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Introduction
The fish acute toxicity is a mandatory component in the base set 

of data requirements for eco-toxicity testing but fish suffer distress 
and perhaps pain [1]. Animal alternative considerations have also 
been incorporated into new REACH regulations through strong 
advocacy for the reduction of testing with live animals. REACH, as a 
regulatory tool, was envisaged to revise the existing chemical policy 
and to harmonize chemical legislations in Europe and the major aim 
of REACH is to systematically evaluate the risk to human health and 
the environment of approximately 30,000 chemical substances [2]. The 
fish embryo toxicity (FET) testan alternative approach to classical acute 
fish toxicity testing with live fish, has been a mandatory component in 
routine whole effluent testing in Germany since 2005 and has already 
been standardized at the international level. A modified version has 
been submitted by the German Federal Environment Agency (UBA) as 
a draft guideline for an alternative to chemical testing with intact fish 
[1].  The fish embryo test is a surrogate for the OECD 203 acute fish 
toxicity test (or other guideline equivalent acute fish assays). Recently, 
the regulations of the People’s Republic of China on Control over Safety 
of Hazard Chemicals revised and passed, therefore, FET is useful for 
the acute fish toxicity testing. In order to analyze the applicability of the 
FET also in chemical testing, a comparative re-evaluation was carried 
out for a total of 97 substances, and QSAR was developed to evaluate 
fish embryo toxicity data. QSAR to evaluate fish embryo toxicity data is 
described to be useful for future validation exercises.

The quantitative structure-property/activity relationship (QSPR/
QSAR) method is based on the assumption that the variation of 
the behavior of the compounds, as expressed by many measured 
physicochemical properties, can be correlated with changes in 
molecular features of the compounds termed descriptors [3]. This 
method can be used for the prediction of the properties of new 
compounds. It can also be applied to identify and describe important 
structural features of the molecules that are relevant to variations in 
molecular properties. Computational models are useful because they 
rationalize a large number of experimental observations.

The QSAR model is widely used for the prediction of 
physicochemical properties and biological activities in chemical, 
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Abstract
Quantitative structure–toxicity relationships were developed for the prediction of the fish embryo toxicity test using 

the CODESSA treatment, based on the linear heuristic method (HM) and support vector machines (SVM). Each kind 
of compound was represented by several calculated structural descriptors, derived for a diverse set of 97 compounds 
using DFT- B3LYP/6-31+G (d) level of the theory. A six-parameter correlation was found for the 97 compounds. In the 
HM method, the value of square of the correlation coefficient r2 is 0.8142, s2 is 0.0380, in the SVM method, the value 
of the r2 is 0.7105 and s2 is 0.0604. The HM model may be used for prediction of toxicity, safety and risk assessment of 
chemicals to achieve better ecotoxicological management.

environmental, and pharmaceutical areas [4,5], a potential or useful 
technique to estimate the toxicity especially for the compounds whose 
toxicity are not easy to test. The advantage of this approach over the 
experimental method lies in the fact that the descriptors used can 
be calculated from the structures alone and are not dependent on 
any experimental properties. Once the structure of a compound is 
known, a limited set of molecular properties, said descriptors, which 
can be obtained observing the molecular structure or semi-empirical 
quantum-mechanical calculations [6]. Therefore, once a reliable 
model is established, the model can be applied to help in identifying 
and describe important structural features of the molecules that are 
relevant to variations in molecular properties.

In this work we proposed a QSAR model to evaluate fish embryo 
toxicity data. 97 structures are calculated by the CODESSA software 
package, developed by Katritzky et al. [7,8] based on descriptors 
constitutional, topological, geometrical, geometrical, electrostatic and 
quantum chemical.

Materials and Method
In order to develop the QSAR, a database of  LC50, reported in terms 

of micromolar (μM) concentration for correlation purposes, reported 
LC50 values were converted to their molar units and subsequently to 
free energy related negative logarithmic state, i.e., log (1/ LC50). These 
LC50 values have been obtained from experiments and literature [9]. 
The selected series consists of total 97 numbers of compounds, divided 
in to two data sets, one was training set having 83 compounds and 
other was test set with the remaining 14 compounds based on random 
selection criteria. The biological activities were expressed in terms of 
median lethal concentration (EC50).
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Calculation of the descriptors

The chemicals in the data set (Table 1) have been optimized and their 

electronic, geometric, and energetic parameters have been calculated 
with Gaussian 03 package [11]. The structures were optimized and 

