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Commentary
Asthma is the most common chronic inflammatory disease of the

lung and is characterised by inflammation and airway wall
remodelling. Chronic inflammation can be controlled by inhaled anti-
inflammatory drugs, while airway wall remodelling can only be limited
by bronchial thermoplasty. The mechanism that leads to airway wall
remodelling is not well understood and recent studies suggested that
epigenetics play a major role in asthma pathogenesis. Epigenetics
describe mechanisms that modify the expression of genes without
changing the genetic code. Epigenetic events can be triggered by
environmental factors and even be inherited over several generations.
In asthma, there is evidence suggesting that epigenetic events lead to
faulty translation control of specific proteins. Mitogen activated
protein kinase interacting serine/threonine-protein kinase 1 (Mnk-1)
and eukaryotic translation initiation factor (eIF4E) are two major
controllers for the initiation of mRNA translation into proteins. Mnk-1
controls mRNA stability, its export from the nucleus and the initiation
of translation through eIF4E. In asthma, the expression of several pro-
inflammatory cytokines and factors that contribute to remodelling
have been linked to deregulated action of the translation initiating
protein eIF4E or its ligand eIF4E binding protein. The expression and
action of eIF4E is regulated by Mnk-1 and mTOR, both have been
recently associated with asthma pathologies. The best studied proteins
that are regulated via translation control in asthma are: Nox4, C/EBP-
α, p38, calveolin-1, CXCL10 and eotaxin. The aim of this review is to
establish a hypothesis where deregulated translation control is driving
the pathogenesis of asthma.

Introduction
The concept of airway wall remodelling in asthma has significantly

changed over the past decade. Earlier it was thought that airway wall
remodelling results from term chronic inflammation in asthma or
COPD [1-4]. Recent clinical studies indicated that airway wall
remodelling occurs before or without inflammation [1,5,6]. Asthma
relevant cytokines such as IL-3, IL-4, IL-5, TGF-β, TNF-α and IgE,
contribute to airway wall remodelling, but their inhibition did not
significantly reduce the pathology [7]. Thus, there must be other
mechanism that control airway wall remodelling or reduce the
threshold for mesenchymal cells to response to these remodelling
driving stimuli.

In 2011, Grainge et al. conducted a study where volunteers inhaled
either a cholinergic stimulus or house dust mite antigens three times
over five days, with bronchus biopsies obtained before and inhalation
and three days after the last inhalation [6]. Shown in tissue biopsies,
airway wall remodelling was induced by both stimuli and prevented in
patients who inhaled a short acting β2-agonist. Remodelling was

indicated by epithelium derangement, increased gland cell numbers
and thickening of the sub-epithelial basal membrane [6].
Unfortunately, this study did not investigate the modification of sub-
epithelial mesenchymal cells. Furthermore, hypertrophy of sub-
epithelial fibroblasts and airway smooth muscle cells in the absence of
inflammation was reported in childhood asthma and preterm born
children [8-10]. Data in cohorts of preterm born people suggest that
such a condition during embryogenesis pre-sets the lung to develop
asthma or COPD later in life [11,12]. This correlation had been
described earlier in rhesus monkeys exposed to ozone or allergens
enriched air during pregnancy, which led to permanent rearrangement
of airway smooth muscle cells and asthma like symptoms after birth
[13-15]. These animal studies provided first evidence that exposure to
asthma triggers during embryogenesis start a process that alters lung
maturation lastingly and which stays active even after the stimulus was
removed for long term, suggesting epigenetic events.

