in the mixed solvent can be calculated 
from those of the pure solvents [17]:

	  

ln lni iA
A

i iAA

H H
x

γ γ∞ ∞

   
   =
   
   

∑
                                                                    

(3)

HiA The Henry’s constant of supercritical component i in pure 

solvent A, the infinite dilution activity coefficient of supercritical 
component i in the mixed solvent, iAγ ∞  the infinite dilution activity 
coefficient of supercritical component i in pure solvent A, and xA 
the mole fraction of solvent A, and Hi is the Henry’s constant of 
supercritical component in the mixed solvent. 

wA is used instead of xA in Equation 3 to weigh the contributions 
from different solvent [16]. The parameter wA is calculated using 
Equation 4:
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                                                                        (4)

 iAV ∞ represents the partial molar volume of supercritical component 
i at infinite dilution in pure solvent A, calculated from the Brelvi-
O’Connell model [18] with the characteristic volume for the solute 

(
2

BO
COV ) and solvent ( BO

SV  ).

The correlation of the characteristic volume for the Brelvi-
O’Connell model ( BO

iV ) is given as follows:

1, 2,
BO

i i iV v v T= +                                                                                         (5)

Here, the critical volume, vn,i, was used as the characteristic volume 
for MDEA Zhang and Chen [15] , for CO2 from Yan and Chen [5] and 
for H2O from Brelvi and O’Connell [18].

The correlation for Henry’s constant is given as follows:

ln / ln lnij ij ij ij ijH a b T c T d T= + + +                                                        (6)

These parameters can be found in Yan and Chen [19] for CO2 (solute)-
H2O(solvent) and in Zhang and Chen [15] for CO2(solute)-MDEA(solvent)

Aqueous-phase chemical equilibrium

The processes discussed involve both chemical equilibria and 
multi-component phase equilibria. The liquid phase comprises both 
molecular species and ionic species, which makes the modelling non-
trivial. The chemical reactions taking place in the liquid phase for 
MDEA-CO2-H2O can be expressed as:

Water ionisation

2 32H O H O OH+ −↔ +                                                                          (7)

Dissociation of carbon dioxide

2 2 3 32CO H O H O HCO+ −+ ↔ + ∑                                                    (8)

Dissociation of bicarbonate

2
3 2 3 3HCO H O H O CO− + −+ ↔ +                                                                 (9)

Dissociation of protonated amine

2 3MDEAH H O H O MDEA+ ++ ↔ +                                                    (10)

The equilibrium constants of the chemical reactions (8-11) can be 
expressed as follows:

( ) i
i iK x ϑγ=∏                                                                                        (11)

Or another form of the equilibrium constant, Kj , of reaction j, can 
take place using the reference-state Gibbs free energies, o

jG , of the 
participating components

MDEA H2O CO2

Source 16 14, 15 16
Segment number, 
parameter, m 3.3044 1.0656 2.5692

Segment energy
Parameter, ε 237.44°K 366.51°K 152.10°K

Segment size
Parameter, σ 3.5975Å 3.0007Å 2.5637 Å

Association energy
Parameter, εAB 3709.9°K 2500.7°K 0°K

kAB 0.066454 A3 0.034868 A3 0A3

Table 1: For PC-SAFT Equation of State.
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0ln ( )j jRT K G T− = ∆                                                                                (12)

For the aqueous phase reactions, the reference states chosen are 
pure liquid for the solvents (water and MDEA), and aqueous phase 
infinite dilution for the solutes (ionic and molecular).

The thermodynamic expression for equilibrium partial pressure of 
CO2 in aqueous MDEA solutions is as follows3:

2 2 3 3
2

1 2 2

CO MDEAH MDEAH HCO HCO
CO

H O MDEA H O MDEA

H K x x
P

K x x
γ γ

γ γ
+ + − −=                           (13)

where, xns are the liquid phase mole fractions of the components, based 
on true molecular or ionic species at equilibrium. 

The calculation of the concentration for each component at 
equilibrium is as follows:

3

0
2MDEAH MDEA COHCO

C C C α−+ = =                                                      (14)

0 (1 )MDEA MDEAC C α= −                                                                        (15)

Activity coefficients γi, (based on mole fraction scale) for different 
species present in the liquid phase are calculated from NRTL model.