NO. Compounds status MW Experimental (μg//L) HM ( μg//L) SVM (μg//L)
1 2-Aminoethanol Training 61.08 6.5662 4.5114 4.8806
2 4-Aminophenol Training 109.13 2.6720 1.8662 2.2334
3 Benzoicacid Training 122.12 4.3031 2.1385 2.3162
4 4-Bromoindole Training 195.95 3.6720 1.678 1.4798
5 5-Bromoindole Training 196.05 3.7250 1.7252 1.5358
6 6-Bromoindole Training 196.05 3.96426 2.3408 2.2578
7 2-Bromophenol Training 173.01 4.6543 2.0823 2.2993
8 3-Bromophenol Training 173.01 4.7829 3.2246 2.7912
9 4-Bromophenol Training 173.01 4.6657 3.3539 2.9999
10 n-Butylamine Training 73.14 4.5552 3.743 2.408
11 sec-Butylamine Training 73.14 4.9784 2.0591 2.2457
12 Butyldiglycol Training 162.23 6.1077 1.8154 2.3225
13 2-Chloroaniline Training 127.6 4.4517 3.8754 2.8491
14 3-Chloroaniline Training 127.6 4.3222 3.0148 2.7056
15 4-Chloroaniline Training 127.6 4.3280 1.7793 1.5822
16 4-Chlorophenol Training 128.56 4.5800 1.6495 2.0511
17 Cyclohexanol Training 100.16 6.1405 1.9123 2.32
18 Cyclohexylamine Training 99.18 4.8019 2.7298 2.5952
19 n-Decylamine Training 157.3 3.4977 1.4561 2.0633
20 2,4-Dibromophenol Training 251.9 3.9003 1.4761 2.0776
21 2,6-Dibromophenol Training 251.9 4.6208 3.8754 2.8491
22 Dibutylamine Training 129.25 4.6069 3.3737 2.9902
23 2,4-Dichloroaniline Training 162.02 4.3324 5.1731 2.8854
24 3,4-Dichloroaniline Training 162.02 3.3031 3.3448 3.0048
25 Dicyclohexylamine Training 181.32 4.4939 2.2432 2.8373
26 Diethylamine Training 73.14 4.9696 2.0318 2.6624
27 Diethyleneglycol Training 106.14 7.7059 3.6017 1.9352
28 N,N-Diethylmethylamine Training 87.16 4.8450 3.3448 3.0048
29 N,N-Diisopropylethylamine Training 129.25 5.0193 2.9621 2.8025
30 Diisobutylamine Training 129.3 4.6738 2.3816 2.6403
31 Diisopropylamine Training 101.2 4.9613 3.7035 3.1539
32 N,N-Dimethylamine Training 45.09 5.5985 5.4871 4.7149
33 N,N-Dimethylanilin Training 121.2 4.7342 1.1533 1.7563
34 N,N-Dimethylbutylamine Training 101.19 4.7075 0.7109 1.3753
35 N,N-Dimethylcyclohexylamine Training 127.23 4.7247 1.5988 1.7464
36 N,N-Dimethylethylamine Training 73.14 4.9183 5.1469 5.2986
37 N,N-Dimethylformamide Training 73.09 6.9746 4.8383 4.789
38 4,6-Dinitro-o-cresol Training 198.14 2.5910 4.5685 3.9195
39 2,4-Dinitrophenol Training 184.11 2.9542 2.4241 2.8188
40 Dipentylamine Training 157.3 4.6313 2.7028 2.7623
41 Dipropylamine Training 101.19 4.4936 2.4946 2.2544
42 Ethanol Training 46.1 7.0625 3.2158 4.2721
43 Ethylacetate Training 88.106 6.2692 2.9198 2.9311
44 Ethylenediamine Training 60.1 5.5984 3.5851 4.5713
45 1-Ethylpiperidine Training 113.2 4.8531 6.14 5.7386
46 2-Ethylpiperidine Training 113.2 4.9729 3.7661 2.8756
47 n-Heptylamine Training 115.22 4.4541 4.5401 4.1437
