

The Use of Molecular Diagnostics and Artificial Intelligence is a Classification and Prognosis of Gliomas: A Systematic Review and Metaanalysis

Costas Fantis^{*}

Department of Neurology, University of Buckingham, Buckingham MK18 1EG, United Kingdom

Supplementary Table 1: AI applied specifically to MRI

Paper	Biomarkers investigated	AI used	Demographics/sample size/straster	curacy/effectiveness
Riahi Samani et al. 2023	Peritumoral region differences with overall sur- vival and IDH1 mutation status	CNN:Convolutional Neural Networks, FERN- ET: Freewater estima- toR using Interpolated Initialization	381 patients with adult type of the gliomas (CNS WHC grade 4) a 50 patients with brain metastases, and they were 1 odomly divided into three datasets.	Results showed significant differences in the proposed markers between patients with (ferept overall survival and <i>IDH1</i> mutation store (t test, Wilcoxon rank sum test, linear regression; p<0.01).Clustering of patients using the proposed markers reveals distinct survival groups (log rank; p<10-5, Cox hazard ratio=1.82; p<0.005).
Do et al. 2022	MGMT methyla- tion	Random Forest (RF), XG Boost, and Support Vector Machine (SVM),	The Cauch Imaging Archiv (TCIA), The Construct Genore Atlas (TCGA) Glioblase constitionme (GBM) dataset, which included 154 (CBM) construction of the status	A sensitivity of 0.894, specificity of 0.966, and accuracy of 0.925 for predicting the MGMT methylation status in GBM.
Xu et al. 2022	BRAF V600E mutation in pe- diatric low-grade gliomas	Machine learning algo- rithms	1.3 e.ses, with 79 patients in the transing group (47 men, 32 women; meanage 9.86 ± 5.20) and 34 pa- tients in the testing group (20 men, 14 women; mean age 10.97 ± 5.14)	AUC of 0.91, accuracy of 0.93, sensitivity of 0.83, and specificity of 0.97.
H. Luo et al. 2021	IDH1/2, 1p19q status	Januar Signatu based racing is model	655 glioma patients	Average accuracies of histological diagnosis and molecular subtyping were 89.8 and 86.1% in the cross-validation cohort, respectively, while these numbers reached 83.9 and 80.4% in the independent testing cohort
YZ. Sun et al. 2021	Differentiating pseudo progres- sion from true progression in GBM patients after start rd treatment	' 'caret', and 'unbal- d' R packages	77 patients with glioblastoma multiforme (GBM): 40 men and 37 women with a mean age of 49.1 ± 10.5 years (range 17–76 years).	The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78% 78.36% and 61.33%. The accuracy, sensitivity and specificity of three radiologists' assessments were lower on all criteria, therefore TCE- based radiomics showed better classification performance
	X			
Crrespo , m 78132929 ;	ce to: Costas Fant E-mail: cosfantis@ei	is, Department of Neurol ncodehealth.com	ogy, University of Buckingham, Buc	kingham MK18 1EG, United Kingdom, Tel:
QC DB-	Manuscrip 24-31036; Revised: 2	ot No. CDB-24-31036; Edit 27-May-2024, Manuscript N	or assigned: 06-May-2024, Pre QC No o. CDB-24-31036 (R); Published: 03-Ju	b. CDB-24-31036 (PQ); Reviewed: 20-May-2024, In-2024, DOI: 10.35841/2168-9296.24.13.339.
Citation: Review and M.	is C (2024) The Use analysis. Cell Dev	of Molecular Diagnostics a v Biol. 13:339.	nd Artificial Intelligence in the Classif	fication and Prognosis of Gliomas: A Systematic
Copyright: © a unrestricted us	24 Fantis C. This se, distribution, and	is an open-access article dist reproduction in any mediu	tributed under the terms of the Creativ m, provided the original author and so	e Commons Attribution License, which permits urce are credited.

.

