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Introduction
Gene regulatory network (GRN) architecture is believed to play 

a crucial role in biological function [1,2] and innovative evolutionary 
transitions [3]. Research into the relationship between innovation 
(necessary for evolution) and network robustness has found important 
clues to the mechanisms of evolution in both biological GRNs [4-8] and 
model GRNs [9-14].

Our goal has been to explore the existence of fundamental 
principles that govern the behavior of these complex regulatory 
networks irrespective of their relationship to evolvability or robustness. 
Mathematical analysis of random Boolean networks and other models 
has provided some insights into the expected dynamical behavior of 
networks in ordered, periodic, and chaotic regions [15-19] based on 
network genotype and interactive rules.

Our approach uses non-Boolean, iterative model network systems 
as generators of experimental data [20-22]. This kind of approach has 
been used to define critical modular topologies within networks [23-
25], for the theoretical determination of dynamical network properties 
[13,26,27], as well as to investigate the evolution of evolvability [28] and 
other properties of complex networks.

Given the highly complex nature of the behavior of even very 
simple models of a few genes, we were interested in the basic dynamical 
properties of model networks as a function of several parameters 
of network complexity, including the total density of gene-gene 
interactions [29,30], as well as genotypic topology.

The basic assumption guiding this work is that it is possible to 
formulate deterministic laws that govern the behavior of complex 
model networks. We hypothesize that the ability to make quantitative 
predictions concerning phenotypic endpoints of network activity is an 
inverse function of the degree to which network topological genotype 
plays a role in network dynamics. The likelihood that this hypothesis is 
true has been shown in previous work [23,31-33] that demonstrated the 
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importance of specific gene-regulatory mapping in different networks 
with identical quantitative genotypic parameters (e.g., identical 
interactive densities). However, the precise role of genotype topology in 
the predictability of dynamical network phenotypic endpoints has not 
been investigated in depth in a system of model networks.

In order to explore the above hypothesis, we constructed model 
networks in two categories of interactive complexity. Gene interactions 
within a network can be either activating or suppressive. The resulting 
complexity of phenotype, defined as the specific dynamics and degree 
of gene expression in the networks, varies considerably depending on 
whether both or only one type of interaction is present in the network 
genotype. We found that networks that include only gene activation 
by other genes (“Activation networks”) are simpler and useful for 
investigation of potential quantitative laws governing phenotypic 
output dynamical behavior. Networks that include both activation and 
suppression of gene expression by other network genes (“Compound 
networks”) are far more complex, but also more relevant to biological 
gene regulatory networks.

We investigated the dynamics of both network types by allowing 
each gene in the network to assume an additive, continuous state of 
expression (as opposed to the “on or off ” states of the Boolean approach). 
We analyzed gene state variables (defined in Methods) corresponding 
to an integrated view of the state of all the genes in the network as a 
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function of time, given all possible initial conditions. Our goal was to 
find reproducible, predictive patterns of gene expression related to the 
quantitative aspects of network architecture such as number of genes, 
interaction density, and initial conditions. We were able to explore the 
relative effects of topological genotype vs. measurable quantitative 
network parameters on these state variables.

The phenotype of each network at time t is a function of the 
expression state Si,t of each gene i in the network. The equilibrium 
phenotype Si,eq is either the expression state of each gene when the gene 
trajectory (see Methods) reaches stability, or, for oscillating trajectories, 
the average value of Si over one cycle.

In our approach, the state of each gene at any time point (Si,t) is 
represented by the sum of all interactions from other network genes 
that act upon it. This value will be an integer and may be negative. 
Each gene can contribute a positive (activation) value of +1, a negative 
(suppression) value of -1, or a no-interaction value of 0 to the state of 
each of the other genes in the network. Genes only exert their effects 
on their target genes if their own expression state at time t is greater 
than 0. The distribution of these interactive values for each gene with 
every other gene is defined as the network genotype, as illustrated by 
the example shown in Figure 1.

