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Despite the efforts made by countless researchers worldwide 
on improving anticancer therapies, the treatment of several kinds 
of cancers is still a major challenge in medicine. For some types of 
malignant tumors such as those of the oral cavity [1], the patients’ 
survival rates have not significantly increased over the last decades. 
One reason for this is that chemotherapy, one of the main options for 
treating cancer, has not been significantly improved since its inception 
more than 70 years ago [2]. The therapeutic indexes of anticancer 
drugs are generally low [3], well below those observed for most of the 
drugs. Their toxicity severely limits their dose. Although a few good 
exceptions exists such as imatinib (Glivec®), which is effective and 
particularly selective to chronic myelogenous leukemia cells, an ideal 
drug to treat malignant tumors is not yet available [2].

The pertinent literature clearly shows that the toxicity of 
chemotherapeutic agents towards healthy tissues is one of the main 
factors limiting the success of chemotherapy [3,4]. Thus, one could 
reasonably expect that increasing the selectivity of anticancer drugs to 
the tumor would significantly improve chemotherapy outcomes. Not 
only new drugs are necessary, but also new formulations.

Indeed this is what many researchers have being looking for, mainly 
over the last two decades. It was found out that by associating drugs 
to certain macromolecules, macromolecular complexes or particles 
known as drug delivery systems (DDS), it was possible to increase 
the tumor selectivity in comparison to conventional formulations. A 
review on this issue can be found elsewhere [4].

Since the first seminal studies on anticancer DDS [5], 
pharmaceutical technology has brought to light a plenty of possibilities 
for improving selectivity of chemotherapeutic drugs to tumors. But, 
how do these DDS work? In chemotherapy, an ideal DDS delivers 
an anticancer drug to the tumor tissue while preventing it to reach 
healthy, non-target tissues. Such a system may be designed on the 
basis of a careful analysis of tumor pathophysiology. In this context, 
it is known that solid tumors often present a defective vascular 
architecture, with a more permeable endothelial lining than that of 
healthy tissues. Generally, this leaky, tumor-associated vasculature but 
not that of healthy tissues, allows for particles ranging from 200 to 800 
nm in diameter to reach the interstitial space [6]. Moreover, particles 
stay longer in the tumor than in healthy tissue interstitium because of 
the impaired lymphatic drainage, commonly observed in solid tumors. 
This phenomenon is known as the enhanced permeation and retention 
(EPR) effect. It allows for DDS to passively accumulate in solid tumors, 
provided they are small enough to permeate tumor vasculature; large 
enough to be incapable of crossing walls vessels of healthy tissues and 
present a sufficiently long circulation time.

Nanostructures can be easily designed to have those characteristics. 
Nanotechnology offers tools for controlling DDS size at the nanoscale, 
and to prolong their circulation time in the bloodstream [7]. Thus, 
exploiting the EPR effect should be viewed as a fundamental point 

to be taken into account, when one designs a nanostructured DDS. 
It is really not difficult in nanotechnology. Moreover, there are a 
plenty of methods that allow for the association of virtually every 
chemotherapeutic drug to a nanostructure. The compartmentalized 
nature of a nanostructure can also be used for associating different 
synergic drugs in a single DDS, and to functionalize its surface in order 
to achieve active targeting of tumors [8]. Controlled drug release can be 
also achieved with nanostructures, if necessary.

Thus, it is possible to improve chemotherapy with nanotechnology. 
Although some problems presented by nano-based DDS, mainly related 
to the tumor idiosyncrasy still remain to be solved, solid laboratory 
and clinical evidences already show that nanostructures have the 
potential to revolutionize chemotherapy [2,6]. The dose-limiting 
toxicity presented by classical anticancer drugs may be circumvented 
with nano-based solution. As Richard Feynman said, “there is plenty of 
room at the bottom”. Taking advantage of what is down; there may be 
a way to really improve chemotherapy.
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