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Background
Pain is a complex trait influenced by psychological, social, physical 

and genetic factors (reviewed [1]). Of the various factors that influence 
postsurgical pain, genetic variation plays an important role, with many 
gene variants contributing to the pain phenotype. Their cumulative 
small effects occur through alteration of protein expression level or 
amino acid sequence and thereby protein functions. Accordingly, DNA 
variants, in particular single nucleotide polymorphisms (SNPs), may 
produce differences in perception of acute pain [2] or the efficacy of 
postoperative analgesia [3].  

A number of studies have identified genetic associations with acute 
pain. A survey of the literature for these associations highlights: 1) the 
ATP-binding cassette (ABC) superfamily, subfamily B p-glycoprotein 
170 (ABCB1) gene encoding an ATP-dependent drug efflux pump 
involved in multiple drug resistance.  ABCB1 is a major determinant 
of morphine bioavailability[4] and the 3435C allele of variant C3435T 
(rs1045642) in the gene associates with higher expression level and 
reduced morphine availability in the CNS.  2) The catechol-O-methyl 
transferase (COMT) gene encoding an enzyme that degrades several 
analgesic neurotransmitters, including noradrenaline and dopamine 
[7]. A well-studied variant in the gene, Val158Met (rs4680), encodes a 
valine-to-methionine variation that associates with reduced metabolic 
activity of the enzyme, as first reported by Scanlon and colleagues [8].  
Reyes-Gibby [9] reports that cancer patients with the 158Val/158Val 

genotype required 63% more morphine for efficient pain relief 
compared to patients with the 158Met/158Met genotype.  Another 
group has found that the 158Met variant was actually associated higher 
pain scores during painful postsurgical procedures (with morphine 
analgesia) [10].  5) The µ-opioid (OPRM1) gene encodes the µ-opioid 
receptor and is a very well-studied candidate gene for pain association 
[18,19]. Gene expression from the 118G allele of OPRM1 variant A118G 
(rs1799971) – which codes for an asparagine to aspartic acid residue 
change– produces a receptor with reduced agonist-induced receptor 
signalling efficacy [20]. Various studies have shown association of this 
variant with increased pain scores and/or opioid analgesia requirements 
after surgery [21-24]. 6) The potassium inwardly-rectifying channel 
subfamily J, member 6 (KCNJ6) gene encoding an ATP-activated 
channel (GIRK2) that closes with increased intracellular ATP causing 
membrane depolarization and voltage-sensitive activation.  GIRK2 
is activated by several G-protein coupled receptors including opioid 
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Abstract
Objectives: Genetic variation is an important contributor to postsurgical pain and thereby analgesia requirements. 

A description of the potential predictive power of genetic variants in pain should instruct improvements in pain 
management postoperatively.  We set out to examine whether a set of genetic variants in pain related genes would 
show any association with actual pain outcomes in a typical surgical population.  

Methods: A candidate gene study was carried out in 135 surgical patients with 12 DNA variants (single nucleotide 
polymorphisms or ‘SNPs’) in known or putative pain pathway genes to detect associations with postoperative pain - 
measured by a verbal rating score (VRS) and patient-controlled analgesia (PCA) usage rate. Standard PCR based 
molecular biology approaches were used.  

Results: At 20-24h after surgery, patients with the 1032G/1032G variant pair for the A1032G variant of the 
potassium channel KCNJ6 gene had a slightly higher median VRS than those with 1032A/1032A or 1032A/1032G 
pairs (p=0.04; dominant genetic model).  This small difference was most apparent in the orthopaedic surgery 
patients where the 1032G/1032G pair associated with VRS (median(interquartile range)) of 5(4-6) vs. 3(0.5-4) 
in 1032A/1032A or 1032A/1032G groups.  For PCA, patients with 3435C/3435C or 3435C/3435T pairs for ATP-
dependent efflux pump gene ABCB1 variant C3435T used PCA at a considerably higher rate of 0.89(0.07-1.66) 
mg.h-1 compared with just 0.11 (0-0.52) mg.h-1 for the 3435T/3435T pair (p=0.03; dominant model). A significantly 
higher usage rate was also detected for opioid receptor OPRM1 variant IVS2-691 with usage of 0.77(0.01-1.56) 
mg.h-1 for the IVS2C/IVS2C or IVS2C/IVS2G group vs. 0.24(0-1.26) mg.h-1 in the IVS2G/IVS2G group (p=0.04; 
recessive model).  