Epigenetics, Translation and Remodelling
The term “epigenetics” was introduced by Waddington in 1942 [16]

does not describe a specific mechanism but describes changes of gene
expression without any alteration of the genetic code. In 2001,
epigenetics was redefined as changes of gene function which can be
inherited but do not entail changes in the DNA sequence [17].
Approximately, 147 base pairs of DNA are wrapped around 8 histones
(2x histone2A. histone 2B, histone 3, histone 4) in non-transcriptional
conditions. When DNA is transcribed into RNA, it is unwound from
histones to give space for transcription factors and other proteins [18].
The rate by which DNA is transcribed into RNA can be regulated by
the density of the DNA-histone packaging and this is susceptible to
chemical modification by various enzymes and presents the first of
many epigenetic events [19]. DNA and histones can be methylated,
and thereby modify the rate of gene transcription and have been
associated with the pathogenesis of asthma [20,21]. DNA methylation
patterns in lung cells were associated with endotype and genetic risk of
asthma [22].

It is indicated that histone 3 is a preferential target for epigenetic
modification by either methylation or acetylation [23]. The mechanism
by which histone 3 contributes to the pathogenesis of asthma may
occur in a cell type specific pattern and in epithelial cells involves the
action of Erk1/2, C/EBP-β, p300 and NFκB [24]. In airway smooth
muscle cells, histone 3 methylation correlated with the secretion of
vascular endothelial growth factor (VEGF) which was directly
dependent by the action of methyl transferase G9a [25,26]. In asthma,
airway smooth muscle cells are deficient of G9a and therefore the
hypomethylation of specific promoters, including that of VEGF gene
had been described [27].
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Histone methylation is also regulated by protein arginine methyl
transferase (PRMT), and arginine methylation was controlling the
action of acetyl transferase p300 [28]. Constitutive expression of
PRMT1 had been described in human airway mesenchymal cells and
was linked to increased remodelling properties [29]. Interestingly,
PRMT1 expression was regulated through another epigenetic event,
microRNA expression. MicroRNAs are regulatory units which target
mRNA and thereby increase their degradation and block their
translation into proteins. In regard to asthma, it has been reviewed that
microRNAs are coming into focus for the pathogenesis of several
respiratory diseases [30,31]. Studies assessing the heritability of asthma
suggested that epigenetic modification of gene regulation is a central
pathology which can be handed down over at least over three
generations [32-35]. Recent studies indicated that asthma is caused by
an inheritable epigenetic event which modifies protein expression
[11,34]; thus, post-transcriptional control became focus of interest.
Reflecting these new data on epigenetic events and airway wall
remodelling in asthma, the American Thoracic Society stated that
unless airway wall remodelling is understood, there will be no cure for
asthma [4]. Thus, the search for new therapeutic targets in asthma has
to be promoted.

In regard to the pathogenesis of asthma, several translation
regulators have been described as relevant, including mitogen activated
protein kinase interacting serine/threonine-protein kinase 1 (Mnk-1)
and eukaryotic translation initiation factor (eIF4E). Both factors
interact or interfere with each other on the level of signal transduction.
Translation of mRNA into protein depends on binding of eIFs which is
essential for cell proliferation [36]. Nutrition and growth factors
activate phosphatdylinositol-3-kinase (PI3k) which stimulates mTOR
and thereby phosphorylates 4EBP, which is an inhibitor of eIF4E
[37,38]. Freed eIF4E then forms a complex with other eIFs which
initiates translation of most cell cycle driving proteins including cyclin-
B1, -D1, -E, cyclin dependent kinase (cdk) and p21Waf1/Cip1.
Interestingly, the blockade of either mTOR or eIF4E was sufficient to
reduce proliferation of stem cells and smooth muscle cells on the level
of translation control; while mRNA levels of the above named cell cycle
proteins was not altered [37]. Importantly for chronic inflammatory
lung diseases, radical oxygen species scavengers achieve a similar effect
on translation [39]. In smooth muscle cells of other organs, the role of
eIF4E, 4EBP, p70S6 kinase and Akt in the control of proliferation has
been studied in more detail; thus, it is likely that translation control is
similar important in airway smooth muscle cells. In vascular smooth
muscle cells, arachidonic acid stimulated proliferation was signalled
through COX by phosphorylation of Akt, p70S6 kinase, 4EBP and
eIF4E [40]. In the same cell type, Mnk-1 was necessary for the
phosphorylation of eIF4E involving Erk1/2 but not p38 mitogen
activated protein kinase (MAPK), which resulted in smooth muscle
hypertrophy [41]. In our study on human airway smooth muscle cells,
inhibition of MNK-1 and subsequent eIF4E phosphorylation resulted
in reduced cell proliferation and an inhibition of chemokine secretion
[42]. The same signalling pathway was activated by angiotensin-II in
regard to smooth muscle cell hypertrophy in angiogenesis [43,44],
which could be inhibited by PPAR-γ and 4EBP activation [45]. Insulin
and amino acid also activated smooth muscle cell proliferation
through p70S6 kinase and eIF4E [46].

Smooth Muscle Cell Function and Translation Control
In airway smooth muscle cells, oxidative stress induced Mnk-1 and

eIF4E activity through both Erk1/2 and p38 MAPK suggesting that in

different organs, translation is controlled through distinct signalling
pathways [47]. The expression of contractile proteins in airway smooth
muscle cells by TGF-β1 was also regulated on the translational level
through hyper-phosphorylation of e4BP and therefore by eIF4E [48].
In addition, TGF-β induced hypertrophy of airway smooth muscle
cells was also regulated through translation control by eIF4E [49,50].

Figure 1: Interaction of intra-cellular signalling cascades involving
MNK-1 with IP3K-Akt-mTOR and airway wall remodelling. Akt:
Serine/Threonine kinase; AP-1: Activating Protein-1; β2-adren rec:
β2 adrenergic receptor; C/EBP: CCAAT enhancer binding protein;
eIF4E: Eukaryotic translation Initiation Factor 4E; ERK:
extracellular signal-regulated kinases; FRAP/mTOR: mechanistic
Target of Rapamycin; MEK: MAPK Erk-kinase; miR: microRNA;
MNK: mitogen activated kinase interacting kinase; PGC1α: PPARG
co-activator-α; PI3K: Phosphoinositol-3 kinase; PRMT1: Protein
Arginine Methyl Transferase; PTEN: Phosphatase and TENsin
homolog; p21waf1/ciop1: Cyclin dependent kinase inhibitor p21;
p38: mitogen activated protein kinase 14; p70S6K: Ribosomal
protein S6 Kinase.

However, other eIFs are involved in airway smooth muscle
hypertrophy including eIF2B [51]. Chronic stress in an animal model
activated the signalling cascade PI3 kinase/Akt/GSK3β, which hyper-
phosphorylated 4EBP and up-regulated calcium sensing channel in
smooth muscle cells which interfere with the muscle relaxing long
acting β2-agonists [52]. TGF-β induced epithelial mesenchymal
transition was also sensitive to the blockade of eIF4E and involved the
translation of Snail1 [53]. In regard to asthma eIF4E has been linked
with hypertrophy of airway smooth muscle cells [50] which could be
induced by TGF-β1 treatment [54].

Airway smooth muscle cells differentiation was linked to the
activation of eIF4E by TGF-β induced expression of caveolin-1 [55].
Furthermore, the activation of eIF4E was also reported in response to
virulence protein C of human parainfluenza virus type 3 in three
different immortalized human epithelial cell lines [56], suggesting that
viral induced asthma exacerbations may be linked to modified
translation. In conclusion, these results support the idea that airway
wall remodelling and airway smooth muscle hypertrophy is mainly
controlled through translation, rather than by transcription. The
details of this post-transcriptional regulation of airway wall
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remodelling are not well studied. Thus, better understanding of the
process and its modification in chronic inflammatory airway diseases
may leads to new therapeutic options which go beyond symptom
control.