Yu Han et al. 2020	IDH1 mutation	Support Vector Machine with Recursive Feature Elimination (SVM-RFE)	59 grade II/III glioma patients with known <i>IDH1</i> mutation status	SVM model was established using 19 features selected with SVM-RFE for radiomal analysis. The AUC and accuracy for mutation on esim- ing set were 0.892 and 0.952 and 10.054 testing set were 0.4 as 0.054, respectively
Lo et al. 2020	WT and mutant IDH	Logistic regression	The data set used in the experiment was from The Cancer Imaging Archive (TCIA), established by the National Cancer Institute. The study collected an image database composed of 32 WT and 7 mutant <i>IDH</i> cases.	His system achieved an accuracy of 90%, a sensitivity of 57% and a specification 97%.
Z. Zhang et al. 2020	LGGs vs HGGs	SVM models (using an iterative informa- tion gain algorithm under the leave-one-out cross-validation strategy and used the AUC the optimization criteria. VGG (Visual Geometry Group) is a Convolu- tional Neural Network (CNN) architecture developed by the Visual Geometry Group at the University of Oxford	108 patients, of which 43 were LGGs and 65 were HGGs (25 WHO III and 40 WHO IV pa- tients)	AUC=0.95, Conserver 0.27, sensitivity=0.98, Nepecificity=0.00 in classifying LGGs from Network AUC=0.99, accuracy=0.98, sensitiv- ity=0.0000 specificity=1.00 in classifying the de III from IV.
Zhao et al. 2020	WHO grade II from III oligo- dendrogliomas	Conditional inference random forest classifier	36 path with T1CE were included (19 with 17 women onean age=45 years; age with two groups: and classified into two groups: DG2 (n=19; mean age=46 years, age with two groups) and ODG3 (n=17 mean age=44 years, age range=9.65 years).	The AUC, sensitivity, specificity and accuracy of radiomics were 0.798 (95%CI 0.699-0.896), 0.672, 0.789, 0.735 for T1 CE, 0.774 (95%CI 0.671-0.877), 0.700, 0.683, 0.689 for FLAIR, 0.861 (95%CI 0.783-0.940), 0.778, 0.783, 0.781 for their combination, respectively. The radiomic strategy performed superior to that of radiologists.
Shboul, Chen, and M Iftekharuddin 2020	MGMT methyla- tion, <i>IDH</i> muta- tions, 1p/19q co-deletion, ATRX mutation, and TERT muta- tions	LGG-XGBoost Extreme Gradie constituting XGBoo	100 pre-operative LGG patients	The prediction models achieve a test performance AUC of 0.70 to 0.84
X. Sun et al. 2020	Ki-67 and p5	LASSO regression model	110 patients with glioma.	The best Area Under the Curve (AUC) for the Ki-67 model was 0.773 for T2 weighted imag- ing in solid glioma (sensitivity, 0.818; specific- ity, 0.833), followed by a less reliable AUC of 0.773 (sensitivity, 0.727; specificity 0.667) in 20 mm peritumoral areas. The highest AUC for the p53 model was 0.709 (sensitivity, 1; speci- ficity, 0.4) for T2 weighted imaging in 10-mm peritumoral areas.
Mzoughi et al. 2020	N. HGG	LASSO, SVM	Preoperative MR images from 272 patients with primary WHO grade II/III gliomas, including 179 with grade II and 93 with grade III. The proportion of patients with a p53 mutation was 42.2% and 48.9% in the training and validation sets, respectively.	An overall accuracy of 96.49% using the valida- tion dataset

Tian et al. 2020	Telomerase Reverse Tran- scriptase (TERT) promoter muta- tions	LASSO regression and univariate and multi- variate logistic regression analyse	126 patients who suffered from HGG were divided into the training cohort (88, 70%) and the validation cohort (38, 30%). There was no sig- nificant difference in terms of age (p=0.986), gender (p=0.975), grade (p=0.327), or location (p=0.421) between the training and validation cohorts	To verify the discovery, 4 morels were estab- lished, and there was only one in the factor (CNV) in Model A than Model B. The AUC of Model A in both training cohort and van la- tion cohort were high a discussion of the second in the ROC analysis (or 50 vs. 0.917, 0.889 vs 0.868, respectively).
Gates et al. 2020	Predict the World Health Organization grade of gliomas	Random forest method	23 patients with gliomas who were enrolled in a prospective clinical im- aging trial between 2013 and 2016. The patients had a range of glioma grades (7 grade II, 9 grade III, and 7 grade IV).	Tumor grade was predict part 96% accuracy [k=0.9] using 4 inputs [T2, DC, CBV, and transer constant from dynamic contrast- enhanced imaging].
Wu et al. 2019	IDH genotype	RF, r-SVM, NN, I-SVM, kNN, NB, FDA, Ada- boost	A total of 126 patients were enrolled for analysis. Overally, et radiomic features extracted from the pre-operative MRU neges were analyzed. The protent energy randomly assigned to either the training set or the valuation set at a ratio (22:1).	R. the Forest (RF) showed high predictive performance (accuracy 0.885 \pm 0.041, AUC 0.931 \pm 0.05 metural Network (NN) (accuracy 0.829 \pm 0.06 , AUC 0.878 \pm 0.052) Flexible discriminant analysis (FDA) (accuracy 0.851 \pm 0.049, AUC 0.875 \pm 0.057) displayed low redictive performance. With regard to stabil- the falso showed high robustness against data perturbation (relative standard deviations, RSD 3.87%).
H. Zhou et al. 2019	<i>IDH</i> and 1p19q genotype in grade II-IV gliomas	Random forest classifica- tion	Preoperative MRIs of 538 gliona patient from three institution were used contraining cohort. The model was contred using b AIs from glioma pathered using b Ais from glioma pathered using b Ais	The model predictive of <i>IDH</i> achieved an area under the receiver operating characteristic curve (AUC) of 0.921 in the training cohort and 0.919 in the validation cohort. Based on the top 15 features, the AUC was 0.917 and 0.916 for the training and validation cohort, respectively. The overall accuracy for 3 group prediction (<i>IDH</i> -wild type, <i>IDH</i> -mutant and 1p19q co-deletion, <i>IDH</i> -mutant and 1p19q non-codeletion) was 78.2% (155 correctly predicted out of 198).
Batchala et al. 2019	Ip/19q-code- letion status among <i>IDH-</i> mu- tant lower grade gliomas	Multivaria and the stic Regression (MLK, usalyse	102 ments with <i>IDH</i> -mutant LGGs if the training data-set, 51% were women (n=52) and 49% were in (n=50). The median age was 41 years (range, 20.0–75.0 years; interquartile range, 33.053.0 years). Of the 102 LGGs, 62.7% (n=64) were <i>IDH</i> mut-Noncodel and 37.3% (n=38) were <i>IDH</i> mut-Codel, 57.8% (n=59) were WHO grade II, and 42.2% (n=43) were WHO grade III.	Training dataset analysis produced a 2-step classification algorithm with 86.3% codeletion prediction accuracy, based on the following: 1) the presence of the T2-FLAIR mismatch sign, which was 100% predictive of noncodeleted lower grade gliomas, (=21); and 2) a logistic regression model based on texture, patient age, T2* susceptibility, primary lobe, and hydrocephalus. Independent validation of the classification algorithm rendered codeletion prediction accuracies of 81.1% and 79.2% in 2 independent readers. The metrics used in the algorithm were associated with moderate sub- stantial interreader agreement (k=0.56-0.79).
Fan et al. 2019	Differentation Liven Glio- blas den (GBM) and An enetic Oligodenou glioma (AC).	Distance correlation, LASO, and GBDT and two classifiers LDA and SVM (LDA-based and SVM-based models)	126 patients were enrolled in the current study, 76 patients were diag- nosed with GBM, and 50 patients with AO.	The diagnostic performance of machine learn- ing models was superior to human readers. Both classifiers showed promising ability in discrimination with AUC more than 0.900 when combined with suitable feature selection method. For LDA-based models, the AUC of models were 0.986, 0.994, and 0.970 in the testing group, respectively. For the SVM-based models, the AUC of models were 0.923, 0.817, and 0.500 in the testing group, respectively. The over-fitting model was GBDT+SVM, suggesting that this model was too volatile that unsuitable for classification.

Sasaki et al. 2019	MGMT methyla- tion status	Least Absolute Shrink- age and Selection Operator (LASSO) and Supervised Principal Component Analysis (SPCA)	Preoperative MRI scans from 201 newly diagnosed GBM patients were included in this study. A total of 489 texture features including the first-order feature, second-order features from 162 datasets, and loca- tion data from 182 datasets were collected.	Predictive accuracy of the pV FMT methyla- tion status was 67% when mode, al by two significant radiomic features. A significant sur- vival difference was observed among the con- bined high-risk group to susts of radiomic low risk group (this group to susts of radiomic low risk and pMGMT-unmet or adiomic high risk and pMGMT-met), and combined low-risk group (1999) 22 Log-rank to 20
C. Jiang et al. 2019	MGMT promot- er methylation status in LGG patients	3D-CE-T1-weighte d single radiomics model, T2-weighted single radiomics model, fusion radiomics model, linear combination radiomics model, clinical integrat- ed model	122 pathology confirmed LGG patients were retrospectively re- viewed, with 87 local patients as the training dataset, and 35 from The Cancer Imaging Archive as indepen- dent validation. A total of 1702 radiomics features were extracted from three-dimensional contrest- enhanced T1 (3D-CE-T1) we rated and T2-weighted MRI in ages.	The fus on radiomics mean which constructed from the concatenation whoch series, displayed use best performance, with an accuracy of 0.849 which an area under the curve (AUC) of 0.970 (0.9 ± 0.200) in the training dataset, and an accuracy with function an AUC of 0.898 10,786-1.000) in the validation dataset.
Lee et al. 2019	<i>IDH1</i> mutation status in glioblas- toma	K-nearest neighbors, sup- port vector classification, decision tree, random forest, adaboost, naive bayes, linear discrimi- nant analysis, gradient boosting.	Retrospectively identified the tients with newly did nosed GL. After semiautomatic somentation of the lesions, 31 features were extracted from preoperative mul- tiparametric magnetic resonance images, a training cohort (n=88) was used to train machine learning- based of sifiers, with internal validation of a machine-learning technique was to collidate on an external dataset of a quaents with GBM.	Accuracies of 87.3% in the training cohort were achieved and 81.7% in the validation hort using the K-nearest neighbors model. carcies of 86.2% in the training cohort and 82.9% in the validation cohort using the AdaBoost model.
Y. Li et al. 2019	Phosphatase and Tensin homolog (PTEN) mutation status	Support Vector Machine (SVM) classifier	A test of the test of the second of the seco	The predictive performance of the machine learning model for the training and validation sets were 0.925 and 0.787, respectively
L. Han and Kamdar. 2018	MGMT methyla- tion status	Breachional Convolu- tional Network architecture (CRNN)	The study used a compendium of brain MRI scans of GBM patients collected from The Cancer Imaging Archive (TCIA) combined with methylation data from The Cancer Genome Atlas (TCGA). The training dataset consisted of 344 positive MRI scans and 351 negative scans, which corresponded to 117 patients. The validation dataset consisted of 21 patients, with 73 positive scans and 62 negative scans. The test set also had 21 patients, with 62 positive and 62 negative scans. After data augmentation, this resulted in 62,550 examples in the training set, and 12,150 in the validation set, and 11,160 in the test set.	An accuracy of 67% on the validation data and 62% on the test data, with precision and recall both at 67%.

Liang et al. 2018	IDH genotype	121, 161, 169, and 201 layers M3D-DenseN and Grouped-SNet and Grouped-MNet	To evaluate the performance, BRATS-2017 and The Cancer Genome Atlas breast invasive carcinoma (TCGA-BRCA) dataset to get image data as input and gene mutation information as the target. Transfer learning techniques were applied to predict World Health Organization (WHO) grade status.	The best performance was unieved with accuracy 84.6%, sensitivity 78.5%, pecificity 88.0%, and AUC 85.7% on the training data- set when M3D-DenseNet depth was get to be layers, and with an accuracy of 0,0%, sensitiv- ity 78.5%, specificity 88.0% and AUC 85.7% on the validation dataset when N2D-DenseNet depth was accurace of multi-model was better man single-modality model, as the best accuracy of single-modality model on the validation dataset was 74.4% (AUC=81.6%), neverthely of accurace of multi-modality model on the vancation dataset was 84.6% (AUN-85.7%). Prediction of World Health Organization (WHO) grade status achieved a high accurace of 91.4% (AUC=94.8%) on avalidation dataset.
Yang et al. 2018	IDH status (mu- tated vs. wildtype)	AlexNet and GoogLeNet (Both CNN architec- tures)	113 histologically colurmed glion, patients were retrospectively en- rolled. Each parameters underwent preoperative conventional and advanced. IRI scans on a 3.0T MRI scanner (Eccovery 750, GE Heach- care, Milwaree, WI, United Stress of America). United Stress of America) where a schannel need coil. The study scale aprised 52 patients (grade II: 25, grade III: 15, grade II: 25, grade III: 15, grade II: 25, grade III: 16, grade II: 25, grade III: 17, grade II: 25, grade III: 18, grade II: 25, grade III: 19, grade II: 25, grade III: 10, grade II: 25, grade III: 11, grade II: 25, grade III: 12, grade II: 25, grade III: 13, grade II: 25, grade III: 14, grade II: 25, grade III: 25, grade III: 14, grade II: 25, grade III: 25, grade II: 25, grade II	The mean value of validation accuracy, test ac- y and test AUC of GoogLeNet was 0.867, 0.90, and 0.939, respectively. As for AlexNet, the mean value of validation accuracy, test accuracy and test AUC were 0.866, 0.855, and 0.895, respectively. Although GoogLeNet is deeper than AlexNet, it has less parameters owing to the inception structures, which can reduce the risk of overfitting. Although only T1+C images were used, the test accuracy and AUC reached 0.945 and 0.968 in GoogLeNet
Y. Li, Liu, et al. 2018	ATRX multion status in ower- grade gliomas	pport Vector Machine (1941) and LASSO regulation model	Clinical and radiological features of 95 TCGA patients and 91 CGGA patients were obtained. ATRX mutation was detected in 38.8 % (37/95) of patients in TCGA cohort and 30.8 % (28/91) in the CGGA cohort. Patients from TCGA were divided into training (n=63) and validation (n=32) sets, and no significant difference was observed in age (p=0.506), sex (p=0.337), grade (p=0.071), ATRX status (p=0.837), <i>IDH1</i> status (p=0.588), 1p19q status (p=0.526), histology (p=0.138) and tumour location (p=0.516) between the two datasets	The predictive efficiencies measured by the area under the curve were 94.0%, 92.5% and 72.5% in the training, validation and external validation sets, respectively.

Jakola et al. 2018	IDH prediction	Binary classifier system	25 patients fulfilled the inclusion criteria, nine were women and average age was 44. 20 patients had <i>IDH</i> mutation and 5 were <i>IDH</i> wild type	The textural parameter homoreneity could discriminate between LGG patient with <i>IDH</i> mutation (0.12, IQR 0.10-0.15) and <i>Ib</i> U wild type (0.07, IQR 0.06-0.09, p=0.005). Not of the other four and the last (energy, entropy, correction and inertia) were associated with molecular strus. Using ROC curves, the area under curve respecticing <i>IDH</i> mutation 10,005 for homoreneity, 0.840 for tumor volume and 0.940 for the combiled parameters on upor volume and homoreneity. Molecular strus could not be prediced using the four othe chosen texture parameters (energy, entropy correlation and nertia). Learnight <i>IDH</i> mutation with or with- net 1p19q could not be separated.
Shofty et al. 2018	Low-grade Glio- mas (LGG) clas- sified into three distinct groups based on <i>IDH1</i> mutation and 1p/19g codele- tion status	Linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, medium Gaussian SVM, coarse Gaussian SVM. 17 ma- chine learning classifiers in total	47 patients diagnosed with LGG with <i>IDH1</i> -mutated tumors and a genetic analysis for 1p/190 teletion status were included in ansatche. A total of 152 features including s location and texture, were extracted from fluid-attention d inversion re- covery; weighted; and post-contrast images.	Best profication was obtained using the Ensemble bound Trees classifier, with sensitivity 92%, specifice 83% and accuracy 87%, and with area under the curve 0.87.
X. Zhang et al. 2018	IDH and TP53 mutations	SVM model	The dataset used in the study wis the LGG persect of The Cancer m- aging Arch 10 TCIA), which on- tained 199 sus, sector of the qualified subjects in this study were 103. Thef 103 LrGG patients were separate the development (n=73) and with the study of the study of the sector 30) cohorts.	The accuracies and area under the curves for <i>IDH</i> and <i>TP53</i> mutations were reported to be 84.9%, 0.830, and 92.0%, 0.949, respectively, on the development cohort, and 80.0%, 0.792, and 85.0%, 0.869, respectively, on the validation cohort.
Yuqi Han et al. 2018	1p/19q co- deletion in lower- grade glioma	Random forest / ra- diomics signature	2.7 patients histopathologically diagnosed with lower-grade glioma. Clinical parameters were recorded for each patient. Radiomics analysis performed by extracting 647 MRI- band features and applied random forest algorithm to generate a radiomics signature for predicting 1p/19q co-deletion in the training cohort (n=184).	The study reported the accuracy of the radiomics signature in predicting 1p/19q co-deletion, with areas under curve (AUCs) of 0.887 and 0.760 on the training and valida- tion cohorts, respectively. The study also compared the radiomics signature to a clinical model and found that the radiomics signature outperformed the clinical model in predicting 1p/19q co-deletion.
Citak-Er et al. 2018	Grade III and IV glice as	A three-step SVM- hased evaluation torch	The patients were newly diagnosed as having glioma, with a mean age of 49.5 ± 12.8 years (range, 23–79 years) 2. There were 18 females and 25 males, and the glioma grades were determined through the histopathologic analysis of surgical specimens	A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grad- ing of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features.
De Looze et al. 2018	Glio, up rade and IDF.	Random forest	The study included patients with a histopathologically proven diffuse glioma (grade II-IV) from a single neuropathological database in the center, selected from 2015 to 2017 The study employed 161 features derived from MR images to analyze using both Gabor texture and im- age intensity characteristics.	96% level of accuracy in differentiating be- tween a low-grade and high-grade glioma. grade II/III; area under the receiver operating char- acteristic curve (AUC)=98%, sensitivity=0.82, specificity=0.94; grade II/IV; AUC=100%, sensitivity=1.0, specificity=1.0; grade III/IV: AUC=97%, sensitivity=0.83, specificity=0.97. Discrimination of <i>IDH</i> status: AUC of 88%, sensitivity=0.81, specificity=0.77.

1

Lu et al. 2018	<i>IDH</i> mutation, 1p/19q codele- tion, and Telom- erase Reverse Transcriptase (TERT) muta- tion, ATRX	The study tested nine different machine- learning models and selected the best model for each binary clas- sification task based on the performance of the model on the training dataset SVM models: Linear, cubic, Bootstrap- aggrega ted (bagged) tree algorithm, AdaBoost algorithm with decision tree, RUSBoost algo- rithm with decision tree.	The data from 456 subjects with gliomas were obtained from The Cancer Imaging Archive. Overall, 214 subjects, including 106 cases of glioblastomas and 108 cases of low- er grade gliomas with preoperative MRI, survival data, histology, <i>IDH</i> , and 1p/19q status were included.	The <i>IDH</i> and 1p/19q status or liomas can be classified by radiomics and machine-learning approaches, with areas under ROC everses tween 0.922 and 0.975 and accuracies be seen 87.7% and 96.1% estimated on the trainine taset. The test on the state of the state a comparable model provide with that on the training dataset, successing the efficacy of the trained classifiers. The classification of 5 molecular subtypes solely based on the MR phenotypes and the state state state of the machine the nistology diagnos unas available.
. Li, Qian,et al. 2018	Prediction of p53, CDKN2A/B homozygous dele- tion, IDH muta- tions, 1p/19q co-deletions, and methylation profiles.	LASSO, SVM	The study analyzed preoperative MR images from 272 patients with primary WHO grade II/III gliomar including 179 with grade II and 93 with grade III. The proportion of patients with a p53 mutation was 42.2% and 48.9% in the taining and validation sets, report by. The study did not first any sign cant differences in agt, sex, grade, p53 status, or tumor location be- tween the two set of patients. Data was collected from the Chinese Glioma tenome Atlas database.	The provision accuracies based on the area under the consistere 89.69 in the training set and 76.3% in constant on set, which were consistent than individual features.
Chang et al. 2018	<i>IDH</i> Status in low- and high- grade gliomas	Residual neural net- works	Preoperative imaging was acquired for 201 privents from the Host- tal of University of Pennsylveria (HUP), 157 participation agham and Women's Hospital (BWH), and 138 patients from The cancer Imag- angle (TIA) and divided into raining cancer and testing sets.	Achieved <i>IDH</i> prediction accuracies of 82.8% (AUC=0.90), 83.0% (AUC=0.93), and 85.7% (AUC=0.94) within training, validation, and testing sets, respectively. When age at diagnosis was incorporated into the model, the training, validation, and testing accuracies increased to 87.3% (AUC=0.93), 87.6% (AUC =0.95), and 89.1% (AUC=0.95), respectively.
. Zhou et al. 2017	wild-type IDH versus IDH1 mutation; IDH1 mutation with 1p/19q codele- tion versus IDH1 mutation without 1p/19q codele- tion; grade II versus grade II versus grade I LGGs; and gression versus non progression of LGOs	Multivariable texture model constructed using logistic entrysion	Treastudy identified 165 patients with diffuse low- and intermediate- gradedic nas (histological grades II and a) from TCGA who have overlapping pre-surgical MRI data for the Cancer Imaging Archive (TCIA).	Interrater analysis showed significant agreement in all imaging features (k=0.703-1.000). On multivariate Cox regression analysis, no enhancement and a smooth non-enhancing margin were associated with longer Progression-Free Survival (PFS), while a smooth non-enhancing margin was associated with longer Overall Survival (OS) after taking into account age, grade, tumor location, histology, extent of resection, and <i>IDH1</i> 1p/19q subtype. Using logistic regression and bootstrap testing evaluations, texture models were found to possess higher prediction potential for <i>IDH1</i> mutation, 1p/19q codeletion status, histological grade, and progression of LGGs than VASARI features, with areas under the receiver-operating characteristic curves of 0.86 ± 0.01 , 0.96 ± 0.01 , $0.86=0.01$, and 0.80 ± 0.01 , respectively.
Bakas et al. 2017	Louind GBM	GLISTR and GLIS- TRboost	Pre-operative multimodal Magnetic Resonance Imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The cancer Imaging Archive (TIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections <i>via</i> radiological assessment.	The median DICE values with their corresponding Inter-Quartile Ranges (IQR) for the three evaluated regions, i.e., WT, TC, ET, were equal to 0.92 (IQR: 0.88–0.94), 0.88 (IQR: 0.81–0.93) and 0.88 (IQR: 0.81–0.91), respectively. Equivalently, the 95th percentile of the Hausdorff distance for WT, TC and ET were equal to 3.61 (IQR: 2.39–8.15), 4.06 (IQR: 2.39–7.29), and 2 (IQR: 1.41–2.83), respectively.

Supplementary Table 2: AI applied in assorted application types

OPEN OACCESS Freely available online

Paper	Application type	Biomarkers Investigated	AI used	Demographics/Sample size/ Dataset	Accuracy/Effectiven
Jin et al. 2021	Low-cost trans- formed slide scanner to cap- ture histopatho- logical images of glioma tissue sections, FISH, pyrosequencing (direct sequenc- ing)	IDH1 at codon 132, IDH2 at codon 172, chromosome 1p and 19q codeletion, CDKN2A/B homozygous deletion and methylation profiles	"AI Neuropatho- lo gist", deep neu- ral networks and Convolutional Neural Networks (CNNs)	The CNNs were trained and verified on over 79 990 his- tological patch images from 267 patients. CNN-based independent diagnostic test ing was performed on dat from 56 patients with 172 2 histological patch image	Patch 1. Concernacy of 80.5% and patient level accuracy of 87.5% for distinguishing different histopatho- set in Lsubtypes of Niona
Pellegrino et al. 2021	Next-generation sequencing	Pathogenic Single Nucleotide Variants (SNVs), Single Nucleotide Polymorphisms (SNPs), Multiple Nucleotide Vari- ants (MNVs), insertions, and deletions.	Random forest	102,011 SNVs, Stewand indel variants from a steware panel (18) ness sequenes for glior a). The dataset in- cludeed total of 7,301 sam- ples are ouse glioma panel worman in define glioma dades and the reget the fol- twing genes is a superse of AKT1, ATRX, BRA CD- KN2A, CIC, EGFR, F aFR1, H3F3A, HIST1H3B, IDH1, IDH2, NOTCH1, PIK3CA, PIK3R1, PTEN, PTPN11, TERT and TP53.	Best error rate for RF was 0.22% (ntree=500 and mtry=4), with an AUC of 0.99. The final trained no.el with the neural network eved an accuracy of 98% and a ROC-AUC of 0.99 with valida- tion data. RF model was tested to interpret more than 2000 variants from our NGS database: 20 vari- ants were misclassified (error rate <1%). The errors were nomencla- ture problems and false positives. After adding false positives to the training database and implement- ing the RF model routinely, the er- ror rate was always <0.5%. The RF model shows excellent results for oncosomatic NGS interpretation.
N. Zhang et al. 2021	Weighted Gene Co-expression Network Analy- sis (WGCNA)	Gene expression profiles from three CGGA cohorts, 300 genes were identi- fied from 806 genes. By performing elastic net re- gression analysis and PCA algorithm, 33 monocyte- related genes were derived from the 20 minutes and their or efficient intere isbtained.	Neural network classifiers and the port Vector Mrac.	artuse glioma samples were collected from three databases: The Cancer Cenome Atlas (TCGA), Chi- nese Glioma Genome Atlas (CGGA), and Gene Expres- sion Omnibus (GEO). For the TCGA cohort (672 glioma samples), the RNA- seq data and corresponding clinical information were retrieved from TCGA data- base (http://cancergenome. nih.gov/). Three CGGA validation cohorts were em- ployed in this study, includ- ing two RNA-seq cohorts (CGGA325 and CGGA693) and a microarray cohort (CGGAarray). The RNA-seq and microarray data, clinical and survival information were downloaded from the CGGA database (http:// www.cgga.org.cn). Expres- sion matrices of GSE108474 (414 glioma samples) were obtained from the GEO database (https://www.ncbi. nlm. nih.gov/geo/)	After establishing monocyte density as a suitable marker for survival prediction of gliomas, it was further investigated its predic- tion efficiency by developing a prognostic nomogram. Combing prognostic factors, including risk scores, patient ages, tumor grades, <i>IDH</i> mutation, and chromosome 1p/19q codeletion, a prognostic nomogram was developed. In TCGA dataset, the Kaplan-Meier survival curve demonstrated a good discrimination of survival probabilities of the two clusters (p<0.0001). The ROC curve con- firmed the discriminative ability of this nomogram (AUC=0.802). Predicted probabilities correspond- ed well with the actual one- to five-year overall survival rates of glioma patients. The efficiency of the prog- nostic model was validated in CGGA 693 cohort. The Kaplan- Meier survival curve demonstrated a good discrimination of survival probabilities of the two clusters (p<0.0001). The ROC curve con- firmed the discriminative ability of this nomogram (AUC=0.737). Predicted probabilities correspond- ed well with the actual four-year
					overall survival rates of glioma patients.

Nuechterlein et al. 2021	Microarray based CGH	Mutational status of IDH2 and the presence or absence of co-deletion of whole chromosome arms 1p and 19q	Random forest classifier	SCNA data from 786 adult diffuse gliomas in The Can- cer Genome Atlas (TCGA) to develop a two-stage clas- sification system	Cross-validated shalls on TCGA SCNA data anowed near per- fect classification restors. The astrocytic <i>IDH</i> mutation hodel validated well on four additional dataset. (1990) as did the AUCF as a core = 0.90) as did the 1p/19q-cool bred oligodendro- glioma screen on the two datasets that contained oligodendrogliomas -0.97, MCC -3.07.).
Matsui et al. 2020	Magnetic Resonance Imaging (MRI), Positron Emis- sion Tomog- raphy (PET), and Computed Tomography (CT)	Diffuse astrocytoma, IDH-wildtype diffuse astrocytoma, IDH-mutant oligodendroglioma	A deep learning model	The dataset used in the study consisted of 217 patients diagnosed with WHO grade II/III glioma the Department of Neuro surgery at Tokyo Women's Medical University Women's Medical University between January 2000 an university 2019	The mode wild predict the molecular subty, with an accuracy of 96.6% for the training dataset and 68.7% for the test dataset. The model achieved set accuracies of 9.5%, 60.4% and 59.4% when be achieved set accuracies of 9.5%, 60.4% and 59.4% when be achieved set accuracies of 9.5% and 2000 and 2000 and 2000 and 9.4% when be accuracies of the set of the accuracies of 0.5% and 2000 and 2000 and 2000 and 0.5% and 2000 and 0.5% and 2000 and 2000 and 0.5% and 0.5
C.J.Park et al. 2020	MRI/DTI histogram	DH status	Random forest	108 patients with pathologi- te lly confirmed undergrade ghomas who undergrade preoperative MR1 newly diagnosed lowergrade gliomas.	Adding DTI radiomics to con- ventional radiomics significantly improved the accuracy of IDH status subtyping (AUC, 0.900 [95% CI, 0.855-0.945], p=0.006), whereas adding DTI histogram parameters yielded nonsignificant trend toward improvement (0.869 [95% CI, 0.816-0.922], p=0.150) compared with the model with conventional radiomics alone (0.835 [95% CI, 0.773-0.896]).
Acs, Ranta- lainen, and Hartman, 2020	Digital Image analysis of he- matoxylin and eosin-stained slides	Glioma grade	Deep neural petwork models	1061 Whole Slide Images (WSIs) with patient follow- up data from TCGA. Histol- ogy images and genomic data into a single unified prediction framework called Genomic Survival Convo- lutional Neural Network (GSCNN model).	The GSCNN model achieved higher prognostic accuracy than the current WHO paradigm based on genomic classification and histologic grading.
Kocher et al. 2020	PET, MRI, MR spectroscopy	CDKN/ A/B home gous deletite IDH mut dons, 1p/2000 leletic methyla, and offiles	Deep fearning based machine ding methods	The accuracy was measured using a machine learning al- gorithm trained on a dataset of 120 patients with WHO grade III and IV gliomas	An accuracy of approximately 90% in assessing WHO grade in newly diagnosed gliomas
Cakmakci et al. 2020	IH HRMAS NMR spectro copy	Pilocytic Astrocytor, (PAST-I), Astrocytom, Ie II (AST-II), Astrocy- tor, I ade III (AST-III), Gliot, I ma(GBM), Oligoden oglioma Grade II(ODG- II),Oligodendroglioma Grade II-III (ODG- II_I), Oligodendroglioma Grade II-III (ODG- II_I), Oligoatrocy- toma grade II(OAST- II),Oligoastrocy- toma grade II(OAST- II),Oligoastrocy- toma grade II(OAST- II),Oligoastrocy- toma grade II(OAST- II),Oligoastrocy- toma grade II(OAST- II),Oligoastrocy- toma grade II(OAST- II),Oligoastrocy- toma grade II(OAST- II), Ganglioglioma Grade III (GG-III), Dysembryoplastic Neuroepithelial Tumors	Random forest- based machine learning The code is released at http:// github.c\ om/ciceklab/ HRMAS_NC	247 primary brain tumor samples from 218 patients, 74 non-tumor brain tissue samples from epilepsy surgery of 54 patients, and spectra of 244 samples from excision cavity of patients 4. The study used a new and large dataset of glioma and control samples (n=565) that were labeled with a quantita- tive pathology analysis. The study was conducted in France, and the dataset is publicly available at https:// zenodo.org/record/3951448.	A median AUC of 87.1% and AUPR of 96.1% for the best performing method, which was a random forest-based approach.

L. Zhou et al. 2018	Microarray data analysis	9,341 DEGs were identi- fied, including 9,175 upregulated genes and 166 downregulated genes	The limma pack- age in R software, Morpheus online software, Gene Ontology (GO), Kyoto Encyclo- pedia of Genes and Genomes (KEGG) pathway enrichment analyses	The original data for the study was downloaded from the Gene Expression Omnibus (GEO) database, specifically the GSE15824 and GSE51062 datasets. These datasets are publicly available and were used for gene expression analysis and identification of differen- tially expressed genes in glo- blastoma. The datasets were based on the Affymetrix GPL570 platform (Affyme trix Human Geneme U133 Plus 2.0 Array) multicluded 5 normal samples and 74 GBNL samples.	The study identified several genes that are good prognostic biomark- ers for glioblastoma including RANBP17, ZNF734, NLRN GPR1. CCDC81, SH3RF1, and CM7SF4.
Liu et al. 2018	MRI and RNA sequencing	Nine textural features from Contrast-Enhanced(CE) MRI images that were as- sociated with angiogenesis and could predict patient survival	Random Survival Forest (RSF)	The algorithm was trained on the RNA sequencing data from the training set of 91 anaplastic ghoma from the The Cancer Genome Atlas (TCGA) patients and validated on an independent set of 64 patients from the CGGA database.	A 78-gene signature for CE was identified in TCGA and validated in CGGA dataset (area under the curve=0.9787). Seven genes derived from the CE-specific signature could stratify AG patients into two subgroups based on overall survival time according to correspond- ing risk score. Nine prognostic quantitative radiomic features of CE were found and the underlying biological processes of them was investigated.
Blanc-Duran d et al. 2018	Positron Emis- sion Tomogra- phy (PET)	To demonstrate the feasibility of an automated 18F-Fluoro-Ethyl-Tyrosine (18F-FET) PET lesion detection and segmenta- tion relying on a full 3D U- Net Convolutional Neural Network (CNN).	Full 3D U-Net convolutional neural network	Thirty-seven patients were included (26 [70%] in the raining set and 11 [30%] in the validation set).	All 11 lesions were accurately detected with no false positive, resulting in a sensitivity and a specificity for the detection at the tumor level of 100%. After 150 epochs, DSC reached 0.7924 in the training set and 0.7911 in the validation set. After morphological dilatation and fixed thresholding of the predicted U-Net mask a substantial improvement of the DSC to 0.8231 (+4.1%) was noted. At the voxel level, this segmentation led to a 0.88 sensitivity [95% CI, 87.1 to,88.2%] a 0.78 positive predictive value:[76.9 to 78.3%], and a 0.99 negative predictive value[99.9 to 99.9%].
Bolis et al. 2017	KNA-sequenc- ing	21 genes that were co- expressed in a tumor-type independent manner	ATRA-21 model	The data set used in the study was RNA-sequencing data for 10,080 patients and 33 different tumor types derived from The Cancer Genome Atlas (TCGA) and Leucegene datasets. The RNA-sequencing data was completely re-processed and used for machine learn- ing methods and network	On average, lower grade gliomas are predicted to be even more sensitive to ATRA than Acute Promyelocytic Leukemia (APL)

▰