Conclusion: While this study has identified some significant statistical associations the potential utility of the 
studied DNA variants in prediction of postoperative pain and patient-controlled opioid analgesia requirements 
appears to be quite limited at present.
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receptors [26].  Nishizawa and co-workers [27] report that two 
SNPs in the gene - A1032G (rs2070995) and G-1250A (rs6517442) 
associate with postoperative rescue analgesia requirements. 7) The 
sodium channel protein type 9 subunit alpha (SCN9a) gene encodes a 
voltage-gated channel involved in nociception [29]. For SCN9a variant 
Arg1150Trp (rs6746030), the channel protein expressed from the gene 
containing the 1150Trp variant shows enhanced levels of depolarizing 
activation [30]. 

Other studies have usually looked for associations of single DNA 
variants with chronic pain conditions, or for pain thresholds in 
laboratory tests of noxious stimuli on human volunteers. In this study 
we selected a panel of genetic variants, some with established and some 
with no previously suggested pain association, and  measured whether 
this broader selection of DNA variants might contribute significantly to 
the variation in postoperative pain seen in a broad-based representative 
clinical sample of day-to-day adult postsurgical patients. We aimed to 
determine whether any of the DNA variants had real clinical usefulness 
for predicting high postoperative pain. 

Methods
Clinical

We recruited participants who were undergoing elective non-
emergent surgery (expected duration <180 min) and were aged 18-
65 yr, were competent to consent, were able to comprehend the VRS 
and were able to activate the PCA device. Subjects with weight >120 
kg and/or BMI >35, a preoperative diagnosis of malignancy, epilepsy, 
a neuromuscular disease, a previously documented psychiatric disease 
that required medication, pregnancy, a history of chronic opioid use 
or dependency or severe asthma (i.e. previously necessitating hospital 
admission), were excluded. Regional anaesthesia, neuraxial blockade 
and total intravenous anaesthesia was not permitted. Patients received 
standardised general anaesthesia consisting of an intravenous induction 
using propofol (1-3 mg.kg-1), muscle relaxant, and maintenance with 
0.7-1.3MAC desflurane. The intraoperative opioid dosing regimen was 
2 mcg.kg-1 fentanyl on induction, and a 2 mcg.kg-1.h-1 infusion from 
the time of surgical preparation to closure. All patients received 1g 
paracetamol, 40mg parecoxib, 4mg dexamethasone, 0.5mg droperidol 
intravenously intraoperatively.  Local anaesthetic was infiltrated to 
the wound at skin closure. Intravenous morphine PCA was provided 
postoperatively to achieve satisfactory patient comfort (1.5 mg doses, 5 
min lockout interval, and 8 mg.hr-1 maximum dose). Protocols received 
approval of the New Zealand Northern X regional ethics committee 
(#NTX/09/06/047) with patients giving written informed consent.

Postoperative pain was quantified using a standard verbal rating 
scale (VRS) ranging from 0=“no pain at all” to 10=“the worst pain 
imaginable”. The VRS was recorded upon awakening in the post 
anaesthetic care unit (post anaesthetic care unit - PACU; taken at 
rest) (VRSawake) as well as for morning after surgery (at 20-24hrs) with 
activity (VRSd1A). For abdominal surgeries the pain score was for pain 
experienced during coughing and for orthopaedic surgeries the score 
was for pain during limb movement. Patient PCA usage rate over 20-
24h post-surgery was also recorded (PCAmg.h

-1). 

Selection of DNA variants (SNPs)

In addition to the variants listed in the introduction (see points 
1-7), and after examination of the literature, we chose to also examine: 
1) an additional ABCB1 gene variant, T1236C, which has been 
associated with differential transport of various drug substrates of the 
ABCB1 efflux pump [6]; 2) an additional variant in OPRM1, IVS2-691, 

which may encode an altered receptor protein [3,25].  2) a variant in 
the potassium voltage-gated channel, delayed-rectifier, subfamily S, 
member 1 (KCNS1) gene, Ile40Val, associated with higher pain after 
noxious stimuli in healthy volunteers [28]); and finally: 3) variants 
of the cytochrome P450 oxidase CYP3A4 or CYP3A5 genes, namely 
C20230T in the CYP3A4 gene, and A6968G in the CYP3A5 gene. 