Henry’s law constants for CO2 with water and for CO2 with 
MDEA are required. Because of the reaction between CO2 and amines, 
it is impossible to get its solubility in amines or MDEA. So for the 
prediction of the physical solubility in aqueous MDEA, the CO2 –N2O 
analogy is widely accepted in the literature [15]. This theory is based 
on the fact that CO2 and N2O are rather similar molecules. The only 
difference between the molecules is, that N2O does not chemically 
(only physically) dissolve in aqueous MDEA. According to the CO2 – 
N2O analogy the Henry’s constant (physically dissolved)

So a similar molecular structure of CO2 is chosen, N2O, to derive its 
physical solubility in amines, where their Henry constants are related 
according to Equation 5.

2 2

2 2

CO ,MDEA CO ,water

N O,MDEA N O,water

H H

H H
=                                                                  (16) 

The solubility of N2O in pure MDEA was reported by Wang et 
al. [20]. And based on the work of Versteef and van Swaiij [21], we 
obtained the solubilities of CO2 and N2O in water. Then we can use 
Equation 7 to determine HCO2,MDEA and its parameters. 

Model and data used

The Gibbs free energy of solvent s, Gs, is calculated from the ideal 
gas Gibbs free energy of solvent s, Gs

ig, and the Gibbs free energy 
departure, Gs

ig→l, from ideal gas to liquid at temperature T.

( ) ( ) ( )ig ig l
s s sG T G T G T→= + ∆                                                              (17)

The ideal gas Gibbs free energy of solvent s, Gs
ig, is calculated from 

the ideal gas Gibbs free energy of formation of solvent s at 298.15°K, Δf 

,298.15
ig
sG , the ideal gas enthalpy of formation of solvent s at 298.15°K, 

,298.15
ig

f sH∆ , and the ideal gas heat capacity of solvent s, ,
ig
p sC o .

( )

,298.15 ,298.15
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,

298.15

298.15

298.15
*
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p s
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 
 = ∆ + −

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 

∆

∫
∫

(18)

The reference-state properties ,298.15
ig

f sG∆  and ,298.15
ig

f sH∆ are 

obtained from Aspen Databank [16] and regressed from Wagman et al. 

[22] and Zhang and Chen [15].

The correlation for the ideal gas heat capacity is given as follows:
2 5

1 2 3 6 7 8.ig
p i i i i i iC C C T C T C T whereC T C= + + +… < <                      (19)

The reference-state properties , 298.15
ig

f sG∆  and , 298.15
ig

f sH∆  can be 
obtained from Aspen Databank [16], Wagman et al. [22], and Zhang 
and Chen [15]. The ideal heat capacities are obtained from Aspen 
Databank [16] and Zhang and Chen [15]. For water, The Gibbs free 
energy departure function is obtained from ASME steam tables. For 
MDEA, the departure function is calculated from the PC-SAFT EOS.

For molecular solute CO2, the Gibbs free energy in aqueous phase 
infinite dilution is calculated from Henry’s law:

( ) ( ), ,aq ig i w
fi i ref

H
G T G T RTln

P
∞  

= +   
 

                                                 (20)

Where ( ),aq
iG T∞  is the mole fraction scale aqueous-phase infinite 

dilution Gibbs free energy of solute i at temperature T, ( )ig
f iG T∆ the 

ideal gas Gibbs free energy of formation of solute i at temperature T, 

Hi,w the Henry’s constant of solute i in water, and Pref
 the reference 

pressure.

For ionic species, the Gibbs free energy in aqueous-phase infinite 
dilution is calculated from the Gibbs free energy of formation in 
aqueous-phase infinite dilution at 298.15°K, the enthalpy of formation 
in aqueous-phase infinite dilution at 298.15°K, and the heat capacity in 
aqueous-phase infinite dilution

( ), , ,
,291.15 ,

298.15
,, ,
,,291.15 ,2918.15

298.15

*

1000
298.15

T
aq aq aq
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T aqaq aq
f f p ii i
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G T H C dT T

CH G
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T M
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∞∞ ∞
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∫



 

   

(21)

Here, , ( )aq
iG T∞  is the mole fraction scale aqueous-phase infinite 

dilution Gibbs free energy of solute i at temperature T, ,
, 298.15

aq
f iG∞∆

the molality scale aqueous-phase infinite dilution Gibbs free energy 
of formation of solute i at 298.15°K, ,

, 291.15
aq

f iH ∞∆  the aqueous phase 
infinite dilution enthalpy of formation of solute i at 298.15°K, and 

,
,

aq
p iC∞  the aqueous-phase infinite dilution heat capacity of solute i. The 

term (1000 / )wRTln M  is added because ,
, 2918.15

aq
f iG∞∆ , as reported in 

the literature, is based on molality concentration scale while ,aq
iG∞  is 

based on mole fraction scale. 