Methods
We followed the previous approach of Wagner and his colleagues 

[34-36] by constructing random model regulatory networks in the form 
of an NxN square matrix (wij) of N genes. The total number of potential 
interactions in this type of network is N2. Excluding autoregulation 
[25,37,38], the diagonal is fixed at 0, giving the total number of 
interactions (and cells in the model matrix) as N2 – N.

Model networks, like biological regulatory circuits, operate 
dynamically, with feedback loops and complex interactions taking 
place over time. This is simulated in model network analysis by running 
iterations of the calculation of network states given the changing 
expression state of each gene as a function of time. Stable or periodic 
patterns for Si,t emerge from time-dependent feedback mechanisms of 
genes acting on each other.

Genotypes

Each network’s genotype is defined by the number or density of 
activating and suppressive interactions as well as the specific topology 
of the network matrix wij. Since there are 3 possible interaction variables 
(0, +1, and -1), the total number of possible networks for N genes is 

2

3N N− . As N grows, this number becomes very large; for 5 genes, there 
are more than 3 billion possible network genotypes. The example in 
Figure 1 shows a network of 5 genes with 9 activating and 5 suppressing 
interactions.

Density parameters

We define some density parameters that give an approximation 
of the degree of complexity of the network in terms of the number 
of interacting genes. If A is the number of genes that activate other 
genes, and U is the number of genes that suppress other genes, then 

2/ ( )AD A N N= −  is the density of activating genes, and 2/ ( )UD U N N= −  is 
the density of suppressor genes. The total density of interacting genes in 
a network, DT, is the sum of DA and DU.

For analysis of Compound network outputs, numbers of both activators 
and suppressors need to be considered. Net density, a function of the 
difference between the number of activating and suppressing interactions, 
is a useful measure for these networks. Net density (Dn) is defined as:

( )
2 2

2
2( )( )  A U Tn

A UD D N ND Net Dens
N N

ity D −
= − − =

−
	                (1)

Genotype components

In practice, a description of the genotype (such as the matrix shown 
in Figure 1) falls into two categories: quantitative parameters and 
topological mapping. The genotypic quantitative parameters include 
the total number of genes (N), the density of interactive elements 
(DA, DU, DT, and Dn), and the number of genes expressed in the initial 
condition of the network (G0). Each of these parameters is easily 
defined. In contrast, topological mapping of the network, which defines 
the precise set of rules governing gene/gene interactions, requires the 
use of a lookup table, as is done for simple Boolean networks. In small 
networks involving three genes, it is possible to assign interactions to 
one or more “modules” (e.g., positive feedback loops), and quantitative 
assessments of the effects of topological genotype are possible [13,39]. 
This is extremely difficult when N=4, and not possible for N=5 or 
higher.

Initial conditions

Any given network will produce different phenotypes depending on 
the initial condition of the network at t=0. The initial network condition 
depends on the influence of factors external to the network, such as 
specific transcription factors that can target one or more network genes. 
In order to represent each of the 2N possible combinations of initially 
expressed genes, we use a binary code system, where 1 indicates initial 
expression and 0 indicates initial non-expression of each gene. For 
a 5-gene network, E (the initial gene expression vector) can be from 
00000 to 11111. Thus when E=01101, Genes 2, 3, and 5 are initially 

Figure 1: 5-gene model regulatory network. A) Matrix array showing 
numerical values for each interaction between all genes. The effect of 
genes in the rows on genes in the columns is given by 0 (no interaction), 
+1, or -1. Self-regulation is not included. B) A diagram of the interactive 
network shown in A, with green arrows showing activating interactions, and 
red blunted arrows showing suppressive interactions. Green double arrows 
(between Genes 1 and 5 and between Genes 4 and 5) indicate reciprocal 
activation, and bicolor arrows (between genes 3 and 4, Genes 2 and 3, 
and Genes 2 and 5) indicate inverse reciprocal interaction, where one gene 
activates another gene that suppresses it. For example, Gene 2 suppresses 
Gene 3, activates Genes 1 and 5, is activated by Gene 3, and suppressed 
by Gene 5.
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expressed, and genes 1 and 4 are not expressed at t=0. The number of 
genes that are expressed in the initial condition is given by G0, which 
is defined as:

0 ,0
1

N

i
i

G S
=

≡∑  			                                      (2)

Thus, for E=01101, G0=3. For each value of G0 (from 1 to N) we 
can use the combinatorial formula to find that there are G0CN values 
of E. For example, for a 5-gene network, 10 of the possible 32 initial 
conditions will have G0=3.