DNA extraction
A 1 ml venous blood sample was collected at the time of surgical 

closure and stored in 4 ml of a DNA preservation solution (5M GITC, 
20 mM sarkosyl, 30 mM trisodium citrate, 0.7% mercaptoethanol, pH 
7). To extract the DNA, a 1 ml sample of this preparation was collected 
into a new tube and a 1/10th volume of 3 M sodium citrate and 0.5 ml of 
phenol-chloroform (pH 7) were added and the tubes centrifuged at 14K 
RCF for 15 min. The upper (aqueous) phase was collected and DNA 
precipitated by addition of an equal volume of isopropanol (AR grade), 
mixing and centrifugation at 14K RCF. The DNA pellet was washed in 
70% ethanol and briefly air-dried before resuspension in between 50 
and 200 µl of a storage buffer (TE buffer; 10 mM Tris, 1 mM EDTA, PH 
8). DNA was quantified using a Nanodrop 2000 instrument (Thermo, 
NZ).

Polymerase chain reaction – restriction fragment length 
polymorphism (PCR-RFLP)

The first enzyme reaction, to make copies of the DNA of interest 
(PCR), was performed i-Star Taq polymerase (Intron Ltd, USA) by 
initial strand separation at 95°C for 2 min followed by 35 repeats of 
temperature cycling between 95°C 30 s, 60°C 30 s, 72°C 30 s, and a 
final extension step for 5 min at 72°C. 100 ng of DNA was used in 
each reaction. Gene annotations, SNP reference numbers, SNP codes 
used in this report, DNA primer sequences and details of restriction 
enzyme test are shown in Table 1. Reagents (DNA primers) and specific 
enzyme-based tests for the variants (namely the restriction fragment 
length polymorphism method) were designed by us using SNP Cutter 
(http://bioapp.psych.uic.edu/SNP_cutter.htm) or WatCut (http://
watcut.uwaterloo.ca/watcut/watcut/template.php) or taken from other 
published studies (as indicated in Table 1).  The banding pattern from 
10 µL of digested DNA products separated on a gel in an electrical field 
by electrophoresis at 100 V for 45 min was used to determine which 
DNA variants were present in each patient sample. Ten percent of the 
samples were analysed twice as a quality control.  

Study design and SNP data quality controls  
A minimum sample size of 128 individuals was required to achieve 

a statistical power of 0.9 for individual SNPs; assuming a medium effect 
size of 0.5, and a type I error rate of <0.05. 

A test for suitability of the genetic tests (for Hardy Weinberg 
equilibrium) was carried out using an online calculator (http://oege.
org/software/hardy-weinberg.html). 

The measurement of pain intensity is complex. This is particularly 
evident in a plot of VRS against postsurgical PCA demands that shows 
many patients tolerating high VRS scores without increasing PCA usage 
(Figure 1).  In this report we used statistical tests to measure potential 
influences of variants on VRS and PCA.

Statistical Methods
SNP association analysis

The VRS and PCA data were treated as ordinal.  Briefly, for each 
SNP we analysed each genotype alone (i.e. the additive model, which 
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Gene Symbol SNP
Allele1/ 

positionα/
Allele2 Type/change

 MAF 
(%)† PCR primers Size 

(bp)

Diagnostic 
fragments 

(bp)
Enzyme Design

ATP-binding cassette, 
sub-family B, member 1

ABCB1
rs1045642 C3435T Synon. C 43

F AGCTGCTTGATGGCAAAGAAAT
R TGGTCGAACACTTTCATCCCTT 433 T 387

C 236 MboI ‡

rs1128503 T1236C Synon. T 44
F TCTTTGTCACTTTATCCAGC
R TCTCACCATCCCCTCTGT 502 C 361

T 416 HaeIII §

Catechol-O-
methyltransferase COMT rs4680 Val158Met Non-synon. A 39

F GTGGACGCCGTGATTCAGGAG
R CAGGCATGCACACCTTGTCCgTC 199 A 107

G 83 Tsp45I ‡

Cytochrome P450, 
family 3, subfamily A, 

polypeptide 4
CYP3A4 rs2242480 C20230T Intronic T 33

F ACCCTGATGTCCAGCAGAAACT
R ATAGAAAGCAGATGAACCAGAGCC 284 C 216 

T 284 RsaI ¶

Cytochrome P450, 
family 3, subfamily A, 

polypeptide 5
CYP3A5 rs776746 A6986G Splice-3 A  3 F GCATAGGAGATACCCACGTATcT

R TGGTCCAAACAGGGAAGAGgTA 118 G 97 
A 118 RsaI **

Neurobeachin1 NBEA rs7990537 A11771G Intronic G 28 F CCCTTGGATGTTTGAACCTCTG
R TTTCCTAGATGCCCTTCACTGG 433 A 433

G 332 Bts1 ‡

Opioid 
Receptor, mu 1 OPRM1 rs1799971  A118G Non-synon.