The standard-state properties , ,
, 291.15, aq aq

fi iG H∞ ∞∆  and ,
, 298.15

aq
f iG∞∆  

are obtained from Aspen Databank [16] and Criss and Gobble [23] 
for most ionic species. For MDEAH+, they are calculated from the 
equilibrium constant [24].

Heat of absorption and heat capacity

The CO2 heat of absorption in aqueous MDEA solutions can be 
derived from an enthalpy balance of the absorption process:

2 22 ( )) /abs Final
gl l

I CO COCOH n H inal n nitialH lntial nF H ni= − −    (22)
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Where  absH∆ , Heat of absorption per mole of CO2 , 
l
finalH , Molar 

enthalpy of the final solution, l
IntialH , Molar enthalpy of the initial 

solution, 
2

g
COH , Molar enthalpy of gaseous CO2 absorbed, finaln , 

Number of moles of the final solution, Initialn , Number of moles of the 
initial solution and 

2COn , Number of moles of CO2 absorbed.

To calculate the heat of absorption, enthalpy calculations for 
the final and initial MDEA-CO2-H2O system and for gaseous CO2 
are required. The heat capacity of MDEA-CO2-H2O system can be 
calculated from the temperature derivative of enthalpy.

We use the following equation for liquid enthalpy
,aql l l ex

w w s s i i
i

H x H x H x H H∞= + + +∑                                                 (23)

Here, lH is the molal enthalpy of the liquid mixture, l
wH  the molar 

enthalpy of liquid water, l
sH  the molar enthalpy of liquid nonaqueous 

solvent s, , aq
iH ∞  the molar enthalpy of solute a (molecular or ionic) in 

aqueous-phase infinite dilution, and exH  the molar excess enthalpy. 
The terms xw, xs and xi represent the mole fractions of water, nonaqueous 
solvent s, and solute i respectively.

The liquid enthalpy for pure water is calculated from the ideal gas 
model and ASME Tables EOS for enthalpy departure:

( ) ( ),,298.15
298.15

,
T

igl ig ig l
w f p w wwH T H C dT H T p→= + +∫                    (24)

where  ( )l
wH T  is the liquid enthalpy of water at temperature T, 

,298.15
ig

f wH∆  the ideal gas enthalpy of formation of water at 298.15°K, 

,
ig
p wC  the ideal-gas heat capacity of water, and ( , )ig l

wH T p→∆  the 
enthalpy departure calculated from the ASME Steam Tables EOS.

Liquid enthalpy of the nonaqueous solvent s is calculated from the 
ideal-gas enthalpy of formation at 298.15°K, the ideal gas heat capacity, 
the vapor enthalpy departure, and the heat of vaporization:

( ) ( ) ( ),,298.15
298.15

,
T

igl ig v
w f p s s vap swH T H C dT H T p H T= + + −∫     (25)

Here, ( )l
sH T  is the liquid enthalpy of solvent s at temperature 

T, ,298.15
ig

f sH∆  the ideal-gas enthalpy of formation of solvent s at 

298.15°K, ,
ig
p sC  the ideal-gas heat capacity of solvent s, ( , )v

sH T p∆  

the vapor enthalpy departure of solvent s, and ( )vap sH T∆  the heat of 
vaporization of solvent s.

The PC-SAFT EOS is used for the vapor enthalpy departure and 
the DIPPR heat of vaporization correlation is used for the heat of 
vaporization. The DIPPR equation is:

(1 )(1 )vap
Z

i i rH C T i= −                                                                                (26)

Where 2 3
2 3 4 5i i ri i ri i riZ C C T C T C T= + + +  and /ri ciT T T=  ( ciT is the 

critical temperature of component i in K). The ciT  of MDEA is obtained 
from Von Niederhausern et al. [25]. The correlation parameters are 
obtained from Zhang and Chen [15].

Heat of vaporization of MDEA, *,  ,l
MDEAP  calculated from the vapor 

Pressure (Antoine Equation, *, l
MDEAP ) using the Clausius-Clapeyron 

equation,

*, 2 4
1 3 2ln l

MDEA
C C

P C C lnT
T T

= + + +                                                        (27)

The parameters above, Cn, are regressed using the vapor pressure 
data [25-27].

