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Abstract

Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance with first onset or first identification in
pregnancy. It is one of the most common complications of pregnancy with a prevalence ranging from 3% to upwards
of 16% depending on the screened population and whether a 1 or 2-step screening algorithm is utilized. Its
occurrence has historically been predominantly attributed to pro-diabetogenic placental hormone secretion.
However, there is emerging evidence to indicate that its mechanistic underpinnings are more complex; similar to
type 2 Diabetes Mellitus (T2DM), adipose tissue dysfunction and associated inflammation may be key etiologic
factors for the development of GDM. In support of this view, women with a history of GDM are at high risk of
subsequent T2DM development and their offspring at increased risk of obesity and metabolic syndrome across their
life span. With immediate and long term consequences of GDM on mother and offspring, etiologic understanding
that can inform therapeutic and preventative targets is essential. This review article explores the existing literature as
it relates to associations of GDM with expansion of adipose tissue depots, secretion of adipose derived biologically
active factors, and inflammation and inflammatory related substances.
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Introduction
Pregnancy is a unique physiological condition where weight gain, in

accordance with Institute of Medicine pre-pregnancy BMI-specific
recommendations, is expected [1]. Some gained weight is attributable
to fetus, placenta, amniotic fluid and increased blood volume (~15
pounds); the majority of remaining weight is associated with
accumulated adipose tissue (AT), necessary for fetal growth support
and subsequent postpartum neonatal support through lactation.
Normal pregnancy physiology is characterized by a state of insulin
resistance, which has been thought to result in the channeling of
maternal nutrients towards support of the growing fetal-placental
system. However, despite universal placental production of pro-
diabetogenic hormones and the existence of an insulin-resistant or
carbohydrate-intolerant state, only a fraction of non-pregestational
diabetic women additionally experience pancreatic β-cell insufficiency
such that they develop gestational diabetes mellitus (GDM). Thus, in
addition to placental hormone secretion, other pregnancy-associated
factors must contribute to the development of GDM. In this context,
pregnancy-associated adipose tissue expansion, which can enhance
insulin resistance and induce inflammation, could be an important
risk factor.

GDM is defined as carbohydrate intolerance with onset or first
recognition in pregnancy [2]. The American College of Obstetrician
and Gynecologists recommends screening all non-pregestational
diabetic pregnant women for GDM with medical history, clinical risk
factors and/or 2-step laboratory testing [2]. When 2-step laboratory

testing is utilized, the first step screening evaluation is usually done
between 24-28 weeks gestation with venous blood evaluated 1 hour
following a 50g glucose load. A second subsequent diagnostic
evaluation is necessary if screening results exceed either a cut-off of
135 or 140 mg/dl, depending on practice protocols. GDM is diagnosed
if a failed screening test is followed by a 3 hour 100g diagnostic oral
glucose tolerance test in which 2 or more values from the fasting or
subsequent 3 postprandial hourly values equal or exceed indicated
thresholds by either Carpenter or Coustan or National Diabetes Data
Group criteria [2]. A 1-step approach to GDM diagnosis using a 75g
oral glucose tolerance load, with a 2 hour postprandial evaluation, has
been proposed by the International Association of Diabetes and
Pregnancy Study Groups (IADPSG) based on data from the
Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study [3]
and has been adopted by most non-US countries.

Epidemiologic studies show that the prevalence of GDM is strongly
correlated with the prevalence of Type 2 Diabetes Mellitus (T2DM) in
a population, with significant differences noted in rates amongst racial
and ethnic groups [2]. The prevalence by 2-step screening ranges from
~3-8% [4], whereas the 1-step approach results in ~16% of the
population being diagnosed with GDM [5]. These prevalence rates
make GDM one of the most common complications of pregnancy.