G 19
F TCAACTTGTCCCACTTAGATCGC
R TGACCAGGAAGTTTCCGAAGAG 180 A 180 

G 158 BstUI ‡

rs2075572 IVS2-691 Intronic G 40
F TAGCTCTGGTCAAGGCTAAAgAT
R CCCAGTACCAGGTTGGATGAGA 154 G 154 

C 134 MboI ‡

Potassium inwardly-
rectifying channel, 

subfamily J, member 6
KCNJ6

    
    

rs2070995 A1032G Synon. A 20
F TAGAGGACCCCTCCTGGACT
R CGGAACATCAGGCACAGTTT 298 A 197 

G 175 MspI ‡

rs6517442 G-1250A Upstream G 24
F TGGCTATTCTTGTGCTGCTTT

R CAGTCATTTTTAGAGGGCAGtCA 203 G 203
A 181 HincII ‡

Potassium voltage-gated 
channel, delayed-rectifier, 

subfamily S, member 1
KCNS1 rs734784 Ile489Val Non-synon.  G 40 F AGTTTGAGGACTTGCTGAGCcGC

R ATACATCTGAGGGTGTGGAGGC 137 A 137
G 115

BstUI ‡

Sodium channel, voltage-
gated, type IX, alpha 

subunit
SCN9a rs6746030 Arg1150Trp Non-synon. A 11 F GTTTTCCTGATGTTCCACCAGATT

R TGAAGGAAGGCAGCATCCAAATTA 244 A 244
G 172 RsaI ‡

Lower case in primer sequences indicates bases changed to alter restriction sites.   Key: Type codes with protein level consequence: Synon.-synonomous,- no amino acid 
change; Non-synon.- non-synonymous, amino acid change as indicated;  Intronic – variant occurs in a non-coding portion of the gene;  upstream – in region upstream (5′ ) 
of the gene; Slice-3 – causes transcript splice variation in 3′  of the gene; IVS2 –within intron 2 of the gene (full SNP code:IVS2-691 G>C); UTR-3′ - 3′ untranslated region. 
† Minor allele frequencies (MAF) are from http://www.ncbi.nlm.nih.gov/projects/SNP/. αChromosome positions are from HumRef sequence and transcript positions are from 
Genbank NM reference sequences. Primers and test design ‡ (us); §[44], ¶[45], **[46].

Table 1: SNPs examined in this study: allele frequency, PCR primer sequences and RFLP test details.
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Figure 1: Scatterplots of VRS against PCA usage for all patients:  A) VRSawake vs. PCAmg.h
-1; and B) VRSd1A vs. PCAmg.h-1.  Line of best fit is shown. Dots represent 

individual patients. 
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assumes that heterozygous individuals have a phenotype midway 
between the two homozygotes) and also grouped by the presence of 
either minor (less frequent) or major (more frequent) alleles (dominant 
or recessive models).  For these models, where ‘d’ is the minor allele 
and ‘D’ is the major allele, the recessive model compared values from 
individuals with ‘d/d’ against ‘D/D and D/d’ genotypes and the dominant 
model compared values from individuals with ‘D/D’ against ‘D/d and 
d/d’ genotypes.  This approach avoids assumptions regarding mode 
of inheritance and limits the chance of missing potentially interesting 
associations and was similar to a method described previously [32,33].  
Nonparametric statistical approaches were used including: 1) the 1-way 
ANOVA (with Kruskal-Wallis Z test) to examine the independent effect 
of all non-SNP variables on VRS or PCA, and 2) the general linear 
model (NCSS software) to measure associations between SNPs and 
VRS or PCA.  For all tests a p-value <0.05 was considered statistically 
significant. 

Results 
A total of 135 patients from two hospitals in the central North Island 

of New Zealand (Waikato DHB and Northshore DHB) were recruited 
into the study. Demographic data, surgery type and duration, and 
median VRS data are presented in Table 2. No statistically significant 
associations were found between any pain score or PCA usage and 
either age, ethnicity or gender.  However there was a strong association 
between VRSawake and surgery type (p < 0.001).  To incorporate the 
influence of surgery type it was included in all SNP association tests 
for all outcomes using the general linear model (up to 2-way).  Hence 
p values reported here are for the SNP-outcome with consideration of 
surgery type.

