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Definition of a Statistical Measure of Complexity
This century has been told to be the century of complexity [1]. 

Nowadays the question “what is complexity?” is circulating over the 
scientific crossroads of physics, biology, mathematics and computer 
science, although under the present understanding of the world 
could be no urgent to answer this question. However, many different 
points of view have been developed to this respect and hence a lot of 
different answers can be found in the literature. Here we explain in 
detail one of these options. On the most basic grounds, an object, a 
procedure, or system is said to be “complex” when it does not match 
patterns regarded as simple. This sounds rather like an oxymoron but 
common knowledge tells us what is simple and complex: simplified 
systems or idealizations are always a starting point to solve scientific 
problems. The notion of “complexity” in physics [2,3] starts by 
considering the perfect crystal and the isolated ideal gas as examples 
of simple models and therefore as systems with zero “complexity”. Let 
us briefly recall their main characteristics with “order”, “information” 
and “equilibrium”. A perfect crystal is completely ordered and the 
atoms are arranged following stringent rules of symmetry. The 
probability distribution for the states accessible to the perfect crystal 
is centered on a prevailing state of perfect symmetry. A small piece of 
“information” is enough to describe the perfect crystal: the distances 
and the symmetries that define the elementary cell. The “information” 
stored in this system can be considered minimal. On the other hand, 
the isolated ideal gas is completely disordered. The system can be 
found in any of its accessible states with the same probability. All of 
them contribute in equal measure to the “information” stored in the 
ideal gas. It has therefore maximum “information”. These two simple 
systems are extrema in the scale of “order” and “information”. It 
follows that the definition of “complexity” must not be made in terms 
of just “order” or “information”. It might seem reasonable to propose 
a measure of “complexity” by adopting some kind of distance from the 
equiprobable distribution of the accessible states of the system. Defined 
in this way, “disequilibrium” would give an idea of the probabilistic 
hierarchy of the system. “Disequilibrium” would be different from 
zero if there are privileged, or more probable, states among those 
accessible. But this would not work. Going back to the two examples 
we began with, it is readily seen that a perfect crystal is far from an 
equidistribution among the accessible states because one of them is 
totally prevailing, and so “disequilibrium” would be maximum. For the 
ideal gas, “disequilibrium” would be zero by construction. Therefore 
such a distance or “disequilibrium” (a measure of a probabilistic 
hierarchy) cannot be directly associated with “complexity”. In Figure 
1.1 we sketch an intuitive qualitative behavior for “information” H and 
“disequilibrium” D for systems ranging from the perfect crystal to the 

ideal gas. This graph suggests that the product of these two quantities 
could be used as a measure of  “complexity”: C=H · D. The function C has 
indeed the features and asymptotical properties that one would expect 
intuitively: it vanishes for the perfect crystal and for the isolated ideal 
gas, and it is different from zero for the rest of the systems of particles. 
We will follow these guidelines to establish a quantitative measure of 
“complexity”. Before attempting any further progress, however, we 
must recall that “complexity” cannot be measured univocally, because 
it depends on the nature of the description (which always involves a 
reductionist process) and on the scale of observation. Let us take an 
example to illustrate this point. A computer chip can look very different 
at different scales. It is an entangled array of electronic elements at 
microscopic scale but only an ordered set of pins attached to a black box 
at a macroscopic scale. We shall now discuss a measure of “complexity” 
based on the statistical description of systems. Let us assume that the 
system has N accessible states {x1, x2,..., xN } when observed at a given 
scale. We will call this an N-system. Our understanding of the behavior 
of this system determines the corresponding probabilities {p1, p2 
, ..., pN } (With the condition 1  1N

i ip=∑ = ) of each state (pi>0 for all 
i). Then the knowledge of the underlying physical laws at this scale is 
incorporated into a probability distribution for the accessible states. It 
is possible to find a quantity measuring the amount of “information”. 
Under to the most elementary conditions of consistency, Shannon [4] 
determined the unique function H ( p1 , p2 , ..., pN ) that accounts for 
the “information” stored in a system:

1
p log p

N

i i
i

H K
-

= - ∑            (1.1)

Where K is a positive constant. The quantity H is called information. 
The redefinition of information H as some type of monotone function 
of the Shannon entropy can be also useful in many contexts as 
we shall show in the next sections. In the case of a crystal, a state xc 
would be the most probable pc∼1, and all others xi would be very 
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improbable, pi~0 i ≠ c. Then Hc∼0. On the other side, equiprobability 
characterizes an isolated ideal gas, pi~1/N so Hg~K log N, i.e., the 
maximum of information for a N-system. (Notice that if one assumes 
equiprobability and K=κ ≡ Boltzmann constant , H is identified with 
the thermodynamic entropy, S=κ log N). Any other N-system will have 
an amount of information between those two extrema. Let us propose 
a definition of disequilibrium D in a N-system [5]. The intuitive notion 
suggests that some kind of distance from an equiprobable distribution 
should be adopted. Two requirements are imposed on the magnitude 
of D: D>0 in order to have a positive measure of “complexity” and D=0 
on the limit of equiprobability. The straightforward solution is to add 
the quadratic distances of each state to the equiprobability as follows:

2

1

1( )
-

= -∑
N

i
i

D p
N

                                                                                  (1.2)

According to this definition, a crystal has maximum disequilibrium 
(for the dominant state, pc~1, and Dc → 1 for N → ∞) while the 
disequilibrium for an ideal gas vanishes (Dg~0) by construction. For 
any other system D will have a value between these two extrema. We 
now introduce the definition of complexity C of a N-system [6,7]. This 
is simply the interplay between the information stored in the system 
and its disequilibrium: 

2

1 1

1( log ) ( ( ) )
N N

i i i
i i

C H D K p p p
N- -

= ⋅ = - ⋅ -∑ ∑  	          (1.3)

This definition fits the intuitive arguments. For a crystal, 
disequilibrium is large but the information stored is vanishingly small, 
so C~0. On the other hand, H is large for an ideal gas, but D is small, 
so C~0 as well. Any other system will have an intermediate behavior 
and therefore C>0. As was intuitively suggested, the definition of 
complexity (Equation: 1.3) also depends on the scale. At each scale of 
observation a new set of accessible states appears with its corresponding 
probability distribution so that complexity changes. Physical laws at 
each level of observation allow us to infer the probability distribution 
of the new set of accessible states, and therefore different values for H, D 
and C will be obtained. The straight forward passage to the case of a 
continuum number of states, x, can be easily inferred. Thus we must 

treat with probability distributions with a continuum support, p(x), 

and normalization condition ( ) 1p x dx
+∞

-∞

=∫ . Disequilibrium has the limit 
2 ( )p x dx D

+∞

-∞

=∫  and the complexity could be defined by:

2( ( ) log ( ) ) ( ( ) )C H D K p x p x dx p x dx
+∞ +∞

-∞ -∞

= ⋅ = - ⋅∫ ∫ 	           (1.4) 

As we shall see, other possibilities for the continuous extension of 
C are also possible. Direct simulations of the definition give the values 
of C for general N-systems. The set of all the possible distributions { p1, 
p2 , ..., pN } where an N-system could be found is sampled. For the sake 

of simplicity H is normalized to the interval [0, 1]. Thus 1
p log p
log

N i i
iH

N== ∑  . 