48 n-Hexylamine Training 101.19 4.6261 5.746 5.3312
49 Hydroquinone Training 110.11 3.8976 4.0228 4.1965
50 Hydroxyurea Training 76.05 6.2530 5.1664 5.3695
51 Isobutylamine Training 73.1 4.966694 4.201 4.4596
52 Isopentylamine Training 87.16 4.7715 2.315 2.1711
53 Isopropylamine Training 59.11 6.4425 2.6561 2.616
54 Methanol Training 32.04 7.3443 2.668 2.6086
55 Methoxyaceticacid Training 90.08 4.7298 4.6482 3.7387
56 2-Methoxyethanol Training 76.09 7.3125 1.4622 1.8345
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57 1-Methoxy-2-propanol Training 90.12 7.1434 1.9533 2.2345
58 3-Methyl-1-butanol Training 88.17 6.0097 1.07 2.513
59 N-Methylamine Training 31.1 5.8525 2.0118 1.8028
60 N-Methylanilin Training 107.2 4.5339 3.1082 2.2898
61 N-Methylformamide Training 59.07 7.0408 1.2202 2.3192
62 1-Methylpiperidine Training 99.18 4.8346 2.956 2.9168
63 2-Methylpiperidine Training 99.18 5.0100 1.5135 1.2284
64 4-Methylpiperidine Training 99.18 4.9681 3.0818 2.47
65 Morpholine Training 87.12 5.7790 4.7142 5.0932
66 2-Nitroaniline Training 138.1 4.3324 2.3356 2.3419
67 4-Nitrobenzoicacid Training 167.12 4.4756 2.0638 2.3089
68 4-Nitrophenol Training 139.11 4.7573 1.2928 1.818
69 n-Nonylamine Training 143.27 4.0592 4.6492 2.7816
70 1-Octanol Training 130.23 4.18752 4.3523 5.4814
71 n-Octylamine Training 129.25 4.4058 0.5177 0.9196
72 Pentachlorophenol Training 266.34 2.7403 2.8802 2.3573
73 n-Pentylamine Training 87.16 4.4893 1.7798 1.2701
74 4-tert-Pentylphenol Training 164.24 3.5440 2.5337 1.7304
75 Phenol Training 94.11 5.3222 2.7298 2.5952
76 Piperidine Training 85.2 5.0433 3.9809 2.4011
77 2-Propanol Training 60.1 6.9721 5.3213 5.0889
78 n-Propylamine Training 59.11 4.8984 3.5419 2.5303
79 Salicylicacid Training 138.12 4.3577 4.8308 5.2073
80 Tetrachloroethylene Training 165.83 4.4281 2.8316 2.9567
81 2,4,6-Tribromophenol Training 330.8 3.6454 2.0737 2.352
82 Triethyleneglycol Training 150.2 7.7315 0.9536 2.5847
83 Urea Training 60.06 7.3598 2.354 2.2464
84 2,5-Hexanedion Test 114.14 6.6691 6.0191 5.6191
85 Acetone Test 58.08 4.0211 3.9211 3.0111
86 Acrolein Test 56 2.5682 1.9682 1.5682
87 Chloroacetaldehyde Test 78 3.5251 3.9551 2.9351
88 Diazinon Test 304.34 4.4961 4.1161 4.0161
89 Diethyleneglycoldimethylether Test 134.18 7.0436 6.5236 7.9436
90 Dimethylsulfoxide Test 78.13 7.4638 6.4638 6.1238
91 D-Mannitol Test 182.17 4.8908 5.0108 3.3508
92 Formamide Test 45.041 6.9610 7.0610 2.9210
93 p-tert-Butylphenol Test 150.22 3.2380 2.2380 1.2380
94 Quinone Test 108.09 2.6739 1.9739 0.6739
95 Saccharinsodiumsalthydrate Test 241.2 7.3211 6.2111 8.11211
96 Tridecylmono-octylether Test 244.4 3.1568 2.1268 1.1128
97 Valproicacid Test 144.21 4.3051 3.9151 2.3751