Some samples (<1%) failed to give a conclusive DNA test result and 
were excluded from further analysis.  One NBEA variant (rs9565317) 
selected for inclusion in the study did not pass genetic testing (Hardy-
Weinburg equilibrium) and was removed from the DNA variant 
panel.  All results are expressed as median(interquartile range) unless 
otherwise stated.

Association Analysis 
VRSawake

No statistically significant SNP associations were found for VRSawake.

VRSd1A

An association between KCNJ6 A1032G variant and VRSd1A was 

found (Table 3).  Patients with the 1032G/1032G variant pair had higher 
median VRS scores when compared to patients with the 1032A/1032A 
or 1032A/1032G variant pairs (p=0.04; dominant model) (Table 3).  
The difference in VRS score was only apparent when the actual surgery 
type was examined (Table 5) and this weak association showed a VRS 
range of between 2 and 3 for 1032A/1032A or 1032A/1032G pairs and 
2.3 to 5 for 1032G/1032G pairs (Table 4).  No significant associations 
were found for any other DNA variants and VRSd1A scores examined.

Patient-controlled analgesia usage rate (PCAmg.h
-1) 

A significant association between PCA usage rate and ABCB1 gene 
variant C3435T was found (Table 3).  For all surgery types individuals 
with 3435C/3435C or 3435C/3435T genotypes for C3435T consumed 
at a rate eight times faster in the same period - with median usage of 
0.89 (0.07-1.66) compared to just 0.11 (0-0.52) mg.h-1 in patients with 
the 3435T/3435T genotype (p<0.03; dominant model) (Table 5).  

Also, for all surgery types combined, patients with the IVS2C/
IVS2C or IVS2C/IVS2G genotypes for the OPRM1 variant IVS2-691 had 
markedly higher median PCA usage rates of 0.77(0.01-1.56) compared 
to 0.24(0-1.26) mg.h-1 in patients with the IVS2G/IVS2G variant pair 
(Table 5).  This association was weakest in the gynaecological patient 
group where patients with the IVS2C/IVS2C and IVS2C/IVS2G 
genotype had just a 10% higher PCAmg.h

-1 than those with the IVS2G/
IVS2G variant pair.  

Discussion 
The main findings of this study were that, in a broad-based sample 

of typical postoperative patients, a DNA variant (SNP A1032G in the 
KCNJ6 gene) was associated with 20-24 h postoperative pain and two 
DNA variants (SNPs C3435T in ABCB1 and IVS2-691 in OPRM1) were 
associated with a higher PCA usage rate.   As noted above, surgery type 
had a strong influence on VRS – this was statistically significant for 
VRSawake - and surgery type was included in our statistical models.   

We found that patients with two copies of the 1032G variant 
(i.e. 1032G/1032G) in KCNJ6 had higher VRSd1A when compared to 
individuals with the variant pairs 1032G/1032A or 1032A/1032A but 
this was only evident with consideration of the individual surgery 
types.  Nishizawa [27] did not see any association between this variant 
and pain score but reported an association between the 1032A DNA 
variant and increased postoperative rescue analgesia requirements.  
They explain their result by stating that the alternative 1032G variant 

Basic information
Age 43 yrs.  (33-55)

Gender
Height

105♀/30♂
1.67m  (1.6-1.73)

BMI 27.5 (23.4-31.0)
Caucasian 107 (79%)
Polynesian 18 (13%)

Asian 10 (8%)

Surgery type n Duration (min) VRSawake 
median (IQR)

VRSd1A 
median (IQR)       PCAmg.h-1 median (IQR)

All  86 (67-117) 4 (0-8)         3 (1-5) 0.49 (0-1.49)
General 54 86.5 (72-127) 0 (0-5) 2 (0-5) 0.39 (0-1.2)

Gynaecological 65 83 (54-113) 6 (3-5) 3 (2-4) 0.98 (0.12-1.9)
Orthopaedic 16 99.5 (73-152) 0 (0-8) 4 (1-6) 0.03 (0-0.6)

VRSawake pain upon awakening; VRSd1A. VRS 20-24h postsurgery with light activity (e.g. coughing or movement); PCAmg.h-1 patient-controlled analgesia usage rate in mg.h-1; 
BMI – body mass index. Where appropriate values are expressed as median(interquartile range).