For each distribution {pi} the normalized information H ({pi}), and the 
disequilibrium D ({pi}) Equation: 1.2 are calculated. In each case the 
normalized complexity C=H · D is obtained and the pair (H, C) stored. 
These two magnitudes are plotted on a diagram (H,C(H )) in order to 
verify the qualitative behavior predicted in Figure 1.1. The relationship 
between H and C is not univocal. Many different distributions {pi} store 
the same information H but have different complexity C. Figure 1.2 
displays such a behavior for N=3. If we take the maximum complexity 
Cmax (H ) associated with each H a convex curve with a maximum 
is found. Every 3-system will have a complexity below this line and 
upper the line of Cmin (H ) and also upper the minimum envelope 
complexity Cminenv . In Figure 1.3 curves Cmax (H ) for the cases 
N=3, . . . , 10 are also shown. Let us observe the shift of the complexity 
curve peak to smaller values of entropy for rising N. This fact agrees 
with the intuition telling us that the biggest complexity (number of 
possibilities of ‘complexification’) be reached for lesser entropies for 
the systems with bigger number of states. Let us return to the point at 
which we started this discussion. Any notion of complexity in physics 
[2, 3] should only be made on the basis of a well-defined or operational 
magnitude [6, 7]. But two additional requirements are needed in 
order to obtain a good definition of complexity in physics: (1) the new 
magnitude must be measurable in many different physical systems 
and (2) a comparative relationship and a physical interpretation 

Figure 1.1: Sketch of the intuitive notion of the magnitudes of “information” (H) 
and “disequilibrium” (D) for the physical systems and the behavior intuitively 
required for the magnitude “complexity”. The quantity   C = H · D is proposed 
to measure such a magnitude.

Figure 1.2: In general, dependence of complexity (C) on normalized information 
(H) is not univocal: many distributions {pi} can present the same value of H but 
different C. This is shown in the case N = 3.
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to electronic systems [23]. In this monograph, different information 
measures applied to the description of electronic properties are 
addressed. One of them, the Fisher-Shannon information [24], presents 
a parallelism with the statistical complexity here presented. Both of 
them are based on the product of two information measures that give 
complementary descriptions of the concentration and uncertainty of 
the probability density. Thus, Shannon and Fisher information’s can be 
seen as global and local measures of the spreading or delocalization of 
the electronic cloud, respectively, and they can also be useful to show 
the electron correlation phenomenon [25]. In the next section, we are 
concerned with showing some applications of this type of statistical 
indicators in many electron systems such as atoms, molecules and 
clusters. Before that, we present the formulas that will be used in all 
our calculations.

Formulas in Position and Momentum Spaces
A similar statistical indicator to the statistical complexity C that has 

also been applied in several contexts is the Fisher-Shannon entropy, P. 
This entropic product measure [24] is also defined as the product of 
two magnitudes, in this case the exponential Shannon entropy, J, and 
the Fisher information, I. Now, we summarize the formulas and the 
nomenclature that we will use in all the next section for both indicators, 
C and P.

The measure of complexity C has been defined as

C=H · D 					                 (1.5)

Where H represents the information content of the system and 
D gives an idea of how much concentrated is its spatial distribution. 
We will use the simple exponential Shannon entropy [26-28], in the 
position and momentum spaces, as a measure of H. It takes the form, 
respectively,

rS
rH  = e , Sp

pH  = e , 				                (1.6)

Where Sr and Sp are the Shannon information entropies [29],

( ) log ( ) , ( ) log ( )ρ ρ γ γ= - = -∫ ∫r pS r r dr S p p d p 	             (1.7) 

and ρ(r) and γ(p) are the densities normalized to 1 of the quantum 
system in position and momentum spaces, respectively.

The disequilibrium is:
2 2

r pD = ( ) , D = ( )r dr p dpρ γ∫ ∫                                               (1.8)

In this manner, the final expressions for C in position and 
momentum spaces are:

 r r r P P pC  = H ·D ,C  = H ·D   			             (1.9) 

Let us remark at this point the coincidence of the indicator 
logCr with the quantity structural entropy, Sstr, introduced by Varga 
and Pipek as a meaningful parameter to characterize the shape of a 
distribution [30-32].

Second, the Fisher-Shannon information [24], P, in the position 
and momentum spaces, is given respectively by

r r r p p pP  = J · I ,P  = J ·I  				              (1.10)

Where the first factor 

22
3 31 1,

2 e 2 eπ π
= =

pr SS

r pJ e J e  		                            (1.11)

is a version of the exponential Shannon entropy, and the second factor

between any two measurements should be possible. Many different 
definitions of complexity have been proposed to date, mainly in the 
realm of physical and computational sciences. Among these, several 
can be cited: algorithmic complexity (Kolmogorov-Chaitin) [8,9], the 
Lempel-Ziv complexity [10], the logical depth of Bennett [11], the 
effective measure complexity of Grassberger [12], the complexity of a 
system based in its diversity [13], the thermodynamical depth [14], the 
ε-machine complexity [15] , the physical complexity of genomes [16], 
complexities of formal grammars, etc. The discussion on what can be 
learned or what prediction can be checked in an experiment or what 
new physics can be derived from the study of this type of measures has 
always been a controverted discussion [17-20]. This forms part of the 
evolution of ideas and nobody knows what can be found at the end of 
the path if it is not walked. This is just the object of science and, for this 
concrete case, Hawking claimed at the end of the past twentieth century: 
“I think the next century will be the century of complexity” [1]. The 
definition of complexity Equation:1.3 proposed in this section offers 
a point of view based on a statistical description of systems at a given 
scale. In this scheme, the knowledge of the physical laws governing the 
dynamic evolution in that scale is used to find its accessible states and its 
probability distribution. This process would immediately indicate the 
value of complexity. In essence this is nothing but interplay between the 
information stored by the system and the distance from equipartition 
(measure of a probabilistic hierarchy between the observed parts) of the 
probability distribution of its accessible states. Besides giving the main 
features of an “intuitive” notion of complexity, we will show in this 
chapter that we can go one step further and to compute this quantity 
in other relevant physical situations and in continuum systems. The 
most important point is that the new definition successfully enables 
us to discern situations regarded as complex. For example, we have 
performed different applications in complex systems with some type 
of discretization: one of them was the study of this magnitude in a 
phase transition in a coupled map lattice [21] and the other one was its 
calculation for the time evolution of a discrete gas out of equilibrium 
[22]. Other applications to more realistic systems can also be found in 
the literature, see for instance this major reference which is the only 
monograph published on the topic of statistical complexity applied 

Figure 1.3: Complexity (C = H ·D) as a function of the normalized information 
(H) for a system with two accessible states (N = 2). Also curves of maximum 
complexity (Cmax) are shown for the cases: N = 3;:::; 10.
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2 2

r
[ ( )] [ ( )]I , I

( ) ( )
ρ γ
ρ γ

∇ ∇
= =∫ ∫p

r pdr dp
r p

			            (1.12)

is the Fisher information measure [33], that quantifies the narrowness 
of the probability density.

