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Introduction
Over the past two decades, wildlife based ecotourism has 

rapidly expanded on a global scale and remains an important 
source of foreign revenue for many developing countries. Almost all 
countries within the Southern African Development Community 
(SADC) states have an income stream that is derived primarily 
from ecotourism [1]. It therefore becomes imperative to thoroughly 
assess the sustainability of the wildlife industry, particularly in 
these developing countries. The wide spectrum of disease (endemic 
and/or exotic) that exists within wildlife impedes export and trade and 
thus contributes toward crippling rural economies of many African 
countries. For the purpose of this review, the socio-economic impact 
of two diseases, i.e Foot-and-mouth disease (FMD), an endemic 
disease of cloven-hoofed animals and Avian influenza virus (AIV), 
an zoonotic disease of birds, will be discussed. A controlled animal 
disease is any animal disease in respect of which any general 
or particular control measure has been prescribed while for a 
notifiable disease, it is required by law to report the occurrence 
or identification of such disease to responsible government 
authorities. FMD and AIV fall in both categories of classification 
in all SADC member states and are listed as such within the 
OIE guidelines [2]. Although these two diseases do not enjoy the 
monopoly of wildlife diseases, they are relevant examples to illustrate 
the burden that wildlife diseases can impose on communities if not 
controlled appropriately. It is hoped that by discussing the clinical, 
biological and socio-economic impact of these diseases, inferences 
and parallels on similar infectious diseases affecting both wild 
and domestic animal hosts can be drawn. A comprehensive list of 
wildlife/domestic host diseases with a potential to disrupt animal 

health patterns and pose a threat as emerging diseases is both 
humans and animals is discussed in other work [3,4].

It is worth noting that legal frameworks and responsibilities for 
wildlife disease investigation and reporting are not clear in most 
African countries [5,6]. An extensive list of legislations passed in 
several SADC states that include Botswana, Mozambique, Namibia, 
South Africa and Zimbabwe, have been comprehensively discussed 
and listed in the work by Bekker et al [7]. From the list one can 
deduce that different legislations and policies exist for different 
countries and that a coordinated effort within the region does not 
necessarily occur. The impact of disease outbreaks within the SADC 
states such as the Democratic Republic of Congo (Table 1, [8]) is an 
indication that wild life disease control policies either do not exist or 
are inadequately implemented within certain regions. Furthermore 
the incidence of disease outbreaks and the reduction in the number 
of animals destroyed and/or slaughtered as result thereof (Table 
2, [8]), indicate marginal success in the implementation of control 
policies in countries such as South Africa, Zimbabwe and Botswana. 
The fact that the number of outbreaks recorded between 2007 and 
2010 remains constant, highlights the difficulty in eradicating and/
or adequately controlling such diseases, especially in the absence 
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Abstract
The African continent is endowed with abundant wildlife, which attracts a vast majority of international and national 

visitors and with them foreign revenue. Eco-tourism therefore remains one of the most significant contributors to the 
economies of many developing countries in Africa. However, these financial reserves are continuously threatened by 
the emergence of endemic and/or exotic diseases that compromise both the wildlife and livestock industries of such 
countries. Livestock farming is a way of living for many people in many African countries especially in the Southern 
African Development Community (SADC) states and outbreaks of viral disease, whether endemic or exotic, results 
in the imposition of stringent food-safety regulations by lucrative foreign markets, thus preventing the export of 
animals and/or animal products from these regions. This paper aims to highlight the specific social and economic 
consequences on both the SADC regions as well as selected developing countries in the north of Africa, that are 
imposed by two viral diseases, Foot-and- Mouth Disease (FMD), a devastating disease that affects the livestock 
industries worldwide and Avian Influenza Virus (AIV), an exotic viral disease of birds, which not only affects the 
poultry industries globally, but also has the potential of causing a pandemic. The SADC states can greatly enhance 
its chances of reducing poverty and building rural economies by addressing the strategies that deal specifically with 
these two wildlife diseases and in doing so, develop necessary policies that will aid in the assessment and prevention 
of future outbreak situations.
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of a common regional policy. Recent debates [9] on free agriculture 
trade within the SADC region indicate a willingness to coordinate 
and encourage agricultural trade within the region. We therefore 
envisage the possibility of a coordinated disease control policy 
applicable for the entire SADC region, which would result in 
the social and economic upliftment of the communities involved. 
However, disease control within wildlife and responsible authority 
allocation is currently ill defined at best, in the majority of SADC 
countries. Further complexity is added by the fact that free-ranging 
wildlife do not easily lend themselves to manipulation such as 
diseases surveillance and vaccination. The result is a lack of active 
research in the field of wildlife disease diagnostics; hence tests 
and vaccines that are developed for domestic animals have mostly 
not been tested in the wildlife and are therefore necessarily effective 
for wildlife disease control. Wildlife therefore remains an effective 
reservoir for transboundary diseases, which not only affect other 
wildlife species, but domesticated animals also thus leading to 
massive socioeconomic losses in the country concerned.