Phenotypes

As in all biological systems, the phenotype of any network is the 
sum of all the characteristics of the system, which derive from the state 
of each gene at any given time point. Any network phenotype can be 
represented by the time-dependent and initial condition-dependent 
state of each gene in the network. For some purposes, such as studies 
of robustness, evolvability, or the effects of mutational perturbations on 
phenotypes, this is an appropriate and useful measure of phenotype. 
It is more difficult to analyze dynamical behavior of more than one 
gene at a time in order to characterize the influence of genotype on 
the phenotype of the overall network. We therefore use two integrated 
measures of network phenotype that take into account the state of all 
genes at equilibrium.

We define HG0 as the average of all gene state values, Si,eq, for each of 
the N genes at a particular value of G0.

0 0

0

, ,
1

1 N

G i eq G
iG N

H S
C =

≡ ∑  			                	                  (3)

For further integration of network dynamics, we define W as a 
single number that represents the sum of HG0 values over all possible 2N 

initial conditions (or all values of G0) of the network.

( )0 0
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N

G G N
G

W H C
=

≡ ∑  		  	                                   (4)

For oscillating Compound networks, other phenotypes, such 
as the period and amplitude of oscillation and the proportion of 
gene trajectories that show stable or oscillating behavior were also 
determined. Gene trajectories are defined as the time course of the 
expression state of each gene as a function of E. The number of gene 
trajectories for any network is equal to N2N.

Network construction and analysis

All model networks were produced using a random number 
generator to assign each cell in the network matrix a value of 0, 1, or 
-1. Networks were then analyzed using computations with a MATLAB 
(version 8.6) [40] program to produce S for each gene as a function of 
time and E. The value of Si,t was calculated as the sum of the effects of 
all other genes in the network that affect gene i. This allows the final 
state of each gene at any time point to vary from negative to positive 
integers. An iterative algorithm was used to model time variables, with 
each iterated value of S at iteration t dependent on the value of S at t-1 
[34]. If Si,t-1 is>0 (expressed) it will exert its genotypically determined 
effect (activation or suppression) on its target genes, j. If Si,t ≤ 0 (not 
expressed), gene i will have no effect on the other j genes.

Values of HG0 and W (defined above) are also calculated by the 
program as a function of time. Calculations were done using all 2N 
values of E.

Topological genotype effect

We used analysis of variants (ANOVA) to quantify the degree of 
importance of genotype vs. other input parameters. When comparing 
a given output (dependent variable) between networks with identical 
quantifiable parameters, the ratio of within-group variation to the 
total variation (as given by sum of squares in ANOVA) gives a good 
approximation of the influence of topological genotype on the output.

Results
Role of genotype topology

To test our hypothesis that prediction of network behavior is 
possible only to the extent that the phenotype in question is largely 
independent of topological genotype, we began the analysis of 
dynamical network behavior with the simpler Activation networks. 
First we needed to determine to what extent each measured phenotypic 
output is dependent on topological genotype vs. quantifiable genotypic 
inputs.

As shown in Table 1, the values of Topological Genotype Effect 
(TGE) vary from close to 0 to 80%, depending on the kind of network 
(Activation vs. Compound) and the output parameter being analyzed. 
We observed an inverse correlation between the TGE and the correlation 
coefficients (R2) for curves of output vs. independent input variable 
(data not shown). This confirms our assumption that for measures with 
a high degree of topological genotype dependence, the usefulness of 
quantitative models to predict outcomes will be approximate at best.