Applications in Electronic Systems
Different applications of both magnitudes, the statistical complexity 

and the Fisher- Shannon entropy, in electronic systems are collected in 
this section.

The H -atom

The atom can be considered a complex system. Its structure is 
determined through the well-established equations of Quantum 
Mechanics [34,35]. Depending on the set of quantum numbers 
defining the state of the atom, different conformations are available to 
it. As a consequence, if the wave function of the atomic state is known, 
the probability densities in the position and the momentum spaces are 
obtained, and from them, the different statistical magnitudes such as 
Shannon and Fisher informations, different indicators of complexity, 
etc., can be calculated. These quantities enlighten new details of the 
hierarchical organization of the atomic states. In fact, states with the 
same energy can display, for instance, different values of complexity. 
This is the behavior shown by the simplest atomic system, that is, the 
hydrogen atom (H -atom). Now, we present the calculations for this 
system [36]. Other works concerning with the complexity of hydrogen 
atoms were also made by Dehesa et al. [37]. The non-relativistic wave 
functions of the H-atom in position space (r=(r, Ω ), With r the radial 
distance and Ω the solid angle) are:

, , , ,( ) ( ) ( )n l m n l l mr R r Yψ = Ω  			           (1.13) 

Where Rn,l (r) is the radial part and Yl,m (Ω ) is the spherical 
harmonic of the atomic state determined by the quantum numbers (n, 
l, m). The radial part is expressed as [35]

1
2 12

, 12

2 (n- -1)! 2 2( ) [ ] ( ) ( )
( )!

- +
- -=

+

r
l ln

n l n l
l r rR r e L

n n l n n                                    (1.14) 

being Lβ
α  (t) the associated Laguerre polynomials. Atomic units are 

used here. 

The same functions in momentum space (p=(p, Ω̂ ), with p the 
momentum modulus and Ω̂  the solid angle) are:

, , , ,( ) ( ) Y ( )n l m n l l mp R p
∧ ∧ ∧

Ψ = Ω 			            (1.15)

Where the radial part R̂ n,l ( p) is now given by the expression [38]
1 2 2

2 2 2 12, 12 2 2 2 2

2 ( 1)! 1( ) [ ] 2 ! ( )
( )! ( 1) 1

l l
l l

n l n ll

n l n p n pR p n l C
n l n p n pπ

∧
+ +

- -+

- - -
=

+ + +
           (1.16)

With C β
α (t ) the Gegenbauer polynomials.

Taking the former expressions, the probability density in position 
and momentum spaces,

2 2
, ,, ,( ) | ( ) | , ( ) | ( ) |n l mn l mr r p pρ γ

∧

= Ψ = Ψ ,  		          (1.17)

Can be explicitly calculated. From these densities, the statistical 
complexity and the Fisher-Shannon information are computed. Cr and 
Cp (Equation: 1.9) are plotted in Figure 1.4 as function of the modulus 
of the third component m of the orbital angular momentum l for 
different pairs of (n, l) values. The range of the quantum numbers is: 
n ≥ 1, 0 ≤ l ≤ n-1, and -l ≤ m ≤ l. Figure 1.4(a) shows Cr for n=15 and 
Figure 1.4(b) shows Cr for n=30. In both figures, it can be observed that 

Cr splits in different sets of discrete points. Each one of these sets is 
associated to a different l value. It is worth to note that the set with the 
minimum values of Cr corresponds just to the highest l, that is, l=n-1. 
The same behavior can be observed in Figures 1.4(c) and 1.4(d) for Cp. 
Figure 1.5 shows the calculation of Pr and Pp (see expression (1.10)) 
as function of the modulus of the third component m for different 
pairs of (n, l) values. The second factor, Ir or Ip, of this indicator can be 
analytically obtained in both spaces (position and momentum). The 
results are [39]:

2

4 | |(1 )= -r
mI

n n
 				                 (1.18)

2 22 {5 1 3 ( 1) (8 3(2 1)) | |}pI n n l l n l m= + - + - - +  	         (1.19)

In Figure 1.5(a), Pr is plotted for n=15, and Pr is plotted for n=30 
in Figure 1.5(b). Here Pr also splits in different sets of discrete points, 
showing a behavior parallel to the above signaled for C (Figure 1.4). 
Each one of these sets is also related with a different l value. It must be 
remarked again that the set with the minimum values of Pr corresponds 
just to the highest l. In Figures 1.5(c) and 1.5(d), the same behavior 
can be observed for Pp. Then, it is put in evidence that, for a fixed 
level of energy n, these statistical magnitudes take their minimum 
values for the highest allowed orbital angular momentum, l=n-1. It is 
worth to remember at this point that the mean radius of an (n, l=n- 1) 
orbital,<r>n, l , is given by [40]

2
, 1

1(1 )
2n l nr n

n= -< > = +  			               (1.20)

that tends, when n is very large, to the radius of the nth energy level, 
rBohr=n2 , of the Bohr atom. The radial part of this particular wave 
function, that describes the electron in the (n, l=n -1) orbital, has no 

nodes. In fact, if we take the standard deviation, 1
22( ) ( )r r r∆ =< - < > > , of this 

wave function, 2 1( ) 2
nr n +∆ = , the ratio (∆ r)/<r>becomes

1
2n for 

large n. This means that the spatial configuration of this atomic state is 
like a spherical shell that converges to a semi classical Bohr-like orbit 
when n tends to infinity. These highly excited H-atoms are referred 

� � � �

(a) (b)

� � � �

(c) (d)

Figure 1.4: Statistical complexity in position space, Cr , and momentum space, 
Cp, vs. |m| for different (n; l) values in the hydrogen atom. Cr for (a) n = 15 and (b) 
n = 30. C p for (c) n = 15 and (d) n = 30. All values are in atomic units.
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as Rydberg atoms, that have been intensively studied [41] for its 
importance in areas as astrophysics, plasma physics, quantum optics, 
etc., and also in studies of the classical limit of quantum mechanics [42]. 
We conclude this section by remarking that the minimum values of 
these statistical measures calculated from the quantum wave functions 
of the H-atom enhance our intuition by selecting just those orbitals that 
for a large principal quantum number converge to the Bohr-like orbits 
in the pre-quantum image. Therefore, these results show that insights 
on the structural conformation of quantum systems can be inferred 
from these magnitudes, as it can also be seen in the next sections.