The enthalpies of ionic solutes in aqueous phase infinite dilution 
are calculated from the enthalpy of formation at 298.15°K in aqueous-
phase infinite dilution and the heat capacity in aqueous-phase infinite 
dilution:

( ), , ,
,298.15 ,

298.15

T
aq aq aq

fi i p iH T H C dT∞ ∞ ∞= + ∫                                             (28)

where , ( )aq T
iH ∞ is the enthalpy of solute i in aqueous-phase infinite 

dilution at temperature T, ,
,298.15

aq
f iH ∞∆  the enthalpy of formation of 

solute i in aqueous-phase infinite dilution at 298.15°K, and ,
,

aq
p iC∞  the 

heat capacity of solute i in aqueous-phase infinite dilution.

In this study, ,
298, 15)aq

f Hi∞


 
and ,

,
aq

p iC∞  for MDEAH+ are 

determined by fitting to the experimental phase equilibrium data, the 
heat of solution data, and the speciation data, together with molality 

scale Gibbs free energy of formation at 298.15°K, ,
,298.15

aq
f iG∞
 , and 

NRTL interaction parameters.

The enthalpies of molecular solutes in aqueous phase infinite 
dilution are calculated from Henry’s law:

( ) ( ), ,2 lnaq ig i w
fi i

H
H T H T RT

T
∞ ∂ 

= −   ∂ 
                                            (29)

Where ( )ig
f iH T  is the ideal gas enthalpy of formation of solute 

I, temperature T, iwH Henry’s constant of solute i in water. Excess 

enthalpy, eH x is calculated from the activity coefficient model, NRTL 
in this case.

The eNRTL model

The electrolyte NRTL model consists of three contributions. The 
first contribution is the long-range contribution represented by the 
Pitzer-Debye-Hückel expression, which accounts for the contribution 
due to the electrostatic forces among all ions. The second contribution 
is an ion-reference-state-transfer contribution represented by the Born 
expression. In the electrolyte NRTL model, the reference state for ionic 
species is always infinitely dilute state in water even when there are 
mixed solvents. The Born expression accounts for the change of the 
Gibbs energy associated with moving ionic species from a mixed-
solvent infinitely dilute state to an aqueous infinitely dilute state. The 
Born expression drops out if water is the sole solvent in the electrolyte 
system. The third contribution is a short-range contribution represented 
by the local composition electrolyte NRTL expression, which accounts 
for the contribution due to short-range interaction forces among all 
species. The electrolyte NRTL expression was developed based on the 
NRTL local composition concept, the like ion repulsion assumption, 
and the local electroneutrality assumption. The like-ion repulsion 
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assumption stipulates that in the first coordination shell of a cation 
(anion) the local composition of all other cations (anions) is zero. The 
local electroneutrality assumption imposes a condition that in the first 
coordination shell of a molecular species the composition of cations 
and anion is such that the local electric charge is zero.

The Pitzer-Debye-Hückel expression for excess Gibbs energy, 
normalized to a mole fraction of unity for the solvent and zero mole 
fraction for ions, is given as follows:

( )
* 1/2,

1/241000 ln 1
ex PDH

x
k x

sk

A Ig X I
RT M

ρ
ρ
Φ

     = − +         
∑           (30)

where
2/31/2 2

021
3 1000

N d eA
DkT

π
Φ

   
 =         

21
2x i i

i

I Z x= ∑
The Born expression for excess Gibbs energy is given as follows:

* 1/2 2, 2
21 1 *10

2

ex Born
i i

w ii

x Zg e
RT kT D D r

−
    = −       
∑                                (31)

where D stands for the dielectric constant of the solvent mixture with 
the same solvent ratio as that in the electrolyte solution. D is a function 

of the temperature, ( ) 1 1
i i i

i
D T A B

T C

   
= + −         

 and its parameters 

are found in Aspen Databank [16].

The local-composition electrolyte NRTL expression for excess 
Gibbs energy is given as follows:

'
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                                                                                                                  (32)

where

exp( )jm jm jmG α τ= −

, , ,exp( )jc ac jc ac jc acG α τ= −

, , ,exp(ja ca ja ca ja caG α τ= −

''

,a ca ma
cm

aa

X G
G

X
=
∑
∑

''

,a ca ma
cm

cc

X

X

α
α =

∑
∑

''

,c ca mc
am

cc

X

X

α
α =

∑
∑

, , ,mc ac cm ca m m caτ τ τ τ= − +

, , ,ma ca am ca m m caτ τ τ τ= − +

The variables cmτ  and amτ are computed accordingly from cmG
and amG . It is worth mentioning that the first term on the right-hand 
side of eq 33 represents the short-range interaction contribution where 
the molecular species are the local center and the second and third 
terms account for the short-range interaction contributions where 
cations and anions are the local center, respectively.