Table 2:  Demographics, surgery and pain data (n=135).
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seems to confer an improved efficiency in mediating the transmission 
of opioid signaling compared with the 1032A variant. Another study 
found association between eight KCNJ6 variants and postoperative oral 
analgesia usage but pain scores were not tested (nor were the A1032G 
or G-1250A variants) [34].  The exact function of these genetically 
synonymous KCNJ6 variants is currently unknown but others suggest 
that the A1032G variant may regulate gene usage levels via mRNA 
secondary structure, with lower gene expression in individuals with the 
1032A allele [27].  

The association we describe between the ABCB1 variant 3435T and 
lower PCA usage rate reflects the findings of another recent study that 
reports lower PCA requirements in individuals homozygous for the 
3435T variant [5]. This effect is very likely due to the higher expression 
of the efflux pump that is driven from the 3435C variant [35,36].  
Individuals carrying this allele therefore have a stronger barrier to 
opioids at the blood brain barrier so that less of the drug is available at 
receptors in the CNS [37] and a relatively higher PCA dose is required. 

For the OPRM1 variant IVS2-691, patients with IS2C/IS2C or IS2C/
IS2G variant pairs had median PCAmg.h-1 pain levels more than two-fold 
higher than those with the IS2G/IS2G variant pairs across all surgery 
types. We could not find other studies linking the variant to variation in 
either postoperative pain or PCA requirements.  However, the variant 
has been studied for effects on oral morphine efficacy in cancer patients 
although no association was found [38] and another study reported 
no association between the variant and morphine pharmacodynamics 
using plasma samples from healthy volunteers [39].   The IVS2-691 
variant may exert the observed effects by causing variation in slicing 
patterns of mRNA transcripts or may be simply ‘tagging’ a nearby 
variant that actually confers some functional effect and is simply 
inherited during meiosis with the IVS2-691 variant due to proximity 
on the same chromosome.  

Possible clinical applicability

In our patient cohort different DNA variants showed different 
associations for VRS (i.e. with KCNJ6 gene variant) and PCA (i.e. 

Shaded cells with p values in italics, bolded and underlined indicate that a significant association (p≤0.05) was detected.  Addit.  – additive model; Dom. – dominant model; 
Rec. – recessive model; IRQ – interquartile range.

Table 3: SNP frequencies, genotyping data and results of association analysis for all study subjects.

VRSawake p values VRSd1A p values PCAmg.h
-1 p values

Gene SNP Genotype Count % (IQR) Addit. Dom. Rec. (IQR) Addit. Dom. Rec. (IQR) Addit. Dom. Rec.
ABCB1

 
 
 
 
 

C3435T
 
 

C/C 37 27.2 4 (0-8) 0.76
 
 

0.63 0.81 3 (1-5) 0.35
 
 

0.23 0.25 0.77 (0.2-1.5) 0.09
 

0.03 0.23
 
 

C/T 63 46.3 5 (0-8) 3 (1-5) 0.9 (1-1.9)
T/T 36 26.5 4 (0-8) 3 (0.8-4) 0.11 (0-0.52)

T1236C
 
 

T/T 28 22.6 4 (0-8) 0.35
 
 

0.67 0.28 3 (5) 0.22
 
 

0.09 0.56 0.88 (0.11-2) 0.8
 
 

0.7 0.78
 
 

C/T 62 50.0 5 (0-8) 3 (1-5) 0.69 (0-1.46)
C/C 34 27.4 4 (0-8) 4 (2-6) 0.23 (0-1.23)

COMT
 
 

Val158Met
 
 

G/G 34 25.4 5 (0-8) 0.35
 
 

0.51 0.42 3 (1-3.3) 0.97
 
 

0.89 0.92 0.59 (0.12-2.1) 0.15
 

0.72 0.05
 G/A 48 35.8 3 (0-6) 3 (2-5) 0.66 (0-1.3)

A/A 52 38.8 5 (0-8) 4 (1-4.5) 0.34 (0-1.66)
CYP3A4

 
 

C20230T
 
 

A/A 9 6.6 5 (0-7) 0.17
 

0.88 0.26 2 (0-3.5) 0.78
 
 

0.91 0.61 0.26(0-1.5) 0.92
 
 

0.61 0.99
 
 

A/G 38 27.7 3 (0-6) 4 (2-5) 0.715(0-1.5)
G/G 90 65.7 4 (0-8) 3 (1-5) 0.55 (0.06-1.54)

CYP3A5
 
 

A6986G
 
 

A/A 5 3.7 0 (0-3) 0.57
 
 

0.18 0.32 0 (0-2) 0.25
 
 