The periodic table

The use of these statistical magnitudes to study the electronic 
structure of atoms is another interesting application [43-50,20]. The 
basic ingredient to calculate these statistical indicators is the electron 
probability density, ρ(r), that can be obtained from the numerically 
derived Hartree-Fock atomic wave function in the non-relativistic 
case [45,46], and from the Dirac-Fock atomic wave function in the 
relativistic case [47]. The behavior of these statistical quantifiers with 
the atomic number Z has revealed a connection with physical measures, 
such as the ionization potential and the static dipole polarizability 
[44]. All of them, theoretical and physical magnitudes, are capable of 
unveiling the shell structure of atoms, specifically the closure of shells 
in the noble gases. Also, it has been observed that statistical complexity 
fluctuates around an average value that is non-decreasing as the atomic 
number Z increases in the non-relativistic case [46,47]. This average 
value becomes increasing in the relativistic case [47]. This trend has 
also been confirmed when the atomic electron density is obtained 
with a different approach [51]. In another context where the main 
interactions have a gravitational origin, as it is the case of a white dwarf, 
it has also been observed that complexity grows as a function of the star 
mass, from the low-mass non-relativistic case to the extreme relativistic 
limit. In particular, complexity for the white dwarf reaches a maximum 
finite value in the Chandrasekhar limit as it was calculated by Sañudo 
and López-Ruiz [52]. An alternative method to calculate the statistical 
magnitudes can be used when the atom is seen as a discrete hierarchical 
organization. The atomic shell structure can also be captured by the 
fractional occupation probabilities of electrons in the different atomic 

orbitals. This set of probabilities is here employed to evaluate all these 
quantifiers for the non-relativistic (NR) and relativistic (R) cases. In 
the NR case, a non-decreasing trend in complexity as Z increases is 
obtained and also the closure of shells for some noble gases is observed 
[53, 54]. For the NR case, each electron shell of the atom is given by (nl)
w [55], where n denotes the principal quantum number, l the orbital 
angular momentum (0 ≤ l ≤ n- 1) and w is the number of electrons 
in the shell (0 ≤ w ≤ 2(2l + 1)). For the R case, due to the spin-orbit 
interaction, each shell is split, in general, in two shells [56]: (nl j−)w−, (nl 
j+)w+ ,where j±=l ± 1/2 (for l=0 only one value of j is possible, j=j+=1/2) 
and 0 ≤ w± ≤ 2 j± + 1. As an example, we explicitly give the electron 
configuration of Ar(Z=18) in both cases,

 Ar(NR) : (1s)2 (2s)2 (2 p)6 (3s)2 (3 p)6,                                          (1.21)

 Ar(R) : (1s1/2)2 (2s1/2)2 (2 p1/2)2 (2 p3/2)4 (3s1/2)2 (3 p1/2)2 (3 
p3/2)4. 						               (1.22) 

For each atom, a fractional occupation probability distribution of 
electrons in atomic orbitals { pk }, k=1, 2, . . . , Π, being Π the number 
of shells of the atom, can be defined. This normalized probability 
distribution {pk} ( ) 1kp∑ =  is easily calculated by dividing the 
superscripts w± (number of electrons in each shell) by Z, the total 
number of electrons in neutral atoms, which is the case we are 
considering here. The order of shell filling dictated by nature [55] has 
been chosen. Then, from this probability distribution, the different 
statistical magnitudes (Shannon entropy, disequilibrium, statistical 
complexity and Fisher-Shannon entropy) are calculated. In order 
to calculate the statistical complexity C=H·D, with H=eS, we use the 
discrete versions of the Shannon entropy S and disequilibrium D:

 
1

logk k
k

S p p
Π

=

= -∑ 				             (1.23)

2

1

( 1 / )
Π

=

= - Π∑ k
k

D p  				               (1.24)

To compute the Fisher-Shannon information, P=J · I, with, the 

discrete 2 /31
2π

= SJ e
e

 version of I is defined as [53,54]

2
1

1

( )k k

k k

p pI
p

Π
+

=

-
=∑ 				             (1.25)

where pΠ+1=0 is taken.

The statistical complexity, C, as a function of the atomic number, 
Z, for the NR and R cases for neutral atoms is given in Figures 1.6 and 
1.7, respectively. It is observed in both figures that this magnitude 
fluctuates around an increasing average value with Z. This increasing 
trend recovers the behavior obtained by using the continuous 
quantum-mechanical wave functions [46,47]. A shell-like structure is 
also unveiled in this approach by looking at the minimum values of 
C taken on the noble gases positions (the dashed lines in the figures) 
with the exception of Ne(Z=10) and Ar(Z=18). This behavior can be 
interpreted as special arrangements in the atomic configuration for 
the noble gas cases out of the general increasing trend of C with Z. 
The Fisher-Shannon entropy, P, as a function of Z, for the NR and R 
cases in neutral atoms is given in Figures 1.8 and 1.9, respectively. The 
shell structure is again displayed in the special atomic arrangements, 
particularly in the R case (Figure 1.9) where P takes local maxima for 
all the noble gases (see the dashed lines on Z=2, 10, 18, 36, 54, 86). The 
irregular filling (i.f.) of s and d shells [55] is also detected by peaks in 
the magnitude P, mainly in the R case. In particular, see the elements 

� � � �

(a) (b)

� � � �

(c) (d)

Figure 1.5: Fisher-Shannon information in position space, Pr , and momentum 
space, Pp, vs. |m| for different (n; l) values in the hydrogen atom. Pr for (a) n = 
15 and (b) n = 30. Pp for (c) n = 15 and (d) n = 30. All values are in atomic units.
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reveals its application to atoms or nuclei unveiling some properties 
of the hierarchical organization of these many-body systems [52,54]. 
In particular, entropic products such as Fisher-Shannon in-formation 
and statistical complexity present two main characteristics when 
applied to the former systems. On one hand, they display an increasing 
trend with the number of particles, electrons or nucleons. On the other 
hand, they take external values on the closure of shells. Moreover, in 
the case of nuclei, the trace of magic numbers is displayed by these 
statistical magnitudes [59]. The basic ingredient to calculate these 
statistical magnitudes is the particle probability density that can be 
obtained from the numerically derived Hartree Fock wave function or 
a density functional-theory (Kohn-Sham equations) for molecules [60]. 
An alternative method to calculate these indicators can be used when 
the multi-particle system is seen as a discrete hierarchical organization. 
In this case, the shell structure of the multi-component system can 
also be captured by the fractional occupation probabilities of the 
particles in the different orbitals. In atomic physics, these statistical 
quantifiers have revealed a connection with physical measures, such as 
the ionization potential and the static dipole polarizability [44]. All of 
them, theoretical and physical magnitudes, are capable of unveiling the 
shell structure of atoms, specifically the closure of shells in the noble 
gases.