In NRTL model, the binary interaction parameters for molecule-
molecule binary, molecule-electrolyte binary, and electrolyte-
electrolyte binary systems are required for liquid phase activity 
coefficients calculations. Here, electrolytes are defined as cation and 
anion pairs.

We set all molecule-molecule and electrolyte-electrolyte binary 
parameters to zero, unless specified otherwise, and molecule-electrolyte 
binary parameters to 8 and -4 as reported in NRTL model [12]. The 
non randomness factor (α) is fixed at 0.2, but it can be variable from 
0.1 to 0.9. The calculated thermodynamic properties of the electrolyte 
solution are dominated by the binary NRTL parameters associated 
with the major species in the system. The calculated thermodynamic 
properties of the electrolyte solution are dominated by the binary 
NRTL parameters associated with the major species in the system. In 
other words, the binary parameters for the water-MDEA binary, the 
water-(MDEAH+, HCO3

-) binary, the water-(MDEAH+, CO3
2-) binary 

and the MDEA-(MDEAH+, HCO3
-) binary systems determine the 

calculated thermodynamic properties. These binary parameters, in 
turn, are identified from fitting to available experimental data.

After proper consideration of unsymmetrical convention for the 
solutes and ionic species, the complete excess Gibbs energy expression 
of the electrolyte NRTL model is given as follows:

* ** , , ,ex ex PDH ex Born ex lcg g g g= + +

The activity coefficient for any species i, ionic or molecular, solute 
or solvent, is derived from the partial derivative of the excess Gibbs 
energy with respect to the mole number of species i:

*

, ,

( )1ln

i j

ex
i

i
i T P n

n g
RT n

γ

≠

 ∂
=  

∂  
                                                             (34)

where tn  is the total mole number for all species in the system.

Data regression
At first all available experimental data from different authors were 

used for regression analysis to obtain the interaction parameters, 
which resulted in a large average correlation deviation. Then a lot of 
equilibrium curves were made at the same temperatures and the same 
initial amine concentrations but from the different authors and some 
sets of data, which were far away from most of the data, were discarded. 
Finally, the combination of data useful for generating a correlation 
to obtain a set of interaction parameters has been identified. The 
adjustable interaction parameters are characteristic of pair interactions 
of components of the solution and are independent of solution 
composition.

Differential evolution algorithm

DE is a stochastic, population-based method [29]. These methods 
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heuristically ‘‘mimic’’ biological evolution, namely, the process of 
natural selection and the ‘‘survival of the fittest’’ principle. 

Differential evolution (DE) technique is used to estimate the 
interaction parameters for the VLE model. An adaptive search 
procedure based on a ‘‘population’’ of candidate solution points is 
used. ‘‘NP’’ denotes the population size. In a population of potential 
solutions within an n-dimensional search space, a fixed number of 
vectors are randomly initialized, then evolved over time to explore the 
search space and to locate the minima of the objective function. ‘‘D’’ 
denotes the dimension of each vector, which is actually the number 
of optimum parameters to be estimated of the proposed objective 
function ψ (Eq 36)

211 exp
2 2

exp
2

j ni c cal
CO CO

CO

P P

P
ψ

∆∆

∆

==

∆

−
= ∑ ∑

n is the number of experimental data, and c is the number of 
components in the mixture, respectively.

The main operation in DE is the NP number of competitions, 
which are to be carried out to decide the next generation population. 
Generations or iterations involve a competitive selection that drops 
the poorer solutions. From the current generation population of the 
vectors, one target vector is selected. Among the remaining population 
vectors, DE adds the weighted weight factor is denoted by F, and is 
specified at the starting) difference between two randomly chosen 
population vectors to third vector, called trial vector (randomly 
chosen), which results in a ‘‘noisy’’ random vector. This operation is 
called recombination (mutation). Subsequently, crossover is performed 
between the trial vector and the noisy random vector (perturbed 
trial vector) to decide upon the final trial vector or offspring of this 
generation. For mutation and crossover to be carried out together, 
a random number is generated which is less than the CR crossover 
constant). If the random number generated is greater than CR, then 
the vector taken for mutation (trial vector) is kept copied as it is; as 
an offspring of this generation (mutation is not compulsory). This way 
no separate probability distribution has been used which makes the 
scheme completely self-organizing. Finally, the trial vector replaces 
the target vector for the next generation population, if and only if it 
yields a reduced value the objective function than in comparison to 
the objective function based on target vector. In this way, all the NP 
number of vectors of the current generation is selected one by one as 
target vectors and checked whether the trial vector (offspring) to create 
the population of the next generation should replace them or not. The 
control parameters of the algorithm are: number of parents (NP), 
weighing factor or mutation constant (F), crossover constant (CR). 
There is always a convergence speed (lower F value) and robustness 
(higher NP value) trade-off. CR is more like a fine tuning element. High 
values of CR like CR = 1 give faster convergence if convergence occurs. 

