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The sort of materials treated by theoretical methods in physics 
has changed radically in recent years, from small molecules and 
biomolecules, as well as  perfect solids and gasses at zero temperature,  
to much more complex systems such as plasmas [1], warm dense matter 
[2] and complicated biomolecular structures [3].  For example, plasmas 
are almost always mostly ionized, depending on target temperature
being much higher than ionization potentials, with electrons, atoms,
and ions composing a quasi-neutral mixture, while biomolecules,
generally neutral systems, can be large and complicated molecules.  It
is frequently desired to pump energy into these systems for reasons
ranging from creating an operable fusion reactor to perform ion based
radiation treatment of tumors. Such energy deposition is often done
by focusing a fast ion beam on the target, where collisions, perhaps
the result of complicated motions, depending on whatever E



 and B


fields are present, result in conversion of some of the kinetic energy of
the fast ion to kinetic and electronic energy of the components of the
target system. Understanding of the details of the deposition of energy
by a swift ion in materials is thus important to the understanding of
many processes, from radiation treatment of tumors to interaction of
molecules in space with the solar wind.

It is thus desirable that energy deposition by swift ions in complex 
modern systems be understood more deeply.

In all such cases, projectile kinetic energy is converted to target 
electronic energy on collision.  The quantity describing such energy 
transfer is the energy deposited by the projectile per unit length of the 
trajectory, known as the stopping power,  –dE(v)/dx , of the target, which 
depends on the projectile velocity, given in units of the Bohr velocity, 
v0, and the scatterer target density, n.  To facilitate comparison among 
different target systems, the stopping power is frequently normalized 
with respect to scatterer density, to produce what is referred to as the 
stopping cross-section of the target S(v):
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The stopping cross section with appropriate constants removed, is 
referred to in Bethe-like theories [4], as the stopping number, L(v):
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Here Z1 and Z2 are the projectile charge and target electronic charge, 
respectively. The stopping number is further expanded in powers of the 
projectile charge,  
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The stopping number, L(v) , is normally written using derived 
quantities which, using the Bethe [5], Lindhard [6,7], and Bloch [8] 
forms for L0, L1 and L2, respectively, yields
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for the stopping number. The dominant term here is the L0, or 

Bethe, term 2
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, and calculations of the stopping power 

of a system are often approximations using only this term.  If high 
accuracy is needed, this is not reasonable, as although the higher terms 
are small, they are not negligible. 

Of the quantities in Equation 5, the critical quantity is the mean 
excitation energy of the target, I0, which is defined [9] as the first energy 
weighted moment of the target dipole oscillator strength distribution 
(DODS):
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The mean excitation energy describes how easily a target can absorb 
kinetic energy from the projectile, primarily as electronic (including 
ionization) and vibrational (including full and partial fragmentation) 
excitation.  

The mean excitation energy is characteristic of the target only, 
and has no dependence on the properties of the projectile ion.  (One 
should note parenthetically that if the target is in an excited electronic 
state before the collision, the projectile might absorb energy from the 
target [1].)  As the mean excitation energy enters the stopping power 
expression through the logarithm and in atomic units, small changes 
in mean excitation energies do not produce major changes in the 
stropping cross section [10].

The question then arises as to how the mean excitation energies of 
the current complex systems now being studied should be calculated.

Perhaps the most æsthetically pleasing way is simply to calculate 
I0 directly from Equation 6. Thus, the dipole oscillator strength 
distribution and excitation energies for the target must be calculated 
[11]. For atoms and small molecules, this is not a problem using 
presently available methods.  However, different theoretical methods 
and basis sets used in such calculations can produce somewhat different 
results, as do estimation methods such as Bloch’s [5] estimate:

0 110I Z eV=   (7)

of atomic mean excitation energies.  If the target is a molecule, 
geometry, orientation with respect to the projectile beam and state of 
aggregation can be important.  
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Thus, the conclusion is that there appear to be two major projects 
that need be completed before energy absorption from swift ions in 
complicated target systems can be accurately described and understood:

1. New methods and programs need be developed which can
deal with ion stopping in dense, strongly coupled systems.

2. To do so will require development of methods for accurate
calculation of mean excitation energies of target ions.
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As an example, consider water.  A variety of ab initio and semi-
empirical calculations of I0 give values differing by only some 6% around 
a mean of ~74 eV over the range of calculational schemes employed 
[12]. As noted above, since I0  enters the calculation of stopping power 
only as the natural logarithm, the difference in computed stopping 
power will be very small regardless of which of the computed I0´ is used.

The question then arises as how to determine the mean excitation 
energy for a particular complex target of the type mentioned above.  
There are several presently available possibilities.

In principle, one need calculate the DOSD for the complex mixture 
of the target, and then apply Equation 6 to obtain I0  for the mixture.  
However, this is, as yet, not possible.

Another way the theoretical mean excitation energy for a complex, 
bulk system can be determined from a theoretical dielectric response of 
the bulk system [13].  In this approach, the mean excitation energy can 
be obtained from:
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using, for example,  a Drude-like dielectric function of the form
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However, using such an approach requires determination of the 
dielectric function of the complex sample which determination is not 
easier than determination of the first energy weighted moment of the 
target DODS of the sample.  

An approach frequently used to describe the mean excitation 
energy of a mixture of components in a target is related to the Bragg 
Rule [14], which calculates the stopping of a mixture as a density 
fraction weighted sum of the stopping of the components. 
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In terms of the mean excitation energy, this gives a mean excitation 
energy of
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Where ωi  is the number of electrons in component i , and  Ne 
is 

the weighted number of electrons summed over the components of the 
target.

This formulation assumes that the components are not interacting, 
or that the interactions are small.  Such an assumption is clearly not 
true for many complex targets such as plasmas.

Were one to use a Bragg-like scheme for the stopping power 
of a complex target, the mean excitation energy of neutral atoms 
and molecules, of free electrons, and of ions would need be known.  
Although the literature has many references to methods and values for 
calculating accurate mean excitation energies or stopping powers for 
atoms and free electrons [15,16], methods for calculation of accurate 
mean excitation energies for ions are nearly unknown.
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