Following this line of work, metal clusters are other multiparticle 
systems that merit our attention. These are useful quantum systems to 
understand how the physical properties evolve in the transition from 
atom to molecule to small particle to bulk solid [61,62]. They also present 
a shell structure where the statistical indicators before mentioned can 
be applied. As in the case of atoms and nuclei, the fractional occupation 
probabilities of valence electrons in the different orbitals can capture 
the shell structure. This set of probabilities can be used to evaluate the 
statistical quantifiers for metallic clusters as a function of the number 
of valence electrons. Similar calculations have been reported in the 
previous section for the electronic atomic structure [52,54] and for 
nuclei [59]. From this perspective, the multiparticle character of the 
system is not taken into account since the cluster is treated in a strict 
single particle picture where at each step the probability of a given 
electron to occupy one of the partially filled shells is calculated. By 
following this method, we undertake here the calculation of statistical 
complexity and Fisher-Shannon information for metal clusters. The 
jellium model provides an accurate description of some simple metal 
clusters. In this model, a valence electron is assumed to interact 
with the average potential generated by the other electrons and the 
ions [61,62]. The confinement potential in the Schrodinger equation 
leading to shell structure is taken as a potential intermediate between 
the three-dimensional harmonic oscillator and the three dimensional 
square well. This yields a filling of shells with a number N of valence 
electrons given by the series: 2, 8, 18, 20, 34, 40, 58, 68, 70, 92, 106, 112, 
138, 156, 166, 168, 198, 220 and so on. Each shell is given by (nl)w, 
where l denotes the orbital angular momentum (l=0, 1, 2, . . .), n counts 
the number of levels with that l value, and w is the number of valence 
electrons in the shell, 0 ≤ w ≤ 2(2l+1). As an example, we explicitly 
give the shell configuration of a metal cluster formed by N=58 valence 
electrons. It is obtained:

 (N=58) : (1s)2 (1 p)6 (1d)10 (2s)2 (1 f )14 (2 p)6 (1g)18.                   (1.26) 

The fractional occupation probability distribution of electron 
orbitals {pk}, k=1, 2, . . . , Π, being Π the number of shells, is easily 
found by dividing the superscripts w by the total number N of 
electrons. This normalized probability distribution {pk} ( 1)kp =∑  
is here defined in the same way as it has been done in other cases (in 

Cr and Cu (i.f. of 4s and 3d shells); Nb, Mo, Ru, Rh, and Ag (i.f. of 5s 
and 4d shells); and finally Pt and Au (i.f. of 6s and 5d shells). Pd also 
has an irregular filling, but P does not display a peak on it because the 
shell filling in this case does not follow the same procedure as the before 
elements (the 5s shell is empty and the 5d is full). Finally, the increasing 
trend of P with Z is clearly observed. Then, it is found that P, the Fisher-
Shannon entropy, in the relativistic case Figure1.9 reflects in a clearer 
way the increasing trend with Z, the shell structure in noble gases, and 
the irregular shell filling of some specific elements. The same method 
that uses the fractional occupation probability distribution is applied 
in the next section to other many particle systems, the metallic clusters 
that have also been described by a shell model.

The metallic clusters

The calculation of information theory measures of complexity on 
quantum systems [45,51,57,58] deserves a special attention such as 
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Figure 1.6: Statistical complexity, C, vs. Z in the non-relativistic case (CNR). 
The dashed lines indicate the position of noble gases. For details, see the text.
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Figure 1.7: Statistical complexity, C, vs. Z in the relativistic case (CR). The 
comments given in Figure 1.6 are also valid here.
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the former section) applied to calculate these magnitudes in atoms and 
nuclei [52,54,59]. Then, from this probability distribution, the different 
statistical magnitudes, Shannon entropy, disequilibrium, Fisher 
information, statistical complexity and Fisher-Shannon entropy, 
can be obtained. Other generalized magnitudes that have recently 
appeared in the literature could also be tested in this type of systems 
[63,64]. Here, we undertake the calculation of entropic products, a 
statistical measure of complexity C and the similar indicator [24,65,66] 
the Fisher-Shannon entropy P, that result from the product of two 

statistical quantities, C=H · D and P=J · I, where H=eS and 2 /31
2π

= SJ e
e

. The expressions for S, D and I are the same that we have used in the 
former section in the Equations 1.23, 1.24 and 1.25, respectively. The 
statistical complexity, C, of metal clusters as a function of the number 
of valence electrons, N, is given in Figure 1.10. We can observe in 
this figure that this magnitude fluctuates around a slightly increasing 

average value N. This trend is also found for the electronic structure 
of atoms [52] and for the shell structure of nuclei [59], reinforcing 
the idea that in general complexity increases with the number of units 
forming a system. However, the shell model supposes that the system 
encounters certain ordered rearrangements for some specific number 
of units (electrons or nucleons) that coincide with closed shells. In the 
present case, this fact is reflected by the notable increase of C in the 
metal clusters with one valence electron more than those with closed 
shells, which are indicated in Figure 1.10, just as happens for atoms 
when one electron is added to noble gases or when one nucleon is 
added to a closed shell in nuclei. Observe that some major shells do 
not show local minima at their closing. This effect is due to the number 
of valence electrons belonging to each shell: a shell with a few valence 
electrons displays a local minimum of C when it is closed, but this is 
not the case when the number of valence electrons in a shell increases. 
A similar decreasing behavior with N can be observed for D (Figure 
1.11). The Fisher-Shannon entropy, P, of metal clusters as a function 
of N is given in Figure 1.12. It presents an increasing trend with N. 
The spiky behavior of C provoked by the shell structure is still present 
for P but becomes smoother in this case. P displays notable peaks only 
at a few N related with the filling of some major shells, concretely at 
the numbers 2, 8, 18, 34, 58, 92, 138, 198. It must be remarked that, 
similarly as happens with C, the maximum values of P are taken on 
the nuclei with one unit more than the former series, although now 
the difference is slightly appreciable. Only peaks at 20 and 40 disagree 
with the sequence of magic numbers {2, 8, 18, 20, 34, 40, 58, 92, 138, 
198} obtained from experimental data, for instance, for Na clusters 
[67] and for Cs clusters [68,69]. Let us observe that the magic numbers 
are basically marked as extreme by the Fisher information such as 
can be seen in Figure 1.13. This is an alternative way to predict the 
magic numbers respective to other methods, such as the 3-dimensional 
q-deformed harmonic oscillator model [70]. In summary, the behavior 
of the statistical complexity C and the Fisher-Shannon information P 
with the number of valence electrons in metal clusters here reported 
shows the increasing trend of these magnitudes with the number of 
valence electrons, N. The method that uses the fractional occupation 
probabilities has been applied to calculate these statistical indicators. 
As in the case of atoms and nuclei, the shell structure is well displayed 
by the spiky behavior of C. On the other hand, P shows a smoother 
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Figure 1.8: Fisher-Shannon entropy, P, vs. Z, in the non relativistic case (PNR). 
The dashed lines indicate the position of noble gases. For details, see the text.
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Figure 1.9: Fisher-Shannon entropy, P, vs. Z, in the relativistic case (PR). The 
comments given in Figure 1.8 are also valid here.

Figure 1.10: Statistical complexity, C, vs. number of valence electrons, N. The 
arrows indicate the positions of closed shells.
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behavior but with relevant peaks just on the major shells that coincide 
with the series of magic numbers in metal clusters. Therefore, the 
qualitative study of metal clusters by means of statistical indicators 
unveils certain physical properties of them. In fact, we can again 
conclude that this type of statistical measures is able to enlighten some 
conformational aspects of quantum many-body systems.

The crystalline bands

The application of information theory measures to quantum systems 
is a subject of great interest [45,51,58,71,72]. Some relevant properties 
of the hierarchical organization of atoms [52,54] and nuclei [59] are 
revealed when these indicators are calculated on these many-body 
systems. Also these statistical quantifiers have revealed a connection 
with physical measures, such as the ionization potential and the static 
dipole polarizability [44] in atomic physics. All of them, theoretical 
and physical magnitudes, are capable of unveiling the shell structure 

of atoms, specifically the closure of shells in the noble gases. A strategy 
to calculate these indicators is to quantify the discrete hierarchical 
organization of these multiparticle systems through the fractional 
occupation probabilities. These probabilities capture the filling of the 
shell structure of these systems. From them, the different statistical 
magnitudes are derived. The metallic clusters are another system that 
has also been studied with this method [73]. As in the case of atoms and 
nuclei, the shell structure of the valence electrons is well displayed by 
the spiky behavior of the statistical complexity and the magic numbers 
are unveiled by relevant peaks of the Fisher-Shannon information. A 
different strategy to compute these entropic magnitudes is to use the 
probability density of the quantum system as the basic ingredient. This 
can be analytically obtained in some cases such as the H-atom [51] 
or numerically derived in other cases from a Hartree-Fock scheme 
[46,47] or a density functional-theory for atoms and molecules [60]. 
Here we address the problem to calculate these statistical indicators in 
a solid by this last strategy [74]. For this purpose, the band structure 
of the solid has to be determined. The Kronig-Penney (KP) model 
[75] is a one-dimensional model of crystalline solids that presents a 
band structure sharing many properties with band structures of more 
sophisticated models. Moreover, it also has the advantage that allows 
to analytically finding such electronic band structure. The KP model 
considers that electrons move in an infinite one-dimensional crystal 
where the positive ions are located at positions x=na/2 with n=±1, ±2, 
. . ., generating a periodic potential of period a. A simplified version of 
the KP model is obtained when this periodic potential is taken with the 
form of the Dirac comb [76]:

2

(x) (x )
n

v na
m

δ
+∞

=-∞

= Ω +∑
		                                                (1.27)

Where   is the Planck constant, m is the electronic mass and Ω is 
the intensity of the potential. In this case, the spatial part Ψ (x) of the 
electronic wave function is determined from the time independent 
Schrodinger equation:

2 2

2
[ ( )] ( ) ( )

2
d

V x x E x
m dx

- + Ψ = Ψ
 			            (1.28)

Figure 1.11: Disequilibrium, D, vs. number of valence electrons, N. The arrows 
indicate the positions of closed shells.

Figure 1.12: Fisher-Shannon entropy, P, vs. the number of valence electrons, 
N. The arrows indicate prominent closed shells that are magic numbers. For 
details, see the text.

Figure 1.13: Fisher information, I, vs. the number of valence electrons, N. The 
arrows indicate promi-nent closed shells that are magic numbers.
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Where the eigenvalue E is the energy of the eigenstate Ψ (x).

For a periodic potential, the Bloch’s theorem [77] establishes the 
form of the general solution of the Eq. (1.28). This is a plane wave, with 
wave number K, modulated by a periodic function, uK (x):

( ) ( )Ψ = iKx
Kx e u x  				               (1.29)

Where uK (x) has the periodicity of the crystal lattice: uK (x)=uK (x 
+ a). It implies the following translation property,

( ) ( )iKax a e xΨ + = Ψ  				            (1.30)

Let us observe that we have the case of free electrons when V (x)=0 
and the solutions of type (Equation: 1.29) recover the plane wave form 
with a total wave number k=K, with uK (x)=constant . It suggests that 
the solution of Equation: 1.28 in the region 0<x<a, where V (x)=0, can 
be associated in some way with a wave number k and then written in 
the general form:

( ) sin cosx A kx B kxΨ = +  			              (1.31)

and, by the translation property (1.30), this solution in the region 
a<x<2a is

( ) [ sin ( ) cos ( )]ikax e A k x a B k x aΨ = - + -  	                           (1.32)

with A, B complex constants and 2

2mEk
h

=

Two boundary conditions must be fulfilled by Ψ at the point: on the 
one hand, the continuity of the wave function and, on the other hand, 
the jump in the derivative provoked by the Delta function (Equation: 
1.27). This gives the relations: x=a

( 0) ( 0)a aΨ + = Ψ -  				                 (1.33)
' '( 0) ( 0) 2 ( )a a aΨ + = Ψ - + ΩΨ  			             (1.34)

From these boundary conditions applied to the wave functions 
(Equation: 1.31-1.32), the following homogeneous linear system is 
obtained for the unknowns A and B:

sin cos 0
( cos 2 sin ) ( sin 2 cos ) .