GDM most often resolves immediately following birth. However it
is subsequently associated with T2DM development; in some
populations this rate is up to a 50% incidence within 5 years
postpartum [6]. Mothers with GDM history have a 7-fold increased
risk of developing T2DM [7] and there is evidence that up to one-third
of women with T2DM have a GDM history [8]. These findings suggest
that women with GDM represent individuals with higher inherent
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T2DM risk prior to pregnancy. However, the mechanistic
underpinnings that determine differences between the subgroup of
women who develop GDM and those who do not are not clear.
Understanding of these differences is essential given associations of
GDM with maternal T2DM and cardiovascular sequelae, and offspring
risk of obesity and metabolic syndrome across the life span [9-13].

Pregnancy, Adipose Tissue and T2DM
The development of T2DM has been strongly associated

epidemiologically with weight gain. Moreover, a causal relationship
between weight gain and insulin resistance was inferred from classical
studies in which healthy lean individuals became insulin resistant
upon experimental over-nutrition [14]. Additionally, the adipose
tissue of mice subjected to a short-term high fat diet, contain enlarged
adipocytes that display insulin resistance [15]. Thus, adipocyte
hypertrophy during weight gain can directly cause insulin resistance.

Adipocyte hypertrophy may cause insulin resistance through
various mechanisms. First, the limited capacity of hypertrophied
adipocytes to store additional fat can result in ectopic fatty acid
accumulation, triggering lipotoxicity and inflammation in multiple
tissues [16-18]. The finding that liver fat content in obese women with
previous GDM is strongly associated with insulin resistance, more
than any other measures of body composition [19], is consistent with
impaired capacity of adipose tissue to sequester fat in individuals
developing GDM. Additionally, differences in plasma fatty acid
profiles between women with and without GDM suggest similar
alterations of fatty acid metabolism in GDM as compared to T2DM
[20,21].

In addition to producing lipotoxic fat accumulation in peripheral
tissues as a result of limited storage capacity, enlarged adipocytes
themselves can secrete pro-inflammatory factors, triggering
macrophage infiltration, adipose tissue damage, and a further
limitation in adipose tissue storage capacity. Multiple studies have
found that expansion of VAT is accompanied by macrophage
infiltration and inflammation, which may contribute to the
development of non-pregnancy related IR [22]. The evidence for
chronic inflammation in pregnancy and its association with GDM
development is reviewed below.

Importantly, increased adipose tissue mass can be generated with
minimal adipocyte hypertrophy through the process of hyperplasia,
where an increase number of adipocytes, rather than the enlargement
of existing adipocytes, enables fat storage. Hyperplasia in visceral and
subcutaneous adipose tissue depots correlates with decreased risk of
lipid, glucose and insulin abnormalities [23]. It is possible that
subcutaneous adipose tissue is inherently better able to undergo
hyperplasia, as multiple studies indicate that increased weight
associated with subcutaneous AT (SQAT) expansion decreases non-
pregnancy related IR odds by 48% [24], while weight gain associated
with VAT expansion increases the odds by 80%. The differential risk
accompanying expansion of different depots is also seen in GDM,
where ultrasonography evaluation of SQAT and VAT mass at 12
weeks gestation has identified increased risk of abnormal glucose
tolerance in women with VAT depth above the upper quartile, but risk
was not related to SQAT [24]. The differential risk conferred by fat
accumulation in SQAT or VAT depots during gestation could explain
the paradox that the association between gestational weight gain and
GDM is less consistent [1] than the overall association between BMI,
obesity and body fat percentage [25,26] with GDM development.

Thus, an individual whose gestational weight gain occurs as SQAT
hyperplasia would be at much lower risk of GDM that one with VAT
hypertrophy, despite equal net fat accumulation.

Biomarkers of AT Associated Inflammation in GDM
Evidence for the role of inflammation in GDM is supported by

studies that find individuals with GDM having increased leukocyte
counts [27] and altered adipocytokine and inflammatory biomarker
profiles, similar to non-pregnant individuals with T2DM. In some
cases, these changes in adipocytokines and inflammatory profiles
persist for years beyond pregnancies complicated by GDM [28-32]
lending further credence to similar etiologic underpinnings of GDM
and T2DM, with adipose tissue function as a major component of risk.
Here we summarize the evidence for a role in GDM of adipose tissue-
related mediators implicated in the pathogenesis of insulin resistance
and inflammation.