Table 1: The experimental values of all compounds and the predicted LC50 by HM and SVM.

their vibrational frequencies calculated at the DFT level relying on the 
B3LYP functional. A comparison of all the methods, namely, AM1, 
MP3, HF, and DFT/B3LYP, indicates that the DFT/B3LYP method is 
more reliable than others and has a high predictive power [12]. After 
optimization, the CODESSA program was used to calculate five types 
of molecular descriptors constitutional (number of various types of 
atoms and bonds, number of rings, molecular weight, etc.), topological 
(Wiener index, Randic indices, Kier -Hall shape indices, etc.), 
geometrical (moments of inertia, molecular volume, molecular surface 
area, etc.), electrostatic (minimum and maximum partial charges, 
polarity parameter, charged partial surface area descriptors, etc.), and 
quantum chemical (reactivity indices, dipole moment, HOMO and 
LUMO energies, etc.). In the framework of the CODESSA program, 
the statistical structure-property correlation techniques can be used for 
the analysis of user-submitted experimental data in combination with 
the calculated molecular descriptors.

Development of linear model by HM [13] 

The heuristic procedure was used to obtain quantitative structure 
property relationship. Once the molecular descriptors are generated, 
the HM in CODESSA is used to pre-select the descriptors and build 
the near model. The advantages of the HM are the high speed, usually 
produces correlations 2–5 times faster than other methods with 
comparable quality and no software restrictions on the size of the data 
set [14]. The HM can either quickly give a good estimation about what 
quality of correlation to expect from the data, or derive several best 
regression models. HM of the descriptors selection proceeds with a 
pre-selection of the descriptors to eliminate: (1) those descriptors 
that are not available for each structure;(2) descriptors having a small 
variation in magnitude for all structures;(3)descriptors that provide a 
F-test value below 1.0 on the one-parameter correlation and (4) and 
the descriptors whose t-values are less than the user-specified value, 
etc. New descriptors were added one by one until the suitable number 
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descriptors without losing any important information in the model is 
achieved [15]. The final result is a list of the 10 best models according 
to the values of the F-test and correlation coefficient. The statistical 
quality of the generated models was gauged by the F-test (F), squared 
correlation co-efficient (R2), square of cross-validate coefficient 
regression (RCV

2), t-test and the standard deviation (s2). Fischer’s value 
(F), which represents F-ratio between the variance of calculated and 
observed activity, and chance statistics assuring that the results are not 
merely based on chance correlations and t-test reflects significance 
of the parameter within the model. From the above processes, seven 
descriptors are selected from descriptors pool and the linear model is 
produced by the HM [16]. The experimental values of all compounds 
are summarized in Table 1.

Development of linear model by SVM

The support vector machine algorithm was developed by Vapnik 
[17]. Support vector machine (SVM), as a novel type of learning 
machine is gaining rapid popularity due to its remarkable generalization 
performance [18], has gained much interest in pattern recognition 
and function approximation applications recently. In bioinformatics, 
SVMs have been successfully used to solve classification and correlation 
problems, with the basic idea of SVM is to map the original data into 
a higher dimensional feature space by a kernel function and then to 
do classification in this space by constructing an optimal separating 
hyperplane. Compared with traditional regression and neural networks 
methods, SVMs have some advantages, including the absence of local 
minima, good generalization ability, simple implementation, few free 
parameters, dimensional independence and its ability to condense 
information contained in the training set [19]. The flexibility in 
classification and ability to approximate continuous function make 
SVMs very suitable for QSAR and QSPR studies. Because it is difficult 
to predict in advance which descriptors are most relevant to the 
problem at hand, however, SVM is well known to tolerate irrelevant 
features [20-22]. In some cases, the best average performance was 
achieved when all the features were given to SVM [23].

Results and Discussion
Results of HM

The heuristic method is not made a prior choice of descriptors, 
but it performs an analysis on several intrinsic molecular properties 
available from the Gaussian output. We performed correlations for a 
growing number of descriptors in the range from 1 to 10. 

Figure 1 shows the plots of R2, cross-validated coefficient (RCV
2) 

and the standard deviation (s2) for the training set as a function of 
the number of descriptors models. R2 and RCV

2 are increased with 
the increasing number of descriptors. However, the values of s2 
decreased with the increasing number of descriptors [24,25]. When 
adding another descriptor did not improve significantly the statistics 
of a model, it was determined that the optimum subset size had been 
achieved. From Figure 1, it can be seen that six descriptors appear to 
be sufficient for a successful regression model. Then the corresponding 
descriptors are applied as inputs for the non-linear model.Best models 
were selected on the basis of their statistical significance. High r2 and 
high F and low s2 values in each model reflect their good predictive 
potential. Pair wise correlations between the descriptors used in 
the QSAR models obtained for series is summarized in Table 2. The 
molecular descriptors used in the selected QSAR models are defined in 
Table 3. The predict results are shown in Figure 2.

Results of SVM

SVM is a machine-learning approach that allows one to learn from 
experimental data within a given set, and build a computer model 
to make predictions on new data sets. The associated parameters 
are c, p and g, –t kernel function is the RBF kernel function: exp(-
gamma*|uv|^2), the calculated optimal correlation parameters are 
c:3.9192, g:168.9664, p: 0.9892. The predict results are shown in Figure 
3.

Compare with the HM and SVM

In the HM method, the R2 and s2 are 0.8142 and 0.0380 in training 
set, the R2 and s2are 0.9238 and 1.8503 in test set. At the same time, in 
the SVM method, the R2 and s2 are 0.7105 and 0.0604 in training set, 

Figure 1: Plot of R2/R2cv/s2 against the number of descriptors for logEC50 
QSPR analysis.
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A B C D E F
A 1.0000 -0.0725 0.2135 0.3806 0.4239 0.2161
B -0.0725 1.0000 -0.3540 -0.1499 -0.2106 0.1555
C 0.2135 -0.3540 1.0000 0.2619 0.1297 -0.2949
D 0.3806 -0.1499 0.2619 1.0000 0.2398 0.2922
E 0.4239 -0.2106 0.1297 0.2398 1.0000 -0.2729
F 0.2161 0.1555 -0.2949 0.2922 -0.2729 1.0000

Table 2: Correlation matrix of the six descriptors used in this work.