0

 -     - - Ω - Ω =        

iKa
iKaka ka e A

ke k ka ka k ka ka
B

       (1.35)

To have a non-trivial solution, the determinant of this 2×2 matrix 

has to be zero. Then, the following quantization relation for k is 
obtained [76]:

cos cos sinKa Ka ka
k
Ω

= +  			             (1.36)

The electronic band structure of the one-dimensional crystal is 
contained in this equation. When K varies its value in the different 
Brillouin zones, given by ( )1m Ka mπ π- ≤ ≤ , with m=1 for the first 
Brillouin zone, m=2 for the second Brillouin zone, etc., only certain 
intervals of k are allowed. These intervals for k are the energy bands of 
the electronic system. The positive and negative parts of these intervals 
correspond with the positive and negative parts of the Brillouin zones, 
respectively. In the limit Ω a=0, the free electron problem is recovered, 
then the solutions are the plane waves with k=K. In the limit Ω a=∞, we 
have the square well problem, then the wave number of the eigenstates 
verify sin ka=0. For an intermediate case, 0<Ω a<∞, Eq. (1.36) has to 
be solved. Concretely, for the particular value Ω a=4, that has also been 
used in [76], the lower energy bands obtained in this system for k>0 
are:

2.154 ≤ ka ≤ π (1st band);

4.578 ≤ ka ≤ 2π (2nd band);                                                          (1.37)

7.287 ≤ ka ≤ 3π (3rd band);

10.174 ≤ ka ≤ 4π (4th band):

The bands are symmetrically found for k<0. Observe that, to 
finally get the wave function of the electronic states, we additionally 
need the normalization condition to completely determine Ψ (x), 
except a global phase factor. For our calculations, by taking Ω a=4, 
we will perform this normalization in the unit cell [0, a]. The basic 
ingredient to calculate the statistical entropic measures in which we 
are interested is the probability density of the electronic states. This is 
given by ( ) ( ) 2| |x xρ = Ψ . From this density, we proceed to compute the 
statistical complexity C and the Fisher-Shannon information P. Notice 
that the wave function Ψ (x) for a given k is transformed in −Ψ (x) for 
−k, therefore all the magnitudes depending on the density are the same 
in both cases, and then we reduce our study to the positive part (k>0) 
of the electronic bands. The entropy, S, and the statistical complexity, 
C, for the lower electronic bands of the present one-dimensional 
crystalline solid are given in Figure 1.14 and Figure 1.15, respectively. 
When this hypothetical solid is in a situation of high conductivity, i.e. 
when it contains a band that is partially filled and partially empty, it can 
be observed in the figures that the more energetic electrons attain the 
highest entropy and the lowest complexity in the vicinity of the half-
filled band. This is the point where in general the highest conductivity is 
also attained. Take, for instance, the real case of the monovalent metals, 
that include the alkali metals (Li, Na, K, Rb, Cs) and the noble metals 
(Cu, Ag, Au). These metals present all the bands completely filled or 
empty, except an only half-filled conduction band [78]. Compared with 
other solids, these metals display a very high conductivity, that in the 
cases of Ag and Cu it is the highest in nature. Then, it is remarkable this 
coincidence at the point of half-filled band where, on the one hand, the 
entropy and the statistical complexity are extrema for this model of 
solids and, on the other hand, the conductivity reaches its upper values 
for the real cases of monovalent metals.

Now, we check that other statistical entropic measures also display 

Figure 1.14: Shannon entropy, S, vs. the adimensional wave number, ka, for k 
> 0. Only the four lower electronic bands given in expression (1.37) are shown.
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this behavior when the solid has half-filled bands. Let us take, for 
instance, the Fisher-Shannon information, P, that has been applied in 
different contexts [24,79] for atomic systems. Observe in Figure 1.16 
the confirmation of the previous results obtained in Figures 1.14 and 
1.15 for S and C, in the sense that the external values of P for this model 
of solids are also reached at the half-filling band points. The former 
calculations are done orbital by orbital, i.e. thinking that the solid is a 
set of individual and independent orbitals, each one identified by its 
own wave number k. We can change the point of view of the problem 
and to think that the solid stands in some kind of collective state whose 
probability density ρt(x) is the normalized sum of all the allowed 

Figure 1.15: Statistical complexity, C, vs. the adimensional wave number, ka, 
for k > 0. Only the four lower electronic bands given in expression (1.37) are 
shown.

Figure 1.16: Fisher-Shannon entropy, P, vs. the adimensional wave number, 
ka, for k > 0. Only the four lower electronic bands given in expression (1.37) 
are shown.

electronic densities obtained from the orbitals with wave numbers in 
the interval [kmin, kmax ]; kmin will be the minimal electronic wave 
number of the solid, i.e. the lowest k obtained in the first band, and 
kmax will be the upper k corresponding to the most energetic electron 
of the solid. The expression for ρt(x) is

max max

minmin

( ) ( ) /ρ ρ= ∫ ∫
k k

t k
k k

x x dk dk 	             	         (1.38)

Observe that ρt(x) is normalized in the interval [0,a],
0

( ) 1
a

t x dxρ =∫ , 
and that in the present model of solid kmin=2.154 as given in formulas 
(1.37). The calculation of the statistical complexity Ct for this ρt(x) is 
presented in Figure1.17. In this case, the minimal values of Ct are also 
located in the vicinity of the half-filled electronic bands such as the 
behavior of C for the individual orbitals shown in Figure 1.15. In the 
hypothetical limit case of a solid where kmax a ≫ 1, let us remark that 
the density ρt (x) will tend to the uniform density and then the lowest 
value of complexity, Ct=1, can be reached, as it can be seen in Figure 
1.17. In summary, this calculation once again puts in evidence that 
certain conformational properties of many-body systems are reflected 
by the behavior of the statistical complexity C and the Fisher-Shannon 
information P. In the present study, the electronic band structure of 
a model of solids has been unfolded and the measurement of these 
magnitudes for such a model has been achieved. It is remarkable the fact 
that the external values of C and P are attained on the configurations 
with half-filled bands, which is also the electronic band configuration 
displayed by the solids with the highest conductivity, let us say the 
monovalent metals. Therefore, the calculation of these statistical 
indicators for a model of solids unveil certain physical properties of 
these systems, in the same way that these entropic measures also reveal 
some conformational aspects of other quantum many-body systems, 
such as it has been shown in the previous sections.

The traveling densities

The behavior of the statistical complexity in time-dependent 
systems has not been broadly investigated. A work in this direction was 
done in [22] where a gas decaying toward the asymptotic equilibrium 
state is studied. It was found that this system goes towards equilibrium 
by approaching the maximum complexity path, which is the trajectory 
in distribution space formed by the distributions with the maximal 
complexity. Then, from a physical point of view, it has some interest to 
study the external behavior of statistical magnitudes in time dependent 
systems. In this section, we start by studying the statistical complexity 
C in a simplified time-dependent system ρ(x,t) composed of two one-
dimensional (variable x) identical densities that travel in opposite 
directions with the same velocity v, one of them, ρ+(x, t), going to the 
right and the other one, ρ-(x, t) going to the left. That is

1 1
( , ) ( , ) _( , )

2 2
ρ ρ ρ= ++x t x t x t  			               (1.39)

with the normalization condition ( , ) 1ρ =±∫R
x t dx  that implies the 

normalization of ρ(x,t), and the initial condition ρ+(x,0)=ρ-(x,0). 
Then, we calculate the statistical complexity C for two Gaussian, 
two rectangular and two triangular traveling densities in [80-82]. 
Specifically, the shape of ρ(x,t) presenting the maximum and minimum 
C is explicitly shown for all these cases.