Adiponectin
Adiponectin is an adipocytokine with anti-inflammatory and

insulin-sensitizing properties. Adiponectin levels are lower in T2DM
[33] in direct contrast to other cytokines like TNFα, IL-6 and leptin
that are elevated with T2DM [34].

Plasma adiponectin concentrations have been reported to be similar
in normal pregnant women as compared to non-pregnant controls.
However in most [35-40] but not all studies [41,42] adiponectin
plasma concentrations are consistently lower in GDM compared to
control gravidas [35-38,40,42,43] even when evaluated early in
gestation [39,42], late gestation [43], and after controlling for BMI
[37-39] and weight gain [38] among other factors. Moreover, fetal
adiponectin levels, measured in umbilical cord blood, demonstrate
lower values in those born to GDM as opposed to non-diabetic
mothers [36]. Adiponectin concentrations in women developing
GDM, are negatively correlated with prepregnancy BMI [37,39,41],
BMI at time of sampling [37,41], and triglycerides [37], whereas levels
in normal glucose tolerant gravidas are only negatively correlated with
triglycerides [37]. These data suggest that adipose tissue in women
developing GDM is qualitatively different from that in normoglycemic
gravidas, independent of quantitative differences in accumulation
reflected in BMI.

Interestingly, while adiponectin is considered to be produced
almost exclusively by adipose tissue in humans, it is also produced by
placental syncytiotrophoblasts in pregnancy [44]. Given the varied
sources of adiponectin during gestation, the cause of decreased
circulating adiponectin in GDM is unclear. To address this question,
the culture medium of explanted placenta, fetal membranes, and
maternal SQAT and skeletal muscle has been analyzed. While this
medium contains detectable amounts of immunoreactive adiponectin,
no difference in release has been noted in adiponectin between GDM
and control gravidas [45]. Nevertheless, lower adiponectin mRNA
levels in SQAT in GDM as compared to control gravidas has been
reported [41], suggesting that adipose tissue is the main contributor to
the difference in circulating adiponectin. Consistent with this notion is
the findings of no difference in adiponectin placental gene expression
between GDM and control gravidas [46]. However, a contribution of
placental adiponectin cannot be ruled out, as several studies have
shown modulation of placenta adiponectin receptors, adiponectin
gene expression, and secretion by cytokines (e.g. TNFα, IFN-γ, IL-6
and leptin); and this modulation has been reported to vary with GDM
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in some studies [44]. Taken together, evidence suggests that impaired
capacity of SQAT to secrete adiponectin may be a risk factor for GDM.

Leptin
Leptin, an adipokine, is secreted predominantly by adipose tissue

and acts both centrally and peripherally to regulate energy intake and
expenditure. Leptin has well-established connections with obesity, and
functions to increase insulin sensitivity by regulating insulin secretion,
glycogen synthesis, glucose utilization, and fatty acid metabolism [47].
Leptin is additionally involved in a number of other physiologic
processes including regulation of endocrine function, inflammation,
immune response, reproduction, and angiogenesis [47]. Leptin serves
a critical role in pregnancy as it is involved in implantation,
production of trophoblast cells, regulation of placental growth, and
amino acid uptake stimulation [48]. Pregnancy is considered a leptin
resistant state with serum concentrations elevated even in early
pregnancy suggesting that the increase is not related to maternal
weight gain nor derived from adipose tissue exclusively [49]. Leptin
levels are higher in pregnant as compared to non-pregnant women
[50,51], increasing until approximately 28 weeks gestation and then
decreasing to non-pregnant levels almost immediately postpartum
[52]. Leptin and leptin receptor expression through mRNA and
protein have been identified in human placenta [53,54], with increased
expression of leptin noted in GDM placentas compared to controls
[55-57]. When considering the culture medium of explanted placenta,
amnion and choriodecidua, detectable levels of immunoreactive leptin
are higher in control pregnancies as compared to GDM; however, this
situation is reversed in maternal tissues (adipose tissue and skeletal
muscle) where higher detectable levels are found in the GDM
pregnancies with a gradient of higher levels in insulin versus diet-
managed gestational diabetic gravidas [45].

Women with GDM have been demonstrated to have higher serum
values of leptin during pregnancy [35,42,43,51,58-63] and
subsequently postpartum compared to controls [51,58,64]. However
these results are not consistent across studies as others report
decreased [65] and non-different [40,64,66,67] leptin levels in
pregnancy, and decreased or non-different [61] levels postpartum.
Umbilical cord blood [68,69] and amniotic fluid [70] leptin levels have
also been reported as higher in GDM compared to control
pregnancies, with the difference in cord blood no longer evident when
adjusting for neonatal body composition.

Studies have indicated that differential leptin levels are better
explained by maternal BMI as opposed to diabetes status [71] and that
there is a positive correlation for leptin with prepregnancy and
pregnancy BMI [51,58,65], and maternal weight gain [51]. Other
studies demonstrate continued differences even after controlling for
maternal prepregnancy BMI or adiposity and note a linear trend in
GDM risk with increasing maternal plasma leptin concentrations [63].

The preponderance of evidence indicates that elevated serum leptin
levels are associated with GDM risk. Whether the leptin is adipose
tissue or placentally derived is unclear although there is significant
evidence supporting contribution from both tissue sources. One
possible function of increased leptin levels in pregnancy is to mobilize
maternal fat stores to increase transplacental support of the growing
gestation. Increased levels in the fetal tissue support this and also lend
support to the concept of intergenerational exposure and thus cycles of
obesity and cardiometabolic dysfunction. One possible hypothesis
linking higher leptin to GDM risk is that the combination of fat
mobilization due to elevated leptin with diminished adipocyte storage

capacity may contribute to lipotoxicity in peripheral tissues and
enhance GDM risk.

cRP
C-reactive protein is an acute phase reactant blood protein that is

elevated in conditions of inflammation. Retnakaran et al found that
systemic cRP levels correlate with prepregnancy BMI but not glycemic
status in overweight/obese and lean gravidas with varying degrees of
impaired glucose tolerance [72]. Bo et al. reported that cRP is
significantly higher in GDM women compared to normal weight
women, but not significantly different from overweight/obese normal
glucose tolerant subjects at 24-28 weeks and 32-36 weeks gestation;
after adjusting for BMI, no significant correlation remaine [73].
Similarly, Wolf et al. noted increased GDM risk in subjects in the
highest cRP tertile compared to the lowest but this association was
attenuated upon controlling for BMI [74] and Rota et al noted similar
findings along with a strong association with glycemic parameters and
gestational weight gain [75]. Alternatively, Qiu et al. confirmed a
positive association of increased cRP with GDM risk with an
association persisting for women in the highest cRP tertile, even after
controlling for maternal prepregnancy BMI, T2DM family history,
and nulliparity, compared to those in the lowest tertile, with a notable
3.5-fold increased GDM risk [76]. Thus, the predominance of evidence
points to a strong association with cRP and BMI, which is maintained
during pregnancy. However, an independent association between cRP
and GDM risk independent of BMI seems less well supported.