Faulty translation as a cause of pathologic airway smooth muscle
cell function in asthma had been linked to uncontrollable proliferation
leading to hypertrophy [57], and this pathology can be induced by
allergens or cigarette smoke on different post-transcriptional levels
[58,59]. The reduced translation of the smooth muscle cell
differentiation factor C/EBP-α was the result of low levels of eIF4E and
increased expression of calreticulin, the later has been reported to bind
directly to the mRNA of C/EBP-α through a CUG nucleotide sequence
[57,59,60]. An overview of the regulatory intracellular signalling
pathways that have been proven for tissue forming cells in asthma
associated airway wall remodelling is provided in Figure 1.

Epigenetic Programming of Cell Function on the Level
of Translation Control
The rhesus monkey presents the best model to study lung

development, structure and function in the context of the pathogenesis
of chronic inflammatory lung diseases [15]. These studies provided
first evidence that lung maturation is lastingly altered when mothers
were exposed risk factors for asthma or COPD. Importantly, the tissue
structure changing effect of inhaled allergens or gases has now been
confirmed in human [61]. Both study groups provided evidence that
the airway smooth muscle not only the mass of airway smooth muscle
is increased in asthma, but also its arrangement in the airway wall
forming a spiral like structure. Such a spiral forming smooth muscle
bundle will constrict the airway much more than smooth muscle
bundle which are arranged in no specific pattern. Referring to the
studies performed by the research team of Prof. Plopper in rhesus
monkeys, it is indicated that this structuring of smooth muscle bundles
occurs during the late embryogenesis and is not controlled on the level
of transcription. However, the mechanism by which this
rearrangement of muscle bundle in asthma is controlled remains
unclear and needs further investigation.

Oxygen plays a central role to initiate the maturation of the
developing lung after birth by surfactant protein activation through C/
EBP-α and hypoxia inducible factor 1α [62-64]. In mice, the
interaction of C/EBP-α and cAMP Response Element Binding protein
(CREB) affected the development of the embryonal lung [65]. In this
context, earlier studies indicated direct interference of C/EBP-α with
CREB should be taken into consideration [66,67].

A central role of C/EBP-α in the development and maturation of the
embryonic lung has been reported by others [68-70]. C/EBP-α is also
important for the response to the most frequently prescribed anti-
inflammatory asthma drugs–steroids. The glucocorticoid receptor
forms a complex with C/EBP-α and most probably with other C/EBP-
isoforms which directs the action of the transcription factors [71-74].
In airway smooth muscle cells of asthma patients, the expression of C/
EBP-α was controlled through translation involving the action of
calreticulin which directly binds to C/EBP-α mRNA [57] and this
mechanism was triggered by house dust mite antigens as well as
cigarette smoke in human lung cells [58,59]. However, the question if
the constitutive low expression of C/EBP-α in asthmatic airway smooth
muscle cells [75] is due to the overexpression of calreticulin or involves
other translation regulators such as the eukaryotic translation

initiation factor 4E (eIF4E) or its binding protein (4E-BP) has to be
further investigated.

The pathogenesis of asthma was also linked to other eukaryotic
translation initiation factors. In asthma, eIF2B was linked to muscle
hypertrophy in ovalbumin challenged mice, which was independent of
TGF-β but sensitive to glycogen synthase kinase-3β and lithium
chloride (LiCl) [51]. LiCl is known to regulate C/EBP-α expression
[76], and thereby links the action of eIF2B to the lack of C/EBP-α in
asthma patients described earlier [75]. Signalling via eIF2 was
indicated to be affected by viral infection of the respiratory duct in
children based on transcriptomic assessment [77]. Such a signalling
pathway is supported by an animal model of allergen induced asthma
in mice [78].