For each individual ,  i Gx in the current generation G, DE generates 

a new trial individual ,i Gx′  by adding the weighted difference between 

two randomly selected individuals 1,r Gx  and 2,r Gx  to a third 

randomly selected individual 3,r Gx . The resulting individual ,i Gx′  

is crossed-over with the original individual, , i Gx . The fitness of the 
resulting individual, referred to as perturbated vector , 1i Gu + , is then 
compared with the fitness of ,i Gx  . If the fitness of , 1i Gu +  is greater 

than the fitness of ,i Gx , ,i Gx  is replaced with , 1i Gu + , otherwise ,i Gx , 
remains in the population as , 1i Gu + . Deferential Evolution is robust, 
fast and effective with global optimization ability. It does not require 
that the objective function is differentiable, and it works with noisy, 
epistatic and time-dependent objective functions. Pseudocode of DE 
shows:

 1.
( )max

( ) ( )

: , , 4 4, 0,1 ,

0,1 ,  ,
lo hi

Input D G NP F

CR andinitialbounds x x

≥ ∈ +
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[ ]
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0,1 • ,
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j

Initialise i NP j D x

x rand x x
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3. maxWhileG G<

i NP∀ ≤  4.MutateandRecombine

1 2 34.1 , , 1,2, ., ],r r r NP∈ … 1 2, :randomlyselected except r r≠  

4.2 jrand 1,2, ., ],D randomlyselectedonceeachi∈ …
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, 3,

, 1, , 2,, , 1
4.3 , .

j r G
j j r G j r Gj i G x

D u F x x
+ =

∀ ≤ + −

, ,  j i Gx otherwise  

5. Selected i ( )0,1j randf rand CR j j< ∨ =  

 , 1 , 1 ,, 1 i G i G i Gi Gx u iff u f u+ ++

    = ≤           

  

 { ,i Gx otherwise

 1G G= +

There are some versions for optimization by mean differential 
evolution and two standard versions of DE, one of them, DER and1Bin, 
are chosen for optimization of eNRTL parameters. 

It is recommended to set the number of parents NP to 10 times the 
number of parameters (eg. For a binary mixtures such as MDEA-H2O, 

we need two interaction parameters , 2 2 ,MDEA H O H O MDEAandτ τ  , then 

NP should be equal to 20 in this special case), to select weighting factor 
F=0.8, and crossover constant CR=0.9. It has been found recently that 
selecting F from the interval [0.5, 1.0] randomly for each generation 
or for each difference vector, a technique called dither, improves 
convergence behavior significantly, especially for noisy objective 
functions. It has also been found that setting CR to a low value, e.g. 
CR=0.2 helps optimizing separable functions since it fosters the search 
along the coordinate axes. On the contrary this choice is not effective if 
parameter dependence is encountered, something which is frequently 
occurring in real-world optimization problems rather than artificial 
test functions. So for parameter dependence the choice of CR=0.9 is 
more appropriate. Another interesting empirical finding is that raising 
NP above, say, 40 do not substantially improve the convergence, 
independent of the number of parameters. Different problems often 
require different settings for NP, F and CR.
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The strategy adopted

Different strategies can be adopted in DE algorithm depending 
upon the type of problem for which DE is applied. The strategies can 
vary; based on the vector to be perturbed, number of difference vectors 
considered for perturbation, and finally the type of crossover used [28]. 

The DE algorithm is a population based algorithm like genetic 
algorithms using the similar operators; crossover, mutation and 
selection. The main difference in constructing better solutions is that 

genetic algorithms rely on crossover while DE relies on mutation 
operation. This main operation is based on the differences of randomly 
sampled pairs of solutions in the population. 