A more detailed examination of the data shows that for the 
determination of HG0, there are some trends in the degree of the TGE 
for both Activation and Compound networks beyond the overall 
strength of the effects seen in Table 1.

For Activation networks, Figure 2 indicates that there is a trend 
toward lower TGE as the number of genes expressed at the initial 
condition (G0) increases, so that at the maximum (G0=N), TGE is 0. 
This implies that any predictive formula for an output will be more 
accurate when more genes are initially expressed, which is in fact what 
was observed. For the maximum case, when G0=N (and TGE=0), we 
found that experimental values of HG0 were always perfectly predictable 
to be equal to A+G0.

We determined the influence of increasing density of activators 
and suppressors on the Topological Genotype Effect in Compound 
networks by analyzing the TGE in replicate networks with one or the 
other interaction density held constant. We found a strong positive 
association between TGE and density of suppression interactions, while 
the density of activating interactions had no effect on TGE (Figure 3). 
The observation that having more suppressors in a network increases 
the topological effect may not be surprising when the strong effect of 
the topology of suppression on phenotype is considered; but the lack of 
any effect of activator density is not easily explained.

Phenotype Parameter Activation Networks Compound Networks
Si,t 0.46 0.72
HG0 0.015 0.24
W 0.026 0.18

Period - 0.80
Amplitude - 0.64
%Stable - 0.56

Table 1: Values of TGE for Various Phenotypes.
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Gene expression state as a function of activation density

The data for TGE values in Table 1 suggest that values of Si,t for 
each gene are strongly dependent on topological genotype (more so for 
Compound than for Activation networks), and should not be accurately 
predictable by any quantitative model if our hypothesis is correct. On 
the other hand, based on these data showing a less than 3% contribution 
of the topological genotype to the determination of the integrated gene 
expression parameters HG0 and W in Activation networks, we would 
expect to be able to formulate quantitative relationships for the behavior 
of these phenotypic outputs using quantitative genotypic parameters. 
While the TGE contribution for HG0 and W is higher in Compound 
networks, it might be possible to develop approximate models for 
these as well. Based on the strong TGE shown in Table 1 for oscillating 
period, amplitude, and percent of stable gene trajectories, we would not 
expect to find any useful quantitative relationships for these phenotype 
outputs.

Single gene expression states

Figure 4 illustrates the relationship between Seq for a single gene 
(at a single value of G0) and activation density. For both Activation 
and Compound networks, the expected positive relationship is seen 
(increasing the density of activation interactions would logically 
increase the overall expression levels of most genes), but the scatter 
of the data makes it clear that accurate predictions of the precise level 
of expression are not possible. As expected, this is even more true for 
Compound networks.

Integrated network expression states

To examine the relationships between integrated measures of 
network expression HG0 and W and quantitative genotype parameters 
of activation density and G0, we analyzed 310 Activation networks 
comprised of 4, 5, and 6 genes, as well as 480 5-gene Compound 
networks. As expected, we observed strong correlations between both 
integrated phenotypes and these genotype parameters in Activation 
networks.

We found that the derived quadratic formula shown in equation 
5 fits the actual experimental data better than any strictly empirical 
model, over the whole range of DA and G0 values for several values of N. 
Equation 5 allows us to accurately predict within a 5% margin of error 
the value of HG0 for any network at each value of G0, given the total 
number of genes (N) and the density of activators (DA) in the network.