0.23 0.06 0 (0-1.32) 0.33
 
 

0.24 0.38
 
 

G/A 26 19.1 0 (0-6) 2 (1-4.5) 0.09 (0-1.32)
G/G 105 77.2 5 (0-8) 3 (2-5) 0.66 (0.1-1.57)

NBEA
 
 

A11771G
 
 

G/G 1 0.9 5 0.22
 
 

0.72 0.43 1 0.93
 
 

0.88 0.46 0.39 0.73
 
 

0.46 0.75
 
 

G/A 27 24.3 4 (0-8) 3 (1-5.5) 0.38 (0-1.36)
A/A 83 74.8 5 (0-8) 3(2-3) 0.55 (0.1-1.45)

OPRM1
 
 
 
 
 

A118G
 
 

G/G 3 2.2 0 (0-8) 0.85
 
 

0.69 0.95 3 (2-4) 0.16
 

0.09 0.83 0.98 (0.37-1.2) 0.62
 
 

0.37 0.95
 
 

A/G 31 22.6 5 (0-8) 3 (1-5) 0.77 (0-1.64)
A/A 103 75.2 4 (0-7) 3 (1-5) 0.49 (0-1.45)

IVS2-691
 
 

G/G 40 29.2 2 (0-5) 0.11
 

0.07 0.09 2 (0-4) 0.68
 
 

0.74 0.35 0.24 (0-1.26) 0.15
 

0.63 0.04
 G/C 59 43.1 5 (0-8) 4 (2-5) 0.72 (0-1.87)

C/C 38 27.7 5 (0-8) 3 (1-4) 0.77 (0.06-1.45)
KCNJ6

 
 
 
 
 

A1032G
 
 

A/A 14 9.9 4 (0-6) 0.78
 
 

0.66 0.5 3 (1-5) 0.13
 

0.04 0.97 0.23 (0-1.59) 0.5
 
 

0.51 0.58
 
 

A/G 58 41.1 4 (0-8) 3 (1-4) 0.6 (0-1.53)
G/G 69 48.9 5 (0-8) 3 (2-5) 0.52 (0.18-1.44)

G-1250A
 
 

G/G 20 14.6 5 (0-8) 0.2
 

0.07 0.55 1 (0-4) 0.1
 

0.27 0.2 0.1 (0-1) 0.49
 
 

0.59 0.27
 
 

G/A 67 48.9 5 (0-8) 3 (2-5) 0.8 (0.12-1.57)
A/A 50 36.5 3 (0-7) 3 (1-5) 0.38 (0-1.5)

KCNS1
 
 

Ile489Val 
 
 

G/G 24 18.8 5 (0-8) 0.54
 
 

0.29 0.58 3 (1-4) 0.22
 
 

0.25 0.38 0.58 (0.12-1.53) 0.29
 
 

0.28 0.49
 
 

A/G 58 45.3 5 (0-8) 3 (2-4) 0.69 (0.05-1.65)
A/A 46 35.9 3 (0-6) 3 (1-5) 0.22 (0-1.22)

SCN9a
 
 

Arg1150Trp
 
 

A/A 0 0.0 n/a 0.37
 
 

0.37
 

n/a
 

n/a 0.28
 
 

0.28
 

n/a
 

n/a 0.06
 

0.06 n/a
 
 

G/A 32 23.4 4 (0-7) 3 (1-5) 0.11 (0-0.9)
G/G 105 76.6 4 (0-8) 3 (1-4) 0.77 (0.1-1.56)
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Gene SNP Model Surgery Groups VRS (IRQ) Count p value
KCNJ6 A1032G Dom. All 1032A/A and 1032A/G 3(1-4) 64 0.18

 1032G/G 3(2-5) 67  
   General 1032A/A and 1032A/G 2 (0-5) 26 0.04
 1032G/G 2.3(1-4.3) 26  
 Gynaecological 1032A/A and 1032A/G 3(2-4) 29  
 1032G/G 4(2-5) 34  
 Orthopaedic 1032A/A and 1032A/G 3(0.5-4) 9  
    1032G/G 5(4-6) 7  

Dom. – dominant model; Rec. – recessive model. Underlined p value is for general linear model with ‘surgery type’ included.
Table 4:  Details of significant association found between SNPs and VRSd1A.