TNFα
TNFα is an inflammatory cytokine secreted by both AT [77] and

the placenta [77,78] with the vast majority of placentally derived TNFα
released into the maternal circulation [78]. TNFα secretion is
associated with adipose tissue expansion and has been implicated in
the pathogenesis of IR. Systemic TNFα increases over the course of
normal pregnancy [73,78]. Its levels are inversely correlated with
insulin sensitivity even after adjusting for BMI [78] such that it is an
independent predictor of insulin sensitivity in pregnancy [73].
Elevated systemic levels of maternal TNFα are found in GDM gravidas
compared to normal glucose tolerant gravidas [35,37,42,73,79,80] and
non-pregnant women [81]. While this relationship between TNFα
levels and insulin sensitivity persists after controlling for BMI, it
should be noted that in GDM women, prepregnancy BMI is the most
predictive indicator of TNFα concentrations with additional variance
explained by BMI at time of sampling and triglyceride concentrations
[37]. The source of increased circulating TNFα in GDM is unclear, as
placenta, SQAT and VAT explants product TNFα, and increasing
glucose concentration stimulate production [77]. However, basal
release of TNFα from placenta, SQAT and pyrmadalis skeletal muscle
has not been shown to be different in normal versus GDM gravidas
[82] and TNFα placental gene expression has not been identified as
being different between GDM and control gravidas [46]. While
identifying the source of increased TNFα in GDM is required, the
available evidence suggests that adipose tissue may be a major source.

IL-6
IL-6 is a cytokine with both pro- and anti-inflammatory properties

that is secreted by T-cells and macrophages. Although IL-6 is not
secreted by adipocytes specifically, adipose tissue expansion can be
accompanied by macrophage infiltration and this infiltration results in
elevated IL-6 levels that have been associated with elevated BMI [83]
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IL-6 has been identified as a potential mediator linking obesity and IR
development in the non-pregnant state, [22] in particular
accompanying VAT expansion. The role of IL-6 in GDM has been less
well explored. Release of IL-6 from placenta, SQAT and pyrmadalis
skeletal muscles in-vitro has not been shown to be different in normal
versus GDM gravidas [82]. However, several studies have found
increased serum levels of IL-6 in GDM compared to control gravidas
in the mid to third trimester [84-86], at delivery [35], and persisting
postpartum [86], independent of BMI [85,86]. The source of IL-6 in
GDM is likely to be adipose tissue as IL-6 gene expression is increased
in the SQAT of GDM gravidas compared to controls [46]. Moreover,
no difference has been found in placental expression of IL-6 between
normal and GDM [46]. Thus, in contrast to cRP, but similarly to
TNFα, IL-6 production by adipose tissue is associated with GDM risk
independent of BMI.

Omentin-1
Omentin-1 is an adipokine detectable in human plasma [87] that is

associated with enhanced insulin-stimulated glucose uptake by both
subcutaneous and visceral adipocytes [88]. It is a depot-specific
secretory protein produced by stromal vascular cells of omental
visceral AT with its mRNA predominantly expressed in omentum and
nearly undetectable in subcutaneous AT [88]. In non-pregnant
humans, omentin-1 is inversely correlated with BMI, waist
circumference, leptin levels, and IR [87]. Similarly, maternal
prepregnancy obesity is associated with lower maternal plasma
omentin-1 levels, as well as with lower omentin-1 gene expression in
both placenta and AT; cord blood levels are unaffected by maternal
obesity [89]. Interestingly, in non-obese gravidas the levels of omentin
are lower in those with GDM compared to those with normal glucose
tolerance; while these results might suggest that lower levels of
omentin might increase the risk of insulin resistance, the lower levels
of omentin seen in obese gravidas without GDM suggest that this
adipokine per se does not determine insulin sensitivity in pregnancy
[89]. Moreover, neither cord blood levels, nor placental or AT
expression of omentin-1 are altered in GDM [89]. Nevertheless, the
observed decreased levels of omentin in normal weight individuals
with GDM may be important in that they reflect qualitative differences
in VAT functionality of gravidas at higher risk of GDM.

Resistin
Resistin was discovered in mouse studies as an adipokine capable of

impairing glucose tolerance by decreasing insulin sensitivity and by
increasing plasma glucose concentration. [90] However, subsequent
studies have shown that in humans, resistin is mostly secreted by
macrophages [91]. Serum levels are increased in normal pregnancy
[36,84,92,93] and studies have found a negative correlation between
serum resistin and advancing gestational age [36] and others noting an
increase with advancing trimesters [92,93]. Studies have measured
resistin levels in GDM pregnancies compared with uncomplicated
pregnancies with inconsistent results including increased values
[84,93,94], decreased values [95] and no difference [36,96] Levels
decrease postpartum in both GDM and non-diabetic pregnancies
[94,95] Moreover, there is no difference in umbilical cord blood
resistin levels in GDM versus control pregnancies [96].