R2 R2
CV F X+DX t-Test Descriptors

0.8142 0.7733 55.50 6.0388e+01 
6.3153e+00

9.5622 Intercept(A)

-1.3840e+01 
1.5885e+00

-8.7129 Avg valency of 
a C atom(B)

-1.2775e+01 
1.7259e+00

-7.4017 Relative 
number 
of double 
bonds(C)

-1.9631e-02 
2.5005e-03

-7.8508 Molecular 
volume(D)

4.9342e-01 
1.0389e-01

4.7492 HOMO-1 
energy(E)

-5.9297e-01 
1.2477e-01

-4.7492 HOMO 
energy(F)

-2.2411e+00 
6.0338e-01

-3.7143 Average 
structural 
information 
content(order 
1)(G)

1, Avg valency of a C atom;2, Relative number of double bonds;3, PPSA-3 
Molecular volume;4, HOMO-1 energy;5, HOMO energy;6, Average Structural 
Information content (order 1);
The fitted regression model is: logEC50 = (6.0388e+01 6.3153e+00)*A+(-
1.3840e+01 1.5885e+00)*B+(-1.2775e+01 1.7259e+00)*C+(-1.9631e-02 
2.5005e-03)*D+(4.9342e-01 1.0389e-01)*E+(-5.9295e-01 1.2477e-01)*F+(-
2.2411e+00 6.0338e-01)*G

Table 3: Correlations of toxicity by the heuristic method.
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the R2 and s2are 0.7527 and 2.4351 in test set. The six descriptors are the 
most important physical chemistry properties for the construction of 
QSAR model for FET and the prediction of LC50 with satisfied results. 
The predicted results of either training set or test set of the HM are 
better than those of SVM, both in the R2 and s2. Therefore, the HM has 
a good generalized performance (Table 4) as a non-linear method.

Unsaturated double bond, based on positive and negative regression 
coefficients, can be judged according to their contribution to the toxic 
compounds, The coefficients of number of double bonds is positive, the 
LC50 increase with the double bond value increases. As for the electron 
donation of the elide, it is noted that the HOMO energy can be used 
a new method for showing the basicity of elides. The descriptors that 
matter most is on the Highest Occupied Molecular Orbital (HOMO) 
calculated from quantum chemical calculation, which describes the 
effect of HOMO energies on the toxicity. The results also show that the 
contribution from the HOMO-1 becomes less important than HOMO. 
Molecular volume is important to toxicity, the information contained 

in high-resolution structural determination of macromolecules. The 
HOMO-1, which is lower in energy than the HOMO, features a large 
contribution for toxicity. 

The HOMO of 4-Aminophenol, 2-Bromophenol, Butyldiglycol and 
2-Propanol, were calculated by B3LYP/6-31G method. 2-Propanol was 
the highest toxicity with the highest HOMO, as well as 4-Aminophenol  
was the lowest  toxicity with the lowest HOMO (Figure 4). The structure 
of 4-Aminophenol was similar to 2-Bromophenol. The toxicity
2-Bromophenol, with higher HOMO, was higher than 4-Aminophenol. 
The Highest Occupied Molecular Orbital (HOMO) describes the effect 
of HOMO energies on the toxicity.

Conclusions 
A QSAR study for fish embryo toxicity test (FET) was performed 

using HM and SVM, based on electrostatic, CPSA, constitutional, and 
quantum-chemical descriptors and satisfactory results were obtained. 
Through analyzing the obtained results, the present study gives rise to 
QSAR with good statistical significance and predictive capacity. The 
6-parameter model can be considered as the best linear modelthe
correlations are satisfying. Additionally, HM produced good model with 
vigorous predictive ability. Furthermore, the proposed approach can
also be extended in other QSAR investigations. Fish embryo testing of
chemicals has matured to the point that international standardization,
method validation, and broadening of chemical coverage is rapidly
occurring. Fish embryo tests offer a reasonable alternative to increased
use of fish in the future.
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Butyldiglycol and 2-Propanol, using B3LYP/6-31G method of calculation.

Table 4: Performance comparison between HM and SVM.

Training Test
R2 s2 R2 s2

HM 0.8142 0.0380 0.9238 1.8503
SVM 0.7105 0.0604 0.7527 2.4351
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