The algorithm uses mutation operation as a search mechanism 
and selection operation to direct the search toward the prospective 
regions in the search space. The DE algorithm also uses a non-uniform 
crossover that can take child vector parameters from one parent more 
often than it does from others. By using the components of the existing 
population members to construct trial vectors, the recombination 

Parameter i j Value σ(eNRTL-
DE)

σ(eNRTL-
LM)

σ(eNRTL-SA)

aij
aji
bij
bji

MDEA
H2O
MDEA
H2O

H2O
MDEA
H2O
MDEA

-1.3781
12.153
-316.46
-1237.9

0.0129
0.0469
5.3898
8.7256

0.0566
0.1641
22.97
45.70

0.1472
0.1078
10.378
9.6247

aij
aji
bij
bji

CO2
H2O
CO2
H2O

H2O
CO2
 H2O
CO2

10.064*

10.064*

-3268.135*

-3268.135

-
-
-
-

-
-
-
-

-
-
-
-

Table 2: eNRTL parameters τ) for the MDEA-H2O using Differential Evolution 

Algorithm (α = 0.2). 
b

ô a
T

= + , where T is the temperature in K and σ is the 
standard deviation.

Parameter i j Value σ

τij
τji
τij
τji
τij
τji

H2O
(MDEAH+,
HC 3O− )

H2O
(MDEAH+, 

C
2
3O −

)
MDEA

(MDEAH+,

HC O3
− )

(MDEAH+,
HC 3O− )

H2O
(MDEAH+,

C
2
3O −

) H2O

(MDEAH+,

HC O3
− )

MDEA

6.2699
-7.8856
17.2754
-0.1982
11.3765
-3.1299

0.0981
0.0194
0.0367
0.0653
0.0762
0.0492

Table 3: eNRTL parameters molecule-electrolyte binaries (τ) for the MDEA-H2O-
CO2 system with DE (α = 0.2).

Parameters Component Source Type of Data required in regression and their sources

Δf
98.152

iG g
H2O, MDEA, CO2 Aspen Databank  [16]

Δf 298.15
igH

H2O, MDEA, CO2 Aspen Databank [16]

O3
− H2O, CO2

MDEA
Aspen Databank [16]
Regression

Data (Liquid heat capacity of MDEA)
Regression (Maham et al. [35], Chen et al. [34], Zhang et al. [35])

Δf ( )2 2 ) (CO v CO l↔

H3O
+, OH-, HCO3

-, CO3
2-

MDEAH+
Aspen Databank [16]
Regression

Data (VLE, excess enthalpy, heat capacity, and species concentration from
NMR spectra for the MDEA-H2O-CO2 system)
Regression (Kuranov et al. [36], Kamps et al. [37], Ermatchkov et al. [13], Mathonat 
[39], Weiland et al. [40], Jackobsen et al. [41])

Δf
,

298.15
aqH ∞

H3O
+, OH-, HCO3

-, CO3
2-

MDEAH+
Aspen Databank [16]
Regression

Data (VLE, excess enthalpy, heat capacity, and species concentration from
NMR spectra for the MDEA-H2O-CO2 system)
Regression (Kuranov et al. [36], Kamps et al. [37], Ermatchkov et al. [38], Mathonat 
[39], Weiland et al. [40], Jackobsen et al. [41])

,aqCP
∞

H3O
+, OH- Aspen Databank  [16]

Criss and Cobble [31]
Regression

Data (VLE, excess enthalpy, heat capacity, and species concentration from
NMR spectra for the MDEA-H2O-CO2 system)
Regression (Kuranov et al. [36], Kamps et al. [37], Ermatchkov et al. [38], Mathonat 
[39], Weiland et al. [40], Jackobsen et al. [41])

ΔvapH MDEA Regression Heat of vaporization of MDEA, calculated from the vapor Pressure (Antoine Equation) 
using the Clausius-Clapeyron equation

Antoine Equation MDEA Regression Data (Vapor pressure of MDEA, heat of vaporization of MDEA, calculated from the 
vapor pressure using the Clausius-Clapeyron equation)
Regression (Daubert et al. [42], Noll et al. [43], VonNiederhausern et al. [44])

Dielectric Constant MDEA Criss and Cobble [31]
Henry’s Constant CO2 in H2O

CO2 in MDEA
Yan and Chen [32]
Zhang & Chen [33]

NRTL-Electrolyte 
Binary Parameters

CO2-H2O binary
MDEA-H2O binary
MDEA-H2O-CO2 
Molecule-Electrolyte 
Binaries 

Regression1-DE

Regression2-DE

Regression3-DE

Data
1.	Solubility of CO2 in pure water
2.	VLE, excess enthalpy, and heat capacity for the MDEA-H2O and CO2-H2O 

binaries
3.	VLE, excess enthalpy, heat capacity, and species concentration from NMR 

spectra for the MDEA-H2O-CO2  system
Regression 
1. Yan & Chen [32]
2.  (Xu et al. [45], Voutsas et al. [46], Kim et al. [47], Posey [9], Maham et al. 