Other Epigenetic Mechanisms that Affect Protein
Translation and their Roles in Predisposition to
Asthma

DNA methylation can be induced by cigarette smoking across the
human genome which lasts even years after smoking cessation [79].
Three recent publications reported that prenatal smoking of mothers
induces DNA methylation which seems to be irreversible during the
life time of the child [80-82]. Comparing the effect of cigarette
smoking of mothers during pregnancy in 65 children with asthma to
that of 462 children also with asthma born to mothers who did not
smoke during pregnancy, significant CpG methylation was observed in
2 genes (FRMD4A, Cllorf52) and a lower increase of methylation in 4
additional genes (XPNPEP1, PPEF2, SMPD3, CRYGN) [81]. The
function of these genes is either unknown or affects protein
phosphorylation; not much is known on the function of these proteins
by cigarette smoke beside this study. The study suffers from the lack of
healthy control groups, which would consist of healthy children from
mothers who smoked and did not smoke during pregnancy. A second
study supported the effect of tobacco smoke during pregnancy on
DNA methylation in 572 children. Smoking of mothers during
pregnancy reveal increase DNA methylation of the children at school
age and the analysis of 26 CpG loci indicated a gene specific
methylation pattern including the AHRR and CYP, which are both
related to inflammation innate immunity and DNA accessibility [82].
Most of the other loci which were methylated by prenatal smoking
have no known function, therefore, their impact on lung function and
development has to be further investigated.

DNA methylation and histone modification are two of the best
studied epigenetic regulatory mechanisms that are associated with
organ function efficiencies [83,84]. Interestingly, DNA methylation
induced by cigarette smoking affected α-1 anti-trypsin deficiency,
which may be linked to the development of emphysema [85]. In this
study, CpG methylation occurred mainly in genes that regulate signal
transduction proteins inducible by TGF-β. Cigarette smoke also
inhibits intra-cellular signalling of Erk1/2 in human lung fibroblasts
[86], which also regulate mucus secretion in a rat model [87].

Another mechanism that regulates DNA accessibility is the
acetylation of histones, which has been suggested to play an important
role in CILD [88,89]. Pro-inflammatory signalling such as NFκB and
its inhibitors IκB were linked to histone acetylation in animal models
[90,91]. Other modification of histones include phosphorylation and
sumoylation [92,93]. However, the question why DNA methylation or
histone acetylation induced by cigarette smoke seems to be restricted
to certain genes is not understood.
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Figure 2: Cross generation transfer of environmentally-initiated
epigenetic events that can lead to asthma or chronic obstructive
pulmonary diseases (COPD).

Recently reported novel post translational modification factors are
Protein Arginine Methyl Transferases (PRMT) [94]. The function of
PRMT had been linked to histone methylation and thus could affect
DNA accessibility indirectly [95,96]. In an animal model, the cell type
specific expression of PRMT1 was described [97]. In this model,
PRMT1 was induced in the bronchial and alveolar epithelium after
allergen inhalation. Furthermore, it was shown that IL-4 was the major
mediator of the allergen effect on PRMT1 expression [97,98]. In the
second study of the same group, it was reported that PRMT1
expression is cell specific with being up-regulated in acute
inflammation after allergen exposure in the epithelium, while in
animals with chronic allergen exposure, it is up-regulated in fibroblasts
[99]. In fibroblasts, PRMT1 correlated with the expression of COX-2
and VEGF and function as a mediator of TGF-β stimulation. Finally
we provided evidence that PRMT1 is constitutively up-regulated by an
epigenetic event which diminishes the expression of the Erk1/2 MAPK
inhibitor microRNA-19a in human airway smooth muscle cells of
asthma patients and increases airway smooth muscle cell proliferation,
migration and inflammation [29]. Furthermore, we show that PRMT1
affects the activity of mitochondria, thus cell activity and energy
consumption through up-regulated PGC-1α expression, which is an
epigenetic mechanism by itself. In Figure 2 we present a summary of
the known epigenetic events that can be handed down over at least
three generations and which pre-dispose the lung to develop asthma or
COPD later in life.

Conclusion
There is increasing evidence that translation control through eIFs

plays a role in the pathogenesis of asthma. The regulation of eIFs
involves the action of Mnk-1 and mTOR signalling; however, the
details have to be further evaluated. It remains to be elucidated by
which mechanism these epigenetic events become constitutive and can
even be inherited.
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