Gene SNP Model Surgery Groups VRS (IRQ) Count p value
ABCB1 C3435T Dom. All 3435C/C or 3435C/T 0.89(0.07-1.66) 100 0.02

 3435T/3435T 0.11(0-0.52) 36  
   General 3435C/C or 3435C/T 0.77 (0.12-1.29) 41 0.03
 3435T/3435T 0.09(0-0.39) 13  
 Gynae. 3435C/C or 3435C/T 1.22(0.19-1.94) 48  
 3435T/3435T 0.26(0-0.21) 17  
 Ortho 3435C/C or 3435C/T 0.06(0-1.42) 11  
    3435T/3435T 0(0-0.11) 5  

OPRM1 IVS2-691 Rec. All IVS2C/ IVS2G or IVS2C/ IVS2C 0.77(0.01-1.56) 96 0.03
 IVS2G/ IVS2G 0.24(0-1.26) 40  
   General IVS2C/ IVS2C or IVS2C/ IVS2G 0.69(0.03-1.26) 36 0.04
 IVS2G/ IVS2G 0.24(0-1.05) 18  
 Gynae. IVS2C/ IVS2C or IVS2C/ IVS2G 0.98(0.13-1.81) 49  
 IVS2G/ IVS2G 0.89(0.08-1.92) 16  
 Ortho. IVS2C/ IVS2C or IVS2C/ IVS2G 0.06(0-1.42) 11  
    IVS2G/ IVS2G 0(0-105) 5  

Dom. – dominant model; Rec. – recessive model. IQR – interquartile range. Underlined p value is for general linear model with ‘surgery type’ included.
Table 5: Significant associations found between SNPs and PCAmg.h-1 with dominant or recessive models

with ABCB1 and ORPM1 variants).  For VRS, the association with the 
KCNJ6 variant was weak and is unlikely to have much clinical utility. 
PCA usage is a composite endpoint that involves a complex relationship 
including genetic effects acting on the intensity of the pain experienced 
by the patient and pharmacogenetic effects on the perceived potency 
of the morphine.  Whether preoperative knowledge of genotypes that 
associated with PCA, for example the 3435T/3435T variant pair for 
the ABCB1 gene (which had a >8-fold lower PCA usage rate and was 
found in around 26% of all study subjects), would allow the avoidance 
of postoperative PCA prescription is as yet untested. Such possible 
therapeutic interventions require formal testing in prospective studies.  
However, some groups have noted obstacles to adoption of this type 
of pharmacogenetic testing, including the unreliability of some of the 
evidence for associations due to weaknesses in the design of some 
candidate gene association studies and/or their irreproducibility [40].  
Overlying these issues is the confounding factor of the subjective nature 
of pain perception [41]. 

Questions about the neuroscience of postoperative pain
While the ABCB1 3435C variant association with higher PCA 

usage rate for certain types of surgery agree with previous studies, the 
association for the KCNJ6 A1032G variant with VRS was unexpected in 
light of evidence reported by Nishizawa [27]. Although it is possible that 
some associations we found evidence for may be statistical artefacts, we 
believe that our results call into question the simplistic pharmacokinetic 
and pharmacodynamic explanations of the genetic influences on pain 
and highlights the paucity of our knowledge of the interactions between 
nociceptive and pharmacological mechanisms.  

One notable finding in our study was the lack of any association 
between the OPRM1 A118G variant and any of the clinical outcomes.  
This may be due to a masking of the association due to the low 
percentage of Asian patients in the study (around 8%). Around 15% of 
the Asian population are minor allele homozygous for the variant (i.e. 
have the variant pair 118G/118G) compared to <2% in the Caucasian 
population.  However, other studies have also failed to detect any 
association with the A118G variant and postoperative pain (VRS).  
Janicki [42] did not find any association for 118G with either pain score 
or morphine requirements following surgery and  De Gregori [43] did 
not detect any association with PCA in a similar study (they did not 
examine pain score data). 

Conclusion 
We found evidence for various associations between DNA variants 

in ABCB1, OPRM1, and KCNJ6 and postoperative pain and/or PCA 
usage.   However, these results would appear to be more of scientific than 
clinical interest because the strength of the correlations do not appear 
to be strong enough to form the basis for useful clinical prediction.

Importantly, we found no pain association for examined variants 
in COMT, CYP3A4, CYP3A5, KCNS1, NBEA and SCN9a genes. 
This suggests that the particular variants studied in these genes are 
unlikely to have value in prediction of postoperative pain in a typical 
population of elective surgery patients.  Future studies should focus on 
defining a more useful panel of DNA variants for reliable prediction of 
postoperative pain.   
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