The culture medium of explanted placenta, fetal membranes and
maternal SQAT and skeletal muscle have detectable levels of
immunoreactive resistin; however no difference in resistin release in
culture medium [45] or in resistin placental gene expression [46] has

been noted between GDM and control gravidas. No effect on explant
incubation (placenta, fetal membranes, maternal AT and skeletal
muscle) with LPS, IL-6, IL-8 or TNFα has been demonstrated on
resistin release [45]. Thus, the role of resistin in GDM seems less
significant than other adipose tissue associated cytokines.

Plasminogen Activator Inhibitor-1 (PAI-1)
PAI-1 is secreted mainly by endothelial cells with contributions

from other tissues including adipose tissue; it inhibits serine proteases
(tissue plasminogen activator and urokinase) resulting in fibrinolysis
inhibition. PAI-1 is increased in various disease states including
obesity, metabolic syndrome, and diabetes, and is associated with
increased thrombosis risk in persons with these conditions. PAI-1
plays a critical role in insulin resistance outside of pregnancy [97].
Pregnancy is a well-known prothrombotic condition with PAI-1 levels
increased in pregnant as compared to non-pregnant women. Amongst
women with GDM, their PAI-1 levels are higher than age-matched
pregnant controls [80,98]. The role of PAI-1 in GDM development is
further supported by homozygosity for the 5G allele being associated
with normal glucose tolerance in pregnancy [99]. Elevated PAI-1 levels
are positively correlated with markers of subclinical inflammation,
artherogenesis, hypoadiponectemia, and are associated with concern
for or development of early postpartum impaired glucose tolerance,
overt DM, and cardiovascular disease [29,32,100,101].

Retinol binding protein 4 (RBP4)
RBP4 is produced predominantly by hepatocytes and adipose tissue.

Insulin-resistant mice and humans with obesity and T2DM have
elevated RBP4 levels, and a causal relationship between RBP4 and
insulin resistance has been suggested [102]. Serum RBP4 levels
increase from late second to third trimester in subjects with GDM with
33 week gestational age levels positively correlating with mean blood
glucose, hemoglobin A1c (HgbA1c) values and cord blood insulin
values [103]. GDM diagnosis and HgbA1c levels are related to these 33
week RBP4 levels [103]. In GDM, RBP4 mRNA expression in AT is
significantly increased in comparison to control subjects [104].

Summary
Although the exact pathophysiology leading to GDM development

remains unclear, there are significant similarities to T2DM
development. The role of adipose tissue expansion, in particular the
ability of SQAT and VAT to accommodate fat storage with
hyperplastic rather than hypertrophic expansion may be a pivotal
factor determining GDM risk. The differential contribution of adipose
tissue depots to insulin resistance during pregnancy is not clear, but a
significant literature base outside of pregnancy suggests that this is an
important area of investigation. Studies to date regarding the inter-
relationships between weight, weight gain, IR, adipocytes,
inflammation and angiogenesis have been conducted almost
exclusively in animal models and non-pregnant humans. Here we
reviewed the relatively limited literature base that addresses potential
adipose tissue and inflammatory contributions to GDM development.
The findings in these studies are consistent with an important role of
adipose tissue in producing pro-inflammatory factors in pregnancy,
but more work needs to be done to define the sources of inflammatory
cytokines and define whether they play a causal role in GDM, and
whether they operate inter-generationally to determine metabolic
disease risk of both mothers and babies. Pregnancy is an important
screening opportunity for both maternal and fetal health and disease;
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Elucidating underlying mechanisms that lead to GDM will enhance
the possibility of early intervention and even prevention of inter-
generational metabolic disease risk.
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