A high proportion of African countries have game reserves 
coupled with pastoral nomadic methods of livestock farming. In 
countries where wildlife boundaries are clearly demarcated, such as 
South Africa, there is still a high degree of activity between wildlife 
and livestock at this boundary interface. Alternative methods are 
thus needed to control the spread of disease between wildlife and 
domesticated animals [10]. Failure to implement effective control 
strategies may result in severe economic losses and social disruption, 
as the livelihoods of most rural pastoral communities are reliant on the 
wellbeing of their livestock. Further damage to the economy could 
result from the loss of valuable wildlife due to disease, leading 
to reduced revenue from depressed tourism patronage. Therefore, 
the activity as well as the intensity of activity at the wildlife/
livestock interface requires innovative control strategies that will 
permit the country concerned to market its livestock, wildlife and 

animal products, profitability. This includes a greater understanding 
of disease virus profile within the wildlife stocks as well as proper 
implementation of prevention and control mechanisms that are 
adapted to the region of choice.

As an example, SADC countries with an exception of South 
Africa, Botswana and Namibia are generally endemic for FMD. As 
a result there is an unmitigated, permanent ban on the export of 
most livestock commodities from Southern Africa and the African 
countries in general, to lucrative European and Asian markets that 
are free of the disease. FMD is an endemic disease in Africa that 
is generally maintained in the free-ranging wildlife populations, 
particularly buffalo. Avian influenza on the other hand, can be 
regarded as an exotic disease as it was introduced into the local 
poultry largely through migratory birds and ducks [11,12]. The 
costs incurred from both diseases can have an undesirable impact 
on livestock populations and agriculture. Additional costs are a 
consequence of mitigation or control efforts, losses in trade and 
other revenues such as tourism as well as impacts derived from 
the emergence of pandemics as in the case of a zoonotic outbreak 
of avian influenza. Visible direct costs include death in young 
stock, reduced livestock growth, reduced milk production and 
abortion. Some of the invisible costs include reduced fertility, which 
necessitates the requirement for larger numbers of breeding animals 
thus translating to higher production costs and costs incurred for 
eradicating the disease from animals. Drugs, labour, vaccines, 
surveillance and forgone revenues are difficult to estimate for both 
AIV and FMD as these are dependent on the livestock density and the 
efficiency of the mitigation measures implemented by the responsible 
authorities [12,13].

Wildlife and Transboundary Diseases
Transboundary animal diseases are diseases that cause damage 

or destruction to farmers’ property, may threaten food security, 
injure rural economies, and potentially disrupt trade relations. Viral 
diseases that include amongst others, Foot and Mouth Disease 
(FMD), African Swine Fever (ASF) and Avian Influenza (AI), 
periodically affect the South African commercial agriculture sector 
and the SADC region in general. The absence of suitable disease 
surveillance and monitoring technologies, coupled with inadequate 
diagnostic facilities at the pen-side, are the major obstacles in 
controlling these important agricultural diseases [14]. In the SADC 
context, the absence of efficient control and prevention strategies 
at the borders of each member state enables the rampant movement 
of both animals and their associated diseases across geographical 
regions. This further complicates the epidemiology and eradication 
of diseases such as FMD. It is therefore critical to control wildlife 
linked transboundary diseases more effectively as a region rather 
than as respective countries in an economically attached region.

Foot-and-Mouth Disease (FMD)

Foot-and-mouth disease virus (FMD) infects a number of wildlife 
species and in the Southern African landscape and the epidemiology 
of the virus is greatly influenced by the role of wildlife, particularly 
the African buffalo (Syncerus caffer) in maintaining and spreading the 
disease to susceptible domestic animals [10,13,15-23]. Individually 
infected buffalo are able to retain FMDV for at least five years, 
while the virus can persist for up to 24 years in an isolated herd 

Country Outbreak Cases Deaths Destroyed slaughtered
Angola 123 4,863 748 566 45

Botswana 228 984 500 - -
D R Congo 74 59,748 45,906 - 760
Lesotho 96 1,636 161 1 -
Malawi 32 8,881 7,589 55 9
Mozambique 148 3,824 586 256 10
Namibia 538 3,294 893 4 2
Swaziland 239 1,408 260 15 2

Tanzania 334 13,937 4,391 - -
South Africa 2,986 49,726 13,193 6,009 -
Zambia 985 34,603 10,701 - -
Zimbabwe 3,534 22,936 4,650 32 1
Total 9,317 205,813 89,578 6,938 829

Table 1: Summary of disease outbreaks in SADC region [8].

Parameter 2007 2008 2009 2010
Diseases 76 69 63 72

Outbreaks 9,018 7,499 5,454 9,317

Cases 550,759 673,354 100,538 205,813

Deaths 374,071 210,513 43,984 89,578

Destroyed 8,841 5,937 1,803 6,938

Slaughtered 9,300 1,316,721 194 829

Table 2: Summary of the state of animal health from 2007 to 2010 in SADC [8].
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[16]. In contrast, cattle are only able to maintain the virus for 
up to 3.5 years after infection [24]. In the Kruger National Park 
(KNP) in South Africa, buffalo calves become infected with all three 
SAT serotypes and individual animals are able to maintain more 
than one serotype during its lifetime. These serotypes are therefore 
constantly evolving in buffalo populations in Southern Africa 
giving rise to the extensive intratypic variation currently observed 
for these SAT types [21]. Buffalo calves become acutely infected 
with FMDV at three to eight months of age when their maternal 
antibodies wane. Once infected, they are able to excrete virus in 
large amounts thus infecting other animals such as impala, which 
have been implicated to be intermediate hosts. Acutely infected 
impala and other antelope species are unable to maintain a carrier 
status, but it has been suggested that they are able to spread the 
virus to cattle outside the KNP by penetrating the cordon fences 
commonly used to separate livestock from wildlife [25]. This is only 
limited to the vicinities closer to the KNP borders and for areas closer 
to other game reserves and farms with infected buffalos. We suspect 
the same pattern may be repeated throughout the SADC region.

Avian influenza (AIV)

Wild aquatic birds such as ducks, geese, gulls and shorebirds are 
carriers of various influenza A subtypes [26,27]. Although all bird 
species are thought to be susceptible to influenza A viruses, some 
domestic poultry species such as chickens, turkey and guinea fowl 
are known to be highly vulnerable to such infections. In susceptible 
birds, avian influenza is transmitted in a number of ways, including 
contact with contaminated nasal, salivary or fecal material from 
infected birds [28]. Indirect transmission via virus contaminated 
water and formites have also been reported. Some studies have 
shown the incidence of avian influenza outbreak to coincide with 
the increased population of migratory ducks in the same region 
[29]. Open domestic poultry markets have also been implicated in 
the spread of avian influenza in the past, although the waterfowl 
species have been identified as the well-characterized reservoir of 
different subtypes of avian influenza [30]. Part of the difficulty 
with exotic diseases such as avian influenza and particularly with 
regards to rural flocks, is the challenge in forming physical barriers 
to disease, mainly as a result of the financial implications associated 
with erecting such bio-containment infrastructures [31].

Economic impact of wildlife transboundary diseases
The costs associated with animal disease can change as societies 

and economies evolve, making it important to monitor such 
changes in order to respond in a timely and appropriate manner [32]. 
Following an outbreak, a country has its supply of beef and related 
products in case of FMD, or poultry and related commodities in 
case of AIV, negatively affected through morbidity and mortality. 
International economic impact to the affected region follows as 
the trade bans are imposed from the respective international trade 
partners thus further depreciating the economic prospects of the 
diseased country. Additional economic depression can be observed 
following the spillover effects such as tourism restrictions following 
the implementation of remedial action to contain and eradicate the 
outbreak. Financial compensation is usually the route most national 
livestock administrators follow to both boost outbreak control 
compliance by farmers and to facilitate quick recovery of the 
affected sector. This flow of finance is usually not adequately 
budgeted for and therefore negatively impacts the country’s budget 
allocation. Even when a pre-arranged cost sharing method between 

the public and the private sector exists, the local economic depression 
following an outbreak does place an unusually large burden on 
the country concerned. For African countries whose budgets are 
relatively small, the effect of an outbreak in a region, which was 
previously a disease free zone, is significantly large in comparison to 
the total GDP of the country [33].

Foot-and-Mouth Disease (FMD)

Foot-and-Mouth Disease is internationally regarded as the 
most important economic viral disease of domesticated livestock, 
which has the potential to spread rapidly through susceptible animal 
populations. Despite the low mortality rates in susceptible animals, 
outbreaks of FMDV have a significant impact on the productivity, 
and therefore the livelihood of resource-poor farmers. Since livestock 
are highly important in the agriculture-based economy of many of the 
Southern African Development Community (SADC) member states, 
trade and quarantine restrictions negatively impacts the national 
economies of such states, by blocking rural income generation, job 
creation and most importantly compromising food security. Despite 
the accumulation of extensive knowledge of the disease as well as 
the availability of vaccines, attempts at eradicating FMD have remained 
unsuccessful. An understanding of the epidemiological complexities 
of FMD has therefore refocused the emphasis on control rather than 
eradication. As an example, it has been estimated that an investment of 
19.6 million US$ in the reduction of losses linked to cattle morbidity 
and mortality in Sudan would result in revenue generation equalling 
US$ 40.5 million [32].

Avian influenza (AIV)

Avian influenza is considered one of the most important 
transboundary animal diseases to have emerged with such a significant 
impact on human health. The disease has been recognized as a highly 
lethal viral disease of poultry since 1901 [34]. Sporadic outbreaks of 
avian influenza in South Africa have had significant impact on the 
poultry industry. According to the Ostrich Business Chamber, South 
Africa is the foremost supplier of ostrich products to the international 
market, accounting for up to 67% of exports with revenue of 
approximately US$ 120 million annually. The recent outbreak of 
the highly pathogenic H5N2 strain of avian influenza resulted in the 
immediate ban on all exports of ostrich products to the European 
Union. This placed the industry under immense financial strain 
and inevitably resulted in job losses of approximately 20,000 people 
directly employed by the industry.

In April 2011, the South African ostrich industry was severely 
affected by an outbreak of avian influenza. Highly pathogenic avian 
influenza (HPAI) H5N2 was detected on eight commercial ostrich 
farms in the Oudtshoorn and Uniondale areas in the Western 
Cape Province. Concerns of a potential outbreak of the HPAI in 
domestic poultry and the awareness of the pandemic potential of these 
viruses, led to the rapid, preventative slaughtering of more than 
50,000 birds and a suspension on all exports of poultry products, 
equating to US$ 140 million in export losses. This drastic action 
was necessitated since phylogenetic studies have indicated that new 
subtypes are derived from genetic re- assortments between the LPAI 
isolates from wild birds and those traditionally found circulating in 
the poultry and ostrich populations in South Africa. The diversity of 
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avian influenza virus, and its potential to continuously evolve, is the 
primary factor driving the requirement for

(a) The implementation of stringent biosecurity measures at 
the farm level to control movement of flocks and prevent virus 
dissemination; 

(b) The development and use of sensitive, cost-effective and 
rapid diagnostic tests, which can be used for outbreak surveillance to 
assist in the management of this disease; 

(c) The eradication of the disease by culling infected flocks [35]. 

In developing countries, the implementation of some these 
containment strategies are not always feasible and therefore other 
approaches, which include the use of vaccines to manage clinical 
disease, prevent human infection and ultimately maintain food 
security, have been adopted [36]. Avian influenza vaccines have 
been successfully used in the control of HPAI in domesticated 
poultry and captive birds in countries that include Asia, Europe, 
Africa and South America and have since improved the livelihood 
of many rural communities in developing countries [36-38].

In the Nigerian study based on the AIV 2011 outbreak, 80% 
of the workers from the affected farms lost their jobs while 45% 
of employees from unaffected farms also lost their jobs as the 
ripple effect of the outbreak costs followed. The Ghanaian study 
reflected similar values in that about 75% of the employees lost 
their jobs. One can therefore extrapolate high unemployment related 
to an AIV outbreak within the local region of the outbreak in 
Africa [39]. Current state of veterinary services and preparedness 
levels in developing countries, especially in Africa, pose a real and 
present threat to the prevention and control of an AIV outbreak. 
Smallholder poultry systems tend to have a medium to low-
level biosecurity and animal mortality is higher than in intensive 
production systems where biosecurity tends to be higher. Financial 
risk is however higher for commercial farmers due to high density 
of poultry in their settings.

Social impact of FMD and AIV in SADC
Livestock plays a critical and varied role in the economies of SADC 

states. At household level, livestock provides food, income and is 
generally regarded as an asset, while at a national and regional level 
it contributes to food security, trade and GDP [8,40]. It follows then 
that the negative disruption of wealth and exacerbation of poverty 
through animal diseases within rural communities will impede the 
general social way of life. Examples include the ability to pay dowry 
through cattle as a traditional method of formalities exchanged 
throughout the Bantu nations of the SADC region. In certain parts 
of SADC, crop cultivation requires the use oxen to plough the 
fields. An outbreak of FMD during the main planting season can 
disrupt crop cultivation and threaten the social way of life due 
to increased poverty levels. The majority of SADC communities 
wherein most of the game parks and reserves are situated are 
mainly rural communities. Their livelihood is largely dependent on 
crop and livestock agriculture. Small stock traders are particularly 
vulnerable since an avian influenza outbreak would devastate 
their trade through local and regional ban on poultry trade. It is 
well established that one of the major obstacles in implementing 
proper biosecurity primarily for rural or communal livestock is 

the absence of adequate biosecurity measures. This is primarily 
as a result of the prohibitive costs related to the implementation 
of such biosecurity infrastructures. An outbreak of either FMD or 
AIV within a rural community in a SADC region does not only 
alter the social economy by diverting national funding to control 
the outbreak, but changes in the livestock and/or flock herds 
drastically affects the general day to day lives of rural communities.

Clinical disease and transmission
Foot-and-Mouth Disease (FMD)

Foot-and-mouth disease (FMD) is a highly contagious, acute 
vesicular disease affecting cloven- hoofed animals (cattle, sheep, pigs, 
goats, buffalo and various other wildlife species). The disease is 
endemic in most developing countries in particular Africa, Asia 
and South America. The causative agent is a positive-sense, single-
stranded RNA foot-and-mouth disease virus (FMDV) classified in 
the genus Aphthovirus within the family Picornaviridae [41,42] The 
140S virion of FMDV consists of a single stranded RNA genome, 
approximately 8.5 Kb in length, enclosed within an icosahedral 
capsid made up 60 copies each of four structural proteins (VP1, 
VP2, VP3, VP4) [41,42]. The mutation rates of these RNA viruses 
are inherently high due to the lack of RNA polymerase proof 
reading mechanisms [43,44]. As a result, FMDV exists as seven 
distinct serotypes (O, A, C, Asia-1, SAT 1, SAT 2 and SAT 3) 
that reflect significant genetic and antigenic variability [45-47]. The 
Southern African serotypes (SAT1-3) are endemic to sub-Saharan 
Africa but several different epidemiological clusters, based on the 
distribution of the serotypes and topotypes, evaluation of animal 
movement patterns and impact of wildlife and farming systems, 
have been identified for the African continent [48]. The South 
SADC countries, i.e. Swaziland, Lesotho, South Africa, Botswana 
and Namibia have segregated wildlife areas that harbour African 
buffaloes known to be infected, asymptomatically, with FMD virus 
serotypes SAT-1, SAT-2 and SAT-3. These SAT-serotypes have thus 
been shown to co- circulate in the various designated clusters 
along with the Euro-Asiatic (O, A and C) serotypes [49-52]). The 
SAT viruses differ significantly from each other with respect to 
geographical distribution, incidence of outbreaks in domesticated 
livestock as well as infection rates in wildlife species ([17,53,54]. 
Within the SAT viruses there are at least eight topotypes within 
SAT-1, 14 in SAT-2 and six within SAT-3. The SAT-1 viruses are 
commonly found circulating in buffalo herds, while SAT-2 viruses 
appear to be the most widely distributed serotype in sub-Saharan 
Africa and are frequently associated with outbreaks of the disease 
in livestock [54,55]. It has thus been suggested that the different 
SAT types may have differential abilities in crossing the species 
barrier, which relates to the varying degrees of pathogenicity among 
species [56].

The perplexing epidemiology of FMD is dependent on a number 
of factors that include amongst others virulence of the viral stain 
and its ability to produce lesions; the stability of the viral particles 
in different environmental conditions; the immunological status of 
the host and its ability to respond to infection and environmental 
factors that can provide geographical barriers that either prevent or 
promote the dissemination and transmission of virus [14]. FMD is 
a highly transmissible disease and infection generally occurs via the 
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respiratory route requiring as little as 20 TCID
50 of virus particles to 

become established in cattle [57,58]. Transmission is also possible 
through abrasions on the skin or mucous membranes, however 
in such instances 10,000 times more virus particles are required for 
successful infection [57,58]. The clinical outcome of the disease 
may vary among the host species considered and the infecting virus 
strain. In domesticated animals such as cattle and sheep, fever and 
viraemia usually start within 24-48 hours after infection, followed 
by progressive spread of the virus to different organs and tissues 
and finally presenting as secondary vesicles, generally on the feet 
and tongue [42,59-61]. Excreted virus has been also been detected 
in the milk, semen, urine and feces of infected cattle [58]. In cattle, 
the incubation period is usually between 2 and 14 days depending 
on the infection dose and route of infection. Pigs on the other 
hand are much less susceptible to aerosol infection than cattle 
and require as much as 6000 TCID50 of virus to establish infection 
[62,63]. They therefore usually become infected either by eating 
food contaminated with FMDV or by coming into direct contact 
with infected animals [62,63]. The incubation period is much 
shorter (approximately two days) and they are able to excrete far 
more aerosolized virus particles than both cattle and sheep [56,64].

Avian influenza (AIV)

Avian influenza virus (AIV) is classified as a type A influenza virus 
that belongs to the Orthomyxoviridae family. These viruses have a 
spherical virion with numerous spherical glycoprotein projections, 
a helical nucleocapsid and a genome consisting of 8 segments of 
single-stranded negative-sense RNA that code for 11 viral genes 
[65]. Type A viruses are classified on the basis of the antigenic 
properties of two surface glycoproteins, hemagglutinin (HA) and 
neuraminidase (NA) (World Health Organization Expert Committe, 
1980). Thus far, sixteen hemagglutinin (H1-H6) and 9 neuraminidase 
(N1-N9) subtypes, occurring in various different combinations (i.e 
H1N1, H5N1 and H7N7) have been identified [66-70].

Influenza A viruses are continuously evolving primarily due 
to the lack of proofreading activity of the viral RNA polymerase 
during replication of the genomic RNA segments [71]. The high level 
of antigenic point mutations introduced into the HA and NA 
surface proteins are responsible for the annual influenza epidemics 
and the associated mortalities [72,73]. Antigenic shift caused as a 
result of the segmented nature of the influenza virus genome, is 
a second mechanism of virus evolution [74]. Due to their surface 
location, however, genes that code for the HA and NA proteins 
are likely to be under immense selection pressure by the host 
immune system and are therefore expected to continuously evolve. 
The reassortment of viral segments leads to the production of 
novel progeny viruses for which no pre-existing immunity exists and 
the new viruses are thus able to escape the host immunity. When 
sufficiently infectious, the emergence of these new viral strains is the 
most common cause of influenza pandemics [75-77].

Influenza viruses infecting poultry can be divided, according 
to their virulence, into two categories. The highly pathogenic 
avian influenza viruses (HPAIV) cause a systemic infection with 
high mortality rates (100%) and the low pathogenic avian influenza 
viruses (LPAIV), which cause localized infections that result in 
mild respiratory diseases in poultry [78]. Although there are 
many subtypes of the virus, the H5 and H7 subtypes are generally 
associated with high pathogenicity, with the prevailing theory 
that HPAIV variants evolve from subtypes of LPAIV in domestic 

poultry by mutation or recombination events [79,80]. The transition 
from low pathogenicity to high pathogenicity is governed by the 
insertion of basic amino acids into the haemagglutinin cleavage site, 
which then causes systemic viral replication and acute generalized 
disease in domesticated poultry [81-85]. Other avian influenza strains 
lacking this multi-basic cleavage site are considered LPAIV and are 
perpetuated in nature in wild bird populations [86-88]. 

Avian influenza viruses generally infect the cells that line the 
respiratory and intestinal tracts of birds and are excreted in high 
concentrations in their faeces. Transmission of the virus between 
birds is considered a complex process dependent on the viral 
strain, bird species and certain environmental factors [89]. Studies 
have shown that virus concentrations of up to 108 .7

 
mean egg infectious 

doses (EID) per gram of faeces could be detected from infected ducks 
[90]. In addition, these viruses were shown to remain infective in 
contaminated lakes or ponds for up to 30 days at low temperatures 
thus leading to the transmission of avian influenza via the faecal-
oral or possibly the faecal-cloacal route [91,92]. It has been further 
suggested that depending on environmental conditions, the virus 
could most likely also over winter and remain a source of infection 
during the warmer spring seasons [93].

Prevention and Control of Disease
Foot-and-Mouth Disease (FMD)

In Southern Africa, the control and prevention of FMDV is based 
on (a) the implementation of effective physical barriers (i.e fencing) 
that separates wildlife from livestock; (b) routine vaccination of 
cattle in high risk areas exposed to infected buffalo populations; 
(c) movement control of susceptible animals and animal products 
and (d) surveillance to monitor outbreaks [20,94-96]. The OIE 
recognizes fencing as an acceptable method for establishing FMD 
disease free zones in southern Africa. However, these physical 
barriers are often subject to both environmental and human 
pressures such as flooding; breakage due to wildlife and damage 
from theft [95]. Relying on fencing alone increases the risk of FMD 
transmission between wildlife and livestock and vaccination therefore 
currently remains the main tool for the control of the disease in 
livestock, particularly in endemic areas [97,98].

The current FMD vaccines used worldwide are chemically 
inactivated whole-virus preparations, typically formulated using 
the water-in-oil adjuvant and with a potency of at least 3 PD

50 
(protective dose) [98,99]. These formulations increase the humoral 
immunity, which is known to be the most influential factor in 
preventing FMD [98,100]. Although the use of inactivated vaccine 
preparations have been successful in controlling and reducing 
the number of FMD outbreaks in many parts of the world, there 
have been considerable concerns and limitations regarding its use 
in preventative control programs. Due to the antigenic variability 
of the virus, current vaccination preparations often confer low 
levels of cross-protection following supplementary vaccinations. 
Other limitations include the difficulty in adapting some viruses 
to cell culture, thus slowing the introduction of new vaccine strains, 
reducing vaccine yield and potentiating through prolonged passage, the 
selection of undesirable antigenic changes [101,102]. Furthermore, 
vaccination does not induce sterile immunity and animals may 
still be able to infect non-vaccinated animals and may also become 
persistently infected and lastly, the current vaccines are relatively 
expensive, especially for the small and subsistence farmer [24,103-
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105]. Towards developing vaccines with improved efficacy and 
coverage, continuous monitoring of the field isolates is required to 
determine the applicability of existing vaccines and the emergence 
of novel epidemiological situations [98]. Inactivated vaccines induce 
short-lived immunity and it is recommended that naïve animals 
receive two initial vaccinations (a primary and secondary dose) 3-4 
weeks apart followed by re-vaccination every 4-6 months to prevent 
spread of disease within populations [106]. However, in the African 
environment this may differ for different manufacturer’s depending 
on the potency of the vaccine and some manufacturer’s recommend 
five vaccinations per annum. The FMDV particle is also known to 
be relatively unstable with respect to both temperature and pH, and 
this has a considerable impact on the shelf life of vaccines, particularly 
in developing countries where the maintenance of cold-chains 
is sometimes not possible [107]. To that end, reverse genetics 
approaches for producing infectious cDNA clones into which the 
insertion of novel capsid genes that confer increased capsid stability 
and/or adaptation to cell culture, are currently being explored for a 
number of FMD serotypes [108-110].

Other factors of concern include 

(a) the requirement of high containment facilities for handling 
live viruses for antigen production and the associated risks of virus 
escape into the environment 

(b) the production of FMD antigens in large-scale suspension or 
monolayer cell lines, which potentially results in lower antigen yields 
due to the inability of certain serotypes and subtypes to adapt to 
cell culture 

(c) the presence of nonstructural viral proteins in vaccine 
preparations that complicate the distinction between vaccinated 
and infected animals

(d) the inability to produce rapid protection against challenge by 
direct inoculation thus potentially exposing susceptible, vaccinated 
animals to infection prior to the development of their adaptive 
immune response and

(e) the possibility of creating a carrier state in vaccinated 
animals following an FMD infection [98]. While these concerns are 
being addressed in the development of novel vaccine technologies, 
alternative control strategies reviewed by [111] include subunit or 
peptide vaccines, live attenuated vaccines and empty viral capsids. 
Although much less potent than whole inactivated virus particles, 
peptide vaccines have been shown to induce either partial or in 
some cases full protective immunity following the administration 
of multiple vaccine doses [112,113]. Baculovirus-derived virus-like 
particles or adenovirus-vectored vaccines for delivering interferons 
or FMDV capsid proteins have both been shown to be highly 
immunogenic [114-116]. Although vaccines are considered to be the 
most important factor in the global control of FMD, the high 
levels of genetic diversity observed for the different virus serotypes 
limit the possibility of developing a single vaccine approach. For these 
reasons vaccination campaigns should be performed regularly based 
on the 

a) epidemiological circumstances and risk of disease spread 

b) value and life expectancy of species and 

c) economic status of the country. 

The interval between vaccinations is ritical to prevent a 
“window of susceptibility” and where the continuous or sporadic 
presence of virus in carrier animals is present.

Avian influenza (AIV)

The diversity of avian influenza virus, and its potential to 
continuously evolve, is the primary factor driving the requirement for 

(a) the implementation of stringent biosecurity measures at 
the farm level to control movement of flocks and prevent virus 
dissemination

 (b) the development and use of sensitive, cost-effective and 
rapid diagnostic tests, which can be used for outbreak surveillance 
to assist in the management of this disease and 

(c) the eradication of the disease by culling infected flocks [35]. 

In developing countries, the implementation of some these 
containment strategies are not always feasible and therefore other 
approaches, which include the use of vaccines to manage clinical 
disease, prevent human infection and ultimately maintain food 
security, have been adopted [36,117,118].

Currently available commercial vaccines for the control of avian 
influenza are inactivated whole virus AI vaccines. These vaccines have 
mostly been used to control low pathogenic avian influenza (LPAI) 
as well as high pathogenic avian influenza (HPAI) outbreaks 
[119-121]. Although these vaccines have been shown to be safe and 
efficacious against AIV, they have several disadvantages that include 
cost of production, laborious method of administration and lack of 
long-term immunity, which in turn necessitates booster vaccinations. 
The use of these vaccines further complicates diagnosis making 
it impossible to differentiate infected from vaccinated animals 
therefore leading to continuous shedding of the virus in the field 
[122]. Furthermore, biohazards associated with manufacturing these 
vaccines and low vaccine yields generated from using embryonated 
fowl eggs has reduced the efficacy of these vaccines [123,124]. 
In an attempt to overcome some of these limitations, several 
different vaccine technologies have been developed, which has been 
extensively reviewed [125]. Briefly, they include (a) inactivated whole 
viruses developed using reverse genetics approaches [126-129]; (b) in 
vitro expressed HA protein in either cell cultures (eukaryotic, yeast 
or plant derived), bacterial (E.coli) or insect derived viral vectors 
(baculovirus) [130-132]; and (c) in vivo expressed HA proteins using 
live bacterial or viral vectors (eg. Fowl poxvirus, vaccinia virus, rous 
sarcoma virus and adenovirus) [133-136].

Despite the availability of different AIl vaccine technologies, there 
are several critical aspects that need to be considered when selecting 
the appropriate vaccination program. One such concern is the 
emergence of antigenic drift within the viral population, which 
results in the occurrence of modified viruses that can escape the 
immune response of the vaccine strain. It is therefore essential that 
suitable control programs be implemented such that correct seed 
viruses are selected for the development of vaccines that enable the 
detection of field exposed flocks. Other aspects include the reliance 
on adequate monitoring and surveillance systems being in place to 
ensure the early detection of and rapid response to AI infections 
[36,137].

Conclusion
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Livestock trade contributes about 15% of global agricultural trade, 
of which more than 80% of exports are from developed countries [10]. 
This presents a favourable economic potential for the SADC states in 
particular and Africa in general, should the endemic status of FMD be 
managed effectively to create disease free zones. In Africa, the diverse 
wildlife species attracts local and international tourism, which forms 
the lifeline for income generation for developing countries. The 
communities around the wildlife reserves and the nomadic cattle 
herding practices where livestock and wildlife interact facilitate the 
transfer of viral diseases to livestock. This adds complexity to both 
disease control and to determining the loss of revenue for countries 
where both livestock and wildlife play an integral part. It is clear that 
effective disease control is beneficial for both the wildlife/conservation 
sector as well as the livestock based export industry, although emphasis 
has been placed primarily on disease control within the livestock 
industry. Surveillance of migratory birds is limited even though 
ducks are the known to be the main reservoirs for the transmission 
of avian influenza. Similarly, although African buffalo are the 
known to be the maintenance host of FMD, factors that contribute 
to the transmission of the virus to livestock remain unknown.

Developing countries, with specific emphasis on the African 
continent, have an obligation and need to improve the socio-
economic outlook of the resource-poor communities, by reducing the 
levels of poverty and implementing applicable national development 
plans. The trade relevance of both AIV and FMD and in the 
case of AIV, its zoonotic capacity, has a major impact on the 
economies of developing countries. Investment in controlling and 
preventing the spread of disease has significant financial benefits 
that usually outweigh the costs incurred during outbreak situations. 
As an example highlighted in the Agra study, an investment of USD 1 
towards the implementation of a disease prevention strategy resulted 
in the generation of revenue to the value of USD 12 [32]. 
However, it should be noted that the actual revenue generated 
from effective and efficient prevention measures will depend on 
the prevailing conditions within the disease outbreak region, which 
include the animal density levels, the intensity of export activity as 
well as the market size of the region.

For exotic diseases such as AIV, the outbreak is best addressed 
by focussing on the domestic host by test-slaughter and mass 
vaccination, respectively. Preventing contact between infected 
domestic animals and wildlife is desirable, but not always feasible in 
many African countries. Some industries such as the South African 
ostrich business sector has, by its nature animals that are in themselves 
semi domestic, hence the biosecurity becomes much more difficult 
to implement or police. When an exotic disease becomes established 
in a free ranging wildlife population, the control options become 
considerably limited and frequently unpopular, since the culling of 
valuable wildlife remains the main option for control.

Based on the AGRA report [138], about 25% of African 
countries have no program for control of viral disease despite the 
high incidence of zoonotic and non-zoonotic epizootic diseases. 
This situation is compounded by the dire lack of qualified 
personnel to fulfil this role. Furthermore, the lack of sophisticated 
technical resources in many SADC regions prevents the accurate, 
timely detection and reporting of FMD outbreaks. The socio-
economic challenges of the African continent will continue due 
to weak investments in animal health, the lack of scientific capacity, 
improper implementation and/or lack of awareness of policies and 

general weak governance of food safety due to competing national 
demands. Access to high-end markets depends on disease control 
options that include 

(a) maintaining zones recognized as FMD-free from which 
livestock may be exported without the requirement for vaccination 

(b) the creation of containment zones with high levels of 
regulation and biosecurity thus favouring compliance with export 
regulations

(c) commodity-based trade, which enables the trading 
of processed products that precludes the possibility of virus 
dissemination and 

(d) managing the disease and focusing on local trade rather 
than export. 

Thus, regardless of the access strategies being sought after the 
implementation of effective disease control programmes within the 
SADC regions remains imperative for both livestock production 
and revenue generation.

It is therefore imperative that the wildlife disease control is 
further addressed before the SADC states can see the full economic 
potential for being endowed with both wildlife and livestock sectors. 
It is through proper management, effective legislation and increased 
wildlife diseases research that the agriculture based economies can 
improve and thereby lift the social well being of the communities 
within SADC nations. By maximising the revenue generated from 
these interrelated sectors, long- term sustainable earnings in foreign 
currency will potentially reduce poverty through local job creation. 
The wildlife disease detection, prevention and control will become 
increasingly relevant since most of the diseases that affect wildlife 
seem to show only mild symptoms while they show devastating 
clinical effects to livestock and poultry as demonstrated by FMD 
and AIV, respectively. Although the economic impact of wildlife 
diseases is easier to measure imperially, the social impact and 
the disruption to the way of life in many native communities 
within SADC states, is usually not reported as a direct link to 
animal disease outbreak such as FMD and AIV. Social cohesion, 
due to wealth accumulation through livestock and the absence 
of disease, could be an added advantage of properly controlling 
animal diseases in the most vulnerable rural communities.
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