Gaussian traveling densities: Here, the two one-dimensional 
traveling densities that compose system (Equation: 1.39) take the form:
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Figure 1.17:  Accumulated statistical complexity, Ct , vs. the adimensional wave 
number, ka, for k > 0. Only the four lower electronic bands given in expression 
(1.37) are shown.

Figure 1.18: Statistical complexity, CG, vs. the adimensional separation, 2vt=σ, 
between the two traveling Gaussian densities defined in Equation. (1.40). The 
minimum of CG is reached when 2vt=σ = 2.91. The dashed line indicates the 
value of complexity for the normalized Gaussian distribution.

Figure 1.19: Shape of the density (1.39) in adimensional units that presents 
the minimum statistical complexity when the two traveling Gaussian densities 
defined in (1.40) are crossing. Notice that the value of the dimensional 
separation between the centers of both Gaussian distributions must be 2.91.
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where σ is the variance of the density distribution.

The behavior of complexity, CG , as a function of the adimensional 

quantity 
2vt
σ

is given in Figure 1.18. Let us observe that CG presents 

a minimum. The shape of system (Equation: 1.39) for this minimum 
complexity case is plotted in a dimensional scale in Figure 1.19.

Rectangular traveling densities: Now, the two one-dimensional 
traveling densities that compose system (Equation: 1.39) take the form:

1/ if - / 2 x / 2,
( , )

0 if |x | / 2.
δ δ δ

ρ
δ

≤ ≤
± =  >





vt
x t

vt  		          (1.41)

where δ is the width of each distribution. For this case, the complexity, 
CR, can be analytically obtained. Its expression is:

2 /2 (1 ) if 0 2 ,
( )

1 if 2 ,

δ δ
δ

δ
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vt vt
C t

vt
			           (1.42)

The behavior of CR as a function of the adimensional quantity 2vt/δ 
is given in Figure 1.20. Let us observe that CR presents a maximum. The 
shape of system (Equation: 1.39) for this maximum complexity case is 
plotted in a dimensional scale in Figure 1.21.

Triangular traveling densities: The two one-dimensional traveling 
densities that compose system (Equation: 1.39) take the form in this 
case:
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The behavior of complexity, CT , as a function of the a dimensional 

quantity 
2vt
δ

is given in Figure 1.22. Let us observe that CT presents 

a maximum and a minimum. The shape of system (Equation: 1.39) 
for both cases, with maximum and minimum complexity, are plotted 
in an a dimensional scale in Figures 1.23 and 1.24, respectively. 
Then, in this section, we have studied the behavior of the statistical 
complexity as a function of time when two traveling identical densities 
are crossing each other. Three cases have been analyzed: Gaussian, 
rectangular and triangular densities. The Gaussian case presents a 
particular configuration with minimum complexity. The rectangular 
case displays a particular configuration with maximum complexity. 
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Figure 1.20: Statistical complexity, CR, vs. the adimensional separation, 2vt=δ, 
between the two traveling rectangular densities defined in Equation (1.41). The 
maximum of CR is reached when 2vt=δ = 0.557. Observe that the normalized 
rectangular distribution has CR = 1.

Figure 1.23: Shape of the density (1.39) in a dimensional units that presents 
the maximum statistical complexity when the two traveling triangular densities 
defined in (1.43) are crossing. Notice that the value of the a dimensional 
separation between the centers of both triangular distributions must be 0.44.

Figure 1.24:  Shape of the density (1.39) in a dimensional units that presents 
the minimum statistical complexity when the two traveling triangular densities 
defined in (1.43) are crossing. Notice that the value of the a dimensional 
separation between the centers of both triangular distributions must be 1.27.

Figure 1.21: Shape of the density (1.39) in a dimensional units that presents 
the maximum statistical complexity when the two traveling rectangular densities 
defined in (1.41) are crossing. Notice that the value of the a dimensional 
separation between the centers of both rectangular distributions must be 0.557. 
Then, the width of the overlapping between both distributions is 0.443.

Figure 1.22:  Statistical complexity, CT , vs. the adimensional separation, 2vt=ε, 
between the two trav-eling triangular densities given in Equation (1.43). The 
maximum and minimum of CT are reached when 2vt=ε takes the values 0.44 
and 1.27, respectively. The dashed line indicates the value of complexity for the 
normalized triangular distribution.

The triangular case shows an intermediate behavior between the two 
former cases with two particular configurations, one of them with 
maximum complexity and the other one with minimum complexity. 
In general, all these configurations with external complexity cannot be 
analytically obtained and a careful computational study is required in 
order to determine them.

Conclusions
Different definitions of complexity have been proposed in the 

context of computational and social sciences. In this review, we focus 
our attention in one of them, the statistical LMC complexity C, that 
has been applied in many different problems due to its generality 
and its operability to be computed without requiring a big amount of 
calculations. Several applications in quantum systems are recorded 
here. It is put in evidence that certain conformational properties of 
the quantum systems are reflected by the behavior of this statistical 
magnitude C. In the first application, we have concluded by remarking 
that the minimum values of C calculated from the quantum wave 
functions of the H-atom can select just those orbitals that for a large 
principal quantum number converge to the Bohr-like orbits in the 
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pre-quantum image. In the second application, we have found that if 
the fractional occupation probabilities of electrons in atomic orbitals, 
instead of the continuous electronic wave functions, are used to 
calculate the complexity, the shell structure in noble gases and the 
irregular shell filling of some specific elements is also reflected in the 
behavior of C. In the next application, a similar behavior is displayed 
by the metal clusters. The increasing trend of C with the number of 
valence electrons and the shell structure of the clusters is found in the 
spiky behavior of C. In the case of the band structure of a model of 
solids, it has been remarked the fact that the external values of C is 
attained on the configurations with half-filled bands, which are also the 
electronic band configurations displayed by the solids with the highest 
conductivity, that is, the monovalent metals. A last example is presented 
where the behavior of C as a function of time when two traveling 
identical densities are crossing each other is computed. Different cases 
were analyzed: Gaussian, exponential, rectangular, triangular and 
gamma densities. The configurations with external complexity were 
found for all these cases. This is a calculation that in general cannot 
be analytically obtained and that needs a careful computational study 
in order to determine the configurations with maximum or minimum 
C. In summary, the results here reported show that the statistical 
entropy-based magnitudes provide a complementary and useful way 
of thinking ready to be applied at a quantum level and able to enlighten 
conformational aspects of quantum many body systems.
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