( ) ( )
0

2 2 0 0
0 0

22 1 1 2G A A
G GH D N N D N G G
N N

   = − − + − + − +      
       (5)

This formula was derived from basic principles of network dynamics. 
The maximum value of HG0 for any Activation network is A+G0, and the 
minimum value is A(G0/N). We found that the experimental values of 
HG0 were dependent on the probability of multiple interactions between 
the genes in the network. For example, if two genes activate each other, 
the value of HG0 will be higher than if each activation is independent of 
other genes. The probability of such interactions rises to 1 when G0=N, 
and also rises for all values of G0 as DA increases. We cannot derive an 
exact determination of this probability for a general network, since the 
number of potential interactions in N=4 and higher networks is too 
large for precise analysis. We used an approximation for the multiple 
interaction probability, and developed a formula whereby HG0 is the 
weighted average of the maximum and minimum values as a function 
of DA, N and G0. The weights are determined by the approximate 
probability, which is also a function of DA and N. The resulting 
quadratic relationship between DA and HG0 fits the data as illustrated in 
the examples of Figure 5 for all values of N, DA, and G0.

Given that W is defined as the sum of HG0 over all values of G0, we 
were able to derive a formula for W as a function of DA and N that is 
also highly predictive of the experimental value of W for all Activation 
networks. The derived formula for W (equation 6) fits the experimental 
data very well, as shown in Figure 6.

		             ( ) ( )2 21A A AW D D N N D N N Nα β   = − − + − +       

1

2 2
2

N

N

where

α

β −

= −

=

				                (6)

Figure 2: Influence of the number of genes expressed in the initial condition 
(G0) on the Topological Genotype Effect. Data shown is for calculation of 
ANOVA for 20 Activation networks with DA=0.1 to 0.25.

Figure 3: The influence of activating and suppressing interactions within 
networks on the Topological Genotype Effect on HG0. Blue triangles are 
activating and black circles are suppressive interactions; the line is the least 
squares fit for suppressive interactions (R2=0.85). Each point represents the 
TGE when one of the interactive elements was held constant (at the value 
shown on the x axis) with varying numbers of the other element.
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Compound networks

For Compound networks, time course dynamics are more complex 
and do not show any simple relationship with total interaction density 
(DT). Since values for HG0 and W are expected to rise with increasing 
number of activators and with decreasing number of suppressors, it 
is a reasonable hypothesis to test whether the difference between the 
activator and suppressor densities is correlated with W and/or HG0. 
However, since this difference alone does not take into account the 
total number of either activators or suppressors, it isn’t surprising that 
no correlation was seen with the difference DA - DU. We corrected for 
this by calculating the net density (Dn) metric, which is the difference 
between the number of activators and the number of suppressors times 
the total density (DT) (see Methods). As shown in Figure 7, plots of Dn 
vs. HG0 and W do show increasing trends.

For Compound networks, we found an empirical formula (equation 
7) based on analysis of 84 networks that relates DA, DU, and G0 to the 
average value of HG0 over all time points.

( ) ( )0

2 2
0 0

0 022 22 2G n
G N G NA UH G D G

N NN N N N

    + +−   = + = +    −− −    
	                 (7)

As seen in Figure 7, the theoretical results from equation 7 give only 
an approximate fit to the experimental data, with a median error rate of 
24%. We were also able to formulate an empirical relationship between 
the integrated single state value of W for Compound networks and the 

quantitative parameters of N and interaction net density (Dn) as follows:

( ) ( )2 11 2 1 2N N
n nW N D D N −= − + + − 		               (8)

As shown in Figure 8, this empirical relationship gave an 
approximation for the experimental values of W over a wide range of 
Dn with an error rate of about 60%. Comparison of Figures 5 and 6 with 
Figures 7 and 8 confirms that the degree of variation of HG0 and W is 
much higher for Compound networks than for Activation networks. It 
should be noted that the formulas in equations 7 and 8 for Compound 
networks do not reduce to the equations for Activation networks with 
DU=0. In fact, it was not possible to find any formula that would fit 
both Activation networks using DU=0 and Compound networks. This 
strongly suggests that there is a qualitative difference in the way these 
two network types operate: Activation networks do not behave simply 
as Compound networks with DU=0 for computational purposes.

Oscillation dynamics

For Activation networks (DU=0), we found that all genes reach a 
fixed steady state within a few iterations and Si,t becomes a constant=S 
i,eq. All Activation networks are examples of “viable networks” [35] that 
do not exhibit oscillations in state values at any level of analysis.

