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Abstract

In the present paper, the method for approximate calculation of phase space volumes proposed in Ref. [1] is
extended. Expressions for the melting heat of materials with f.c.c., b.c.c. and h.c.p. lattices are derived. Experimental
results are compared to numerical calculations for a number of elements.
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Calculation of a Phase Volume for Solids

A principally new approach to the calculation of the heat of first-
order phase transitions was proposed in Ref. [1]. It is based on an
approximate calculation of the phase volumes of a system in different
phases: solid, liquid or gaseous and calculation of the change of entropy
given as a logarithmic ratio of the volumes of old and new phases

s,k The volumes of phase space for liquid and gaseous phases
are also calculated therein:
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Where V, and V, are the volumes of liquid and gas, respectively.
The expression for the evaporation heat is obtained in Ref. [1] in terms
of other thermodynamic parameters of the process. A good agreement
of numerical results and experimental data suggests that the method
is versatile and can be used for calculating the transition heat of other
first-order phase transitions. As it was shown in Ref. [1], the calculation
should take into account the work performed against external forces
during a phase transition with employment of the free volume. The
expression for the phase volume of liquid was obtained in Ref. [1],
whereas the calculation of a melting heat requires the phase space
volume of solid state. The following model is used to find this volume.
Every atom (molecule, ion) of a solid is assumed to vibrate near the
equilibrium state, and its energy in a self-consisted periodic field is

e, (f,ﬁ).

Quadratic expansion of energy into powers of p gives:

3
en(F,fJ):en(F)+ Jrm 8 D,
A e,(7) can be interpreted as an effective potential energy U, (7),
eﬂ
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By diagonalizing the quadratic form according to the standard
technique, we obtain:
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Where m,,, m , m_are components of the effective mass tensor.
1/ m,;=0d%,/ 1317,517 ; \00 Thls approach is utilized in solid state physics,

for example, in Ref. [2]. Equation (3) is the elliptic equation with the axes
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Integration over p in the phase space gives:
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It was assumed in Ref. [1] that near a point of first-order phase-
transition, the majority of atoms are in the state with the average
kinetic energy. This assumption is proved by a good agreement
between numerical results and experimental data on evaporation heat.
Consequently, according to the equipartition theorem for kinetic energy
[3], one can substitute 3KT/2 for (e,~U, (7)). Thus, the approximate
volume of phase space for solid is given by:

Vips = (43 (8mnmU m.. (3:1{T/2)})”z l@j\ :(43” (m“m”m (3/(7")3)I ’ VJ\ , (3)
Calculation of the Melting Heat

The volume of phase space for solid is given by (3). In the first part
of the present work [1] it was shown that the employment of the free
volume (for unit mole, the free volume is V', =V — NV , where V
is the geometrical volume, N, is the Avogadro constant, and V., is the
volume of atom (molecule, ion)) gives a substantially better agreement
between numerical and experimental results. The phase space volume
for solid state is expressed as:

4 Y
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and the phase space volume for liquid state is, respectively, (1):
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Correspondingly, the logarithm of the ratio V ,, /V

s 18 equal to:
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By using the Stirling formula In((3¥/2)!)=3N(In(3N/2))/2-3N/2

and taking into account R=kNA, we obtain:
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Thus, the expression for the melting heat has the form:

3 3
/1:R2T[ln”§+lnmJ+RT1n[1+AV]+PAV (5)
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Under normal pressure, the term PAV is on the order of 1010

~ 107, and the value of the first term is ~10% hence, up to pressures of
~ 10" Pa the term PAV can be neglected. V, =V, + AV . Finally, the
expression for the melting heat at pressures below 10'° Pa has the form:
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Let us term the dimensionless expression

3 3
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the structural melting constant. Its first term is determined by a
substantial difference between liquid and solid states, and the second
one makes allowance for the corrections related to symmetry and

forces of interaction between atoms for a particular crystal. Note
3

that the expression ln{ J is sensitive to the values of effective

masses. Let the effective masses be slightly greater than m, then

m, =m(1+0.0n),m, =m(1+0.0n),m_=m(1+0.0n), where n is ~3-7
3 3

(10:)an] =3In (1 —%J = —%, In (%) =2.353. Taking

effective masses into account may reduce the value of the structural

melting constant by 10-15% since the effective mass is, as a rule, greater

than the mass of a free particle.

and we have 111[

Calculation of effective masses is beyond the scope of the present
work because it is a hard computational task for a particular material.
The effective masses can be found from the analysis of phonon spectra
as well, but this is the subject to a separate work. The present work
considers only geometric factors in the expressions for effective masses
for three different types of lattice: the face-centered lattice (f.c.c.),
body-centered lattice (b.c.c.), and hexagonal close-packed lattice
(h.c.p.). In calculations of metal ion volumes, the ion radii are used,
and in calculations of the volumes of atoms Ne, Ar, Kr, and Xe the
corresponding van der Waals radii are used [4,5].

The expression for the melting heat (6) has the form:

El-t T A, v, av r,
Ne 24,48 324 1,397 0,22 1,60
Ar 83,87 1210 2,412 0,35 1,91
Kr 116,6 1640 2,968 045 1,98
Xe 161,3 2290 3,709 0,56 2,18
Pb 600,7 4770 1,826 0,07 1,32
Al 933,5 10670 1,000 0,07 0,57
Ar 1235 11300 1,027 0,06 0,89
Au 1338 12700 1,019 0,05 0,91
Cu 1357 13000 0,709 0,04 0,72
Ac 1370 14200 2,260 1,18
Ni 1726 17600 0,659 0,05 0,78
Pd 1825 17200 0,885 0,64
Pt 2045 19700 0,910 0,06 0,70
Rh 2239 22600 0,829 0,86
Ir 2683 26400 0,857 0,89

3 3
2R e | rrin| 1427
2 6 m.m, m._ V.
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Since, according to the Clapeyron-Clausius equation

ar _Av and AS:% we have AV:id—T

dP  AS T dP
By substituting this result into (6) we obtain the equation for
calculating A:

A=RTS,+In| 1+ A dT

— | ®)
TV, dP

Where dT/dP is the initial slope of the melting curve [6]. The
obtained equation is simply solved numerically by the iterative method
and provides the value of the melting heat. The results of calculations
by formula (6) and the solutions of equation (8) are given in Tables
1-3. Experimental data for the calculations are taken from Ref. [4,5]. In
Tables 1-3 the number of polymorphic phase transitions before melting
is marked with asterisks *. Spaces in the tables mean that there is no
available data on the jumps of volume in melting.

Melting heat for the f.c.c. lattice

To the f.c.c. lattice in the p -space, in which the expansion was
performed, corresponds the b.c.c. lattice. In view of the symmetry of
b.c.c. lattice, we take: m,m,m, Then, the melting heat for the f.c.c.
lattice takes the form:

A:lRTln[Le}]-#RTln[H—M] )]

2 6 5

The structural melting constant for the f.c.c. lattice is S =1.1765.

For low-melting elements with weak interaction between atoms
the effective masses are approximately equal to atomic masses, whereas
for hard-melting materials the difference can be substantial. Results
of calculations of the melting heat for f.c.c. lattices by formula (9) and
solutions of equation (8) are given in Table 1.

T is the melting temperature in K, A [J/mol] is the experimental
value of the melting heat, V *10°[m*/mol] is the molar volume of the
solid state, AV*10°[m?/mol] is the volume jump in melting, r*10'°[m]
is the radius of atom (ion), V,*10°[m’/mol] is the free volume, (dT/
dP)*10°[K/Pa] is the initial slope of the melting curve, X, [J/mol] is
the molar melting heat calculated by formula (9), A, [J/mol] is the
molar melting heat obtained by solving equation (8), §, and 6,[%] are

inaccuracies of A, and A, respectively.

A A, 5, dT/dP A, 5,
0,365 335,4 -3,5 13,16 317 2,0
0,656 1118 7,6 24,89 1102 8,9
1,012 1497 8,7 30,13 1444 11,9
1,098 2129 7,0 38,9 2082 9,1
1,246 6146 -28,8 7,73 6182 -30,0
0,953 9676 9,3 6,41 9648 9,6
0,849 12775 -13,1 4,9 12664 -12,1
0,829 13732 -8,1 6,2 13914 -9,6
0,615 13978 -7,5 4,69 14129 -8,7
1,846 19,4 14603 -2,8
0,539 18146 -3,1 3,7 17858 -1,5
0,819 6,4 19030 -10,6
0,824 21188 -7,6 6,2 21275 -8,0
0,669 5,9 23540 -4,2
0,679 6,2 28280 =71

Table 1: Calculation results of melting heat for f.c.c. lattices.
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El-t T A, \'A AV r, Vg A, 5, dT/dP A, 5,
Cs 301,5 2090 7,096 0,169 1,65 5,964 2150 -2,8 25,9 2156 -3,2
Rb 312,2 2200 5,579 0,193 1,49 4,745 2257 -2,6 21,1 2234 -1,6
K 336,8 2400 4,536 0,117 1,33 3,943 2405 -0,2 17,7 2411 -0,5
Na 371 2640 2,368 0,064 0,98 2,131 2650 -0,4 8,77 2648 -0,3
Li 453,7 3130 1,300 0,032 0,78 1,180 3230 -3,2 3,41 3205 -2,4
Pb 600,7 4770 1,826 0,070 1,32 1,246 4416 7.4 7,73 4363 8,5
Ba 983 7530 3,821 0,030 1,43 3,084 6859 8,9 4,3 6990 8,7
Sr** 1042 8000 3,450 0,177 1,27 2,934 7694 3,8 16,5 7531 59
Eu 1095 9200 2,898 0,140 1,12 2,544 8040 12,6 12,8 7875 14,4
Yb* 1097 7700 2,484 0,100 1,07 2,175 7976 -3,6 17,0 8075 -4,9
La** 1194 10040 2,260 0,012 1,14 1,887 8298 17,3 2,5 8325 171
Pr* 1204 8200 2,080 1,06 1,780 2,2 8389 -2,3
Nd* 1294 10680 2,059 0,019 0,99 1,814 9037 15,4 2,6 9031 15,4
Sm* 1350 10900 2,000 0,072 1,20 1,564 9816 9,9 6,0 9612 11,8
u* 1405 9200 1,256 0,029 0,97 1,026 10016 -8,9 2,8 9920 -7,8
Mn*** 1517 12070 0,738 0,042 0,91 0,548 11392 5,6 3,3 11000 8,8
Be* 1551 13000 0,488 0,056 0,35 0,477 12128 6,7 5,0 11675 10,2
Gd* 1586 10200 1,990 0,041 0,97 1,760 11243 -10,2 57 11237 -10,2
Tb* 1629 10800 1,931 0,061 0,89 1,753 11699 -8,3 74 11636 -7,7
Dy* 1685 10900 1,900 0,093 0,89 1,722 12358 -13,4 12,0 12316 -13,0
Ho* 1747 14160 1,875 0,140 0,95 1,659 13226 6,6 14,3 12947 8,5
Y* 1795 11390 1,989 1,06 1,689 16,5 13432 -17,9
Er 1802 17200 1,844 0,166 0,93 1,641 13872 19,3 15,0 13413 22,0
Fe** 1808 13800 0,709 0,030 0,83 0,565 13248 4,0 3,0 13033 55
Sc* 1814 15900 1,504 0,83 1,360 15,1 13726 13,7
Ti* 1933 15000 1,055 0,90 0,871 15,4 15454 -3,0
Th* 2023 15600 1,980 1,1 1,635 18,6 15342 1,6
Cr 2110 21000 0,723 0,84 0,574 15,9 18336 12,7
Zr* 2125 20000 1,402 1,09 1,076 16,3 16635 16,8
\Y 2160 23100 0,834 0,88 0,662 15,7 18158 21,4
Hf* 2503 20935 1,341 0,84 1,192 17,3 19489 6,9
Nb 2741 27200 1,084 0,77 0,969 16,2 21739 20,1
Mo 2890 27600 0,939 0,010 0,92 0,743 20254 26,6 0,96 20146 27,0
Ta 3269 31400 1,087 0,056 0,77 0,972 24069 23,3 54 23613 248
w 3680 35200 0,953 0,125 0,77 0,838 29634 15,8 78 27430 221
Table 2: Calculation results of melting heat for b.c.c. lattices.
El-t T A, A AV r, Vg A, 5, dT/dP A, 5,
Cd 5941 6110 1,300 0,04 1,14 0,927 5516 9,7 53 5565 8,9
Zn 692,7 6670 0,917 0,04 0,83 0,773 6479 2,9 4,8 6516 2,3
Mg 992 9040 1,398 0,04 0,78 1,278 9116 -0,8 75 9303 -2,9
Ca** 1112 9330 2,586 0,13 1,06 2,286 10445 -11,9 14,9 10485 -12,4
Pm 1441 12600 2,010 1,06 1,710 31,3 14956 -18,7
Co* 1768 15200 0,662 0,01 0,82 0,523 15014 1,2 3,5 15578 -2,5
Tm 1818 18400 1,812 0,13 0,87 1,646 17389 55 12,0 17251 6,2
Lu 1936 19200 1,778 0,06 0,85 1,623 17879 6,9 15,9 18753 2,3
Tc 2445 23810 0,860 0,95 0,644 55 23441 1,5
Ru 2583 23700 0,814 0,77 0,699 6,1 24802 -4,6
Os 3327 29300 0,843 0,89 0,665 6,5 32220 -10,0
Re 3453 33100 0,886 0,03 0,72 0,792 31913 3,6 3,2 31898 3,6

Table 3: Calculation results of melting heat for h.c.p. lattices.

Experimental values of the melting heat and the line of a simple ~ Melting heat for the b.c.c. lattice
regression are shown in Figure 1. The slope of the regression line is
1.1670, which well coincides (with a good accuracy of ~ 0.85%) with the
structural melting constant of the f.c.c. lattice §;=1.1765.