[30,31], Chiu and Li [48], Chen e al. [50], Zhang et al. [49]) 
3. (Kuranov et al. [36], Kamps et al. [37], Ermatchkov et al. [38], Mathonat [39], 

Weiland et al. [40], Jackobsen et al. [41])

Table 4: Parameters estimated in modelling with their sources and the type of data regressed.
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Figure 1: Comparison of the experimental data from Kim et al. [47] with  the 
model  eNRTL-DE for MDEA-H2O system.
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Figure 2: Comparison of the experimental (MDEA-H2O) data from Chen et al. 
[1,2] with the model eNRTL-DE for MDEA-H2O system.

(crossover) operator efficiently shuffles information about successful 
combinations, enabling the search for a better solution space.

An optimization task consisting of D parameters can be represented 
by a D-dimensional vector. In DE, a population of NP solution vectors 
is randomly created at the start. This population is successfully 
improved by applying mutation, crossover and selection operators. The 
main steps of the DE algorithm are given below:

•	 Initialization
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Figure 3: Comparison of the experimental data from Posey with the model 
eNRTL-DE for MDEA-H2O. For comparison eNRTL is also represented.
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Figure 4: Model predictions of MDEA and H2O activity coefficients: (______) 
H2O activity coefficients and (-.-.-.-) MDEA activity coefficients.
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Figure 5: Comparison of the experimental data for some species concentration 
in MDEA-CO2-H2O system at T=293K and MDEA concentration 23 wt%. For 
comparison eNRTL is also represented.

•	 Evaluation
•	 Repeat
Mutation
Recombination
Evaluation
Selection
•	 Until (termination criteria are met)

Results and Discussions
Only, the eNRTL parameters (Tables 2 and 3) have been regressed 
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Figure 6: Heat of reaction of the different components in 30 wt% MDEA 
solution at T=313K.

using differential evolution algorithm, the rest of the data have been 
taken from the literature. Table 4 summarizes the model parameters 
and sources of the parameters used in the thermodynamic model. Most 
of the parameters can be obtained from the literature. A lot of results 
can be plotted but we confined ourselves a few of them to show the 
modeling compared to the experimental and sometimes compared to 
eNRTL without DE algorithm. Figure 1 shows the comparison for the 
experimental total pressure data and the calculated results from the 
model. Figure 1 shows the model also provides excellent representation 
of the heat capacity data.

The excess enthalpy fit is given in Figure 3. Both the experimental 
excess enthalpy data from Posey [4] and those of Maham et al. [35,43] 
are represented very well. It shows also a better fit for eNRTL-DE 
model. Figure 4 shows the model predictions for water and MDEA 
activity coefficients at 313, 353, and 393°K. While the water activity 
coefficient remains relatively constant, the model suggests that the 
MDEA activity coefficient varies strongly with MDEA concentration 
and temperature, especially in dilute aqueous MDEA solutions.

Figure 5 shows the species distribution as a function of CO2 loading 
for a 23 wt% MDEA solution at 293°K. The calculated concentrations 
of the species are consistent with the experimental NMR measurements 
from Jakobsen et al. [41].

Figures 6 show comparisons of the model correlations and 
the experimental data of Mathonat 65 for the integral heat of CO2 
absorption in aqueous MDEA solution at 313°K. The calculated values 
are in good agreement with the experimental data. Also shown in 
Figure 6 are the predicted differential heats of CO2 absorption.

Table 4 summarizes the model parameters, sources of the 
parameters and the type of data used in the thermodynamic model. Most 
of the parameters can be obtained from the literature. The remaining 
parameters are determined by fitting to the experimental data. For 
MDEA-H2O binary only, the standard deviations are compared using 
DE algorithm and Levenberg–Marquardt (LM) algorithms (Table 2). It 
is clear that DE presents lower σ than LM and SA.

Conclusions
The electrolyte eNRTL model has been successfully applied 

with Differential Evolution algorithm to calculate the interaction 
parameters and to correlate the experimental data on thermodynamic 
properties of MDEA-H2O-CO2 system. The model has validated a 

lot of experimental data, but more research needs to be carrying out 
to compare eNRTL-DE with eNRTL-LM and eNRTL-LM for all the 
interactions parameters. The model can be used to support process 
modeling and simulation of the CO2 capture process with MDE.
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