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Mass spectrometry has played a vital role in defining what we 
understand about mechanisms regulating chromatin structure and 
function. With the speed, sensitivity and resolution of new generation 
mass spectrometers, researchers are now well-positioned to not 
only analyze bulk chromatin features, but to also begin to explore 
lower abundance chromatin signatures that help define the detailed 
epigenetic landscape of a chromosome. The components of chromatin 
that have been the primary focus of analysis by mass spectrometry 
are proteins and protein posttranslational modifications (PTMs). 
Below I discuss each of these components and provide insight into 
how mass spectrometry is helping to reshape how we study epigenetic 
mechanisms. 

The major protein component of chromatin is recognized as 
histones. The core component of a chromosome is the nucleosome, 
which contains two copies of each core histone: H2A, H2B, H3 and 
H4. These core histones are marked with a variety of PTMs that help 
direct activities such as gene transcription, recombination and repair. 
The PTM of histones occurs most often on the N-terminal tails of the 
proteins, which extend from the nucleosome core structure. Some 
of the more common histone PTMs are lysine acetylations, arginine 
and lysine methylations, and serine and threonine phosphorylations. 
These PTMs on histones serve as molecular recognition motifs to direct 
binding of ‘effector’ proteins that promote some aspect of chromatin 
metabolism [1]. For example, H3K4me3 is a histone PTM localized 
to promoter chromatin and it has been found that specific histone 
acetyltransferases contain domains such as PHD fingers that localize the 
histone acetyltransferase to promoter chromatin and thereby induce 
lysine acetylation such as H3K14ac [2]. When histone H3 at promoter 
chromatin is marked with H3K4me3 and H3K14ac, gene transcription 
is induced through the subsequent localization of transcriptional 
machinery [3]. The scientific literature has numerous examples of how 
histone PTMs direct many types of chromatin activities, but a key in 
uncovering these histone PTMs is the use of mass spectrometry. Mass 
spectrometry has provided for the identification of global or bulk 
histone PTMs as well as combinations of histone PTMs on individual 
histone molecules [4]. In relation to the histone acetyltransferase study 
above, high resolution mass spectrometry uncovered the co-existence 
of H3K4me3 and H3K14ac on the same histone molecule [5]. 

In addition to histones, there are a variety of proteins and protein 
complexes that make up chromatin. As detailed above for a histone 
acetyltransferase, proteins can be directed to particular regions of 
chromatin to drive various activities. This can be the localization 
of transcription machinery, DNA replication machinery, proteins 
that establish particular chromosome regions like centromeres and 
telomeres, etc. Mass spectrometry coupled with traditional biochemical 
approaches has provided for the analysis of these types of chromatin 
bound proteins. One such approach is to use affinity enrichment of a 
target protein to determine what other proteins are associated with the 
particular chromatin bound protein complex. For example, we have 
performed detailed studies on DNA polymerase epsilon and the NuA3 
histone acetyltransferase [2,6]. Mass spectrometry plays the role of 
protein identification as well as quantitative readout of which purified 
proteins are true members of the chromatin bound protein complex 
[7,8].

One of the limiting factors for studying proteins and protein 
PTMs on chromatin is that most studies analyze bulk populations. 
For example, one may use mass spectrometry to identify proteins and 
histone PTMs that are simply isolated in bulk from cells. In this manner, 
one loses the ability to determine at what position in the chromosomes 
that these chromatin features were localized. ChIP and ChIPseq 
approaches provide the genomic localization of a known protein or 
protein PTM; however, these approaches are limited by traditionally 
poor quality antibodies and that one must know the molecular target 
for the antibody. Recently, approaches using affinity purification and 
high resolution mass spectrometry have overcome the inability to site-
specifically define chromatin features along a chromosome. Researchers 
were able to affinity purify large chromatin structures like telomeres, 
engineered plasmids or engineered loci for proteomic identification 
of proteins and PTMs [9-14]. These are true groundbreaking studies 
as researchers were isolating stretches of chromatin unbiasedly (i.e., 
targeting the DNA site specifically for enrichment and not the protein 
or PTMs) and identifying what proteins/PTMs were located in these 
regions. The most recent breakthrough in these types of approaches 
was the reported ability to isolate native 1 kb stretches of chromatin 
without any engineering of the target DNA sequence [15]. In this 
manner, there is no engineering of the DNA to provide for purification, 
thus one can in principle target any 1 kb section of a chromosome 
for high resolution identification of what proteins and PTMs are 
associated. The immediate future of this field is to explore various 
types of DNA targeting affinity reagents to purify short stretches of 
chromosomes for mass spectrometric analysis, while in the long run 
these approaches could be applied to map epigenetic landscape along 
long stretches of chromosomes and to study differential epigenetic 
regulation at particular regions as a function of disease state. Mass 
spectrometry has helped define the field of chromatin biology and there 
is a bright future ahead for this analytical approach in helping to better 
understand epigenetic mechanisms. 
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