To the b.c.c. lattice in the P -space corresponds the f.c.c.
lattice. Hence, taking into account geometrical factors we take
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Figure 1: Experimental values of the reduced melting heat for elements with 200 400 600 800 1000 1200
the f.c.c. lattice and the line of simple regression.
Figure 2: Experimental values of melting heat and the line of simple
regression for elements with b.c.c. lattice and the lowest melting points.

m, =m, =m,m_=mx2. Then the expression for the melting heat in the

xx

case of b.c.c. lattice takes the form

3 3
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The structural melting constant for the b.c.c. lattice is $,=1.0032.

Results of calculations of the melting heat for b.c.c. lattices by
formula (10) are given in Table 2 along with the results of solving
equation (8).

T is the melting temperature in K, A_[J/mol] is the experimental
value of the melting heat, VS*105[m3/mol] is the molar volume of the
solid state, AV*10°[m’/mol] is the volume jump in melting, r*10'°[m]
is the radius of atom (ion), V*10°[m*/mol] is the free volume, (dT/
dP)*10°[K/Pa] is the initial slope of melting curve, A [J/mol] is the
molar melting heat calculated by formula (10), A ,[J/mol] is the molar
melting heat obtained by solving equation (8), 6, and §,[%] are the
inaccuracies of A, and A, respectively.

Experimental values of the melting heat and the line of simple
regression are presented in Figure 2 for the most low-melt elements.
First seven metals were chosen with the lowest melting points for
which the most relevant experimental data on melting temperature and
melting heat are available. The slope of the regression line is 0.967 and
matches the structural melting constant of the b.c.c. lattice §,=1.0032
with a good accuracy of ~ 3.6%.

Melting heat for the h.c.p. lattice

h.c.p lattice transforms into itself in the p - space. The effective
masses are, respectively, m, =m, =m,m_ =2%m. Thus, the expression for
the melting heat for h.c.p. lattice has the form

3
2=Lrr| | ZE +1n[i] +RTIn| 14271, (11)
2 6 2a vy

where a and c are parameters of the h.c.p. lattice. Since the ratio c/a
for the elements does not differ much from the ideal case < =/8/3 N

a
we may replace real values of the ratio a/c in the expression for S, with
the ideal value and obtain the relationship for the melting heat for the
h.c.p. lattice:

3
A=t R ZL |+ rrm| 1422 (12)
2 N3 Vy

The structural melting constant for the h.c.p. lattice is S =1.075.

Results of calculations by formula (12) are given in Table 3. The
results of solving equation (8) for h.c.p. lattices are also presented in
the table.

T is the melting temperature in K, A [J/mol] is the experimental
value of the melting heat, V*10°[m’/mol] is the molar volume of the
solid state, AV*10° [m?*/mol] is the volume jump in melting, r*10'°[m]
is the radius of atom (ion), V*10° [m*/mol] is the free volume, (dT/
dP)*10® [K/Pa] is the initial slope of the melting curve, A, [J/mol] is the
molar melting heat calculated by formula (12), A, [J/mol] is the molar
melting heat obtained by solving equation (8), §, and §, [%] are the
inaccuracies of A, and A, respectively.

Experimental values of the melting heat are presented in Figure 3
along with the line of a simple regression. The slope of the regression
line is 1.1186 and matches the structural melting constant of h.c.p.
lattice §;=1.0075 with a good accuracy of ~ 4%.

Analysis and Conclusions

As one can see from Tables 1-3, the proposed model gives a
satisfactory description of the melting heat for the elements considered.
In Ref. [7], experimental data on temperatures and melting heat values
for eight well characterized elements are given. As one can see from
Table 4, even for these elements the experimental results noticeably
differ.

T, and T _are the minimal and maximal values of experimental
melting temperature, A and A__ are the lowest and highest values of
experimental melting heat. The same trend holds true for the values
given in various handbooks. The results only coincide if data are taken
from a single source. Consequently, it would not be correct to hope for
a good agreement between experimental data and the numerical results

calculated by formulae (9-10, 12).

The substantial difference between the experimental value of the
melting heat for lead and the corresponding value calculated for the
f.c.c. lattice along with the satisfactory agreement with the value of the
melting heat calculated for the b.c.c. lattice suggest that a polymorphic
transition from the f.c.c. lattice to b.c.c. lattice occurs near the melting
point with the phase transition heat equal to 2~1700-1800 J/mol. The
phase transition heat is calculated in the frameworks of the proposed
model.
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4500 Thus, one can assert that the molar melting heat at pressures below
AR K 10" Pa is given by the expression
4000 A AV
000 A=RTS,+RTIn| 1+=——
3500 A ¥
or by a solution of the equation
3000 -
A=RTS,+In| 1+ A_dr R
TV dP
2500 - . .
Where S,=1.1765 for the f.c.c. lattice, S,=1.0032 for the b.c.c. lattice and
J S =1.075 for the h.c.p. lattice. The rest values have been defined earlier.
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