Figure 4: Seq for one gene with G0=4 as a function of activation density. A) 
Activation networks. As expected, a trend is seen for increased expression 
with increased activation density, but variability (due to the TGE) is high. The 
regression line shown has R2=0.66.  B) Compound networks. Compared to 
A, there is more variation, with R2=0.3, although a trend of increasing Seq 
(averaged over one cycle period for oscillatory gene trajectories) with increasing 
net density of activation is still observed.

Figure 5: Illustration of close agreement between experimental values of HG0 
(points) and theoretical predictions based on equation 5 (lines). A) N=4; blue 
triangles - G0=2, black circles - G0=4. B) N=5; blue triangles - G0=1, black circles 
- G0=4. C) N=6; blue triangles - G0=2, black circles - G0=5. Blue dashed lines and 
solid black lines are the corresponding calculated values of HG0  using eq. 5.
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Oscillation period

For Compound networks, dynamical patterns are far more 
complex. The behavior of single gene states was highly dependent on 
exactly which genes are initially expressed, meaning not only on values 
of G0, but on specific values of E. For example, Figure 9 shows the 
dynamics for 5 genes in the same network (the one pictured in Figure 
1) for two values of E with G0=2. In Figure 9A (E=00101), each of the 
genes oscillates at first, and then they all reach a stable state. The same 
network with the same value of G0=2 but with E=10001 produces a very 
different pattern for these genes, as shown in Figure 9B.

The TGE for the dynamical behavior of Compound networks is 
quite high (Table 1), and therefore, if our hypothesis is correct, we would 
not expect to be able to formulate precise mathematical relationships 
between any of the oscillatory phenotypic outputs based on quantitative 
network parameters. After running 480 Compound networks, we found 
that the distribution of the length of oscillating periods (shown in Table 2) 
was far from linear. Between one fifth and one quarter of Compound 
networks actually showed stable, non-oscillating dynamic values of W. 
For 19 (4%) of the networks, we found evidence of aperiodicity. Four 
of these aperiodic networks passed the 0-1 test for chaos [41,42] with 
10 replicate runs giving R values>0.99. The longest repeating period we 
observed was 210 iterations. Other rare periodic oscillations present in 
less than 1% of the networks tested included period lengths of 3, 42, 
120, 140, 7, 10, 30, 5, 14, 24, 28, and 180 iterations.

Figure 10 shows three examples of the periodicity of these 
Compound networks. As shown in Figure 11A, there is no discernible 
relationship between average period length and net density (Dn). 
However, we did find a surprising relationship between the average 
period length and total density DT (determined by the total number of 
interactions, both activating and suppressing (Figure 11B). The same 
pattern was also seen when individual values of periods were plotted 
against DT (Figure 11C), but not when plotted against Dn (not shown). 
No other phenotypes showed any relationship with DT.

Figures 11B and 11C indicate that for networks with total density 
higher than about 0.4, the general pattern of period lengths is random, 
and varies from 0 to aperiodic (shown on the chart as>330). However, 
for the lower density range of DT below 0.4, there is a clear exponential 
trend for average lengths of network periods, and values do not exceed 
a period of 20 iterations (Figure 12). Oscillating network period was 
the only phenotype parameter in Compound networks that showed 
a relationship with total interactive density, regardless of the type of 

Figure 6: Experimental confirmation of the predictive utility of eq. 6 for values 
of W for Activation networks. Points represent experimental data, and the line 
is derived from values calculated according to eq. 6.

Figure 7: Fit of experimental data (points and error bars) to the theoretical 
values obtained from eq. 7 in 84 Compound networks. Open circles and solid 
line are for G0=1, and solid blue points and dashed line are for G0=4.

Figure 8: Experimental values of W as a function of Dn  (blue circles) with the 
theoretical values from eq. 8 (black line).

Figure 9: Dynamic time course behavior for a Compound network with G0=2. 
A) E=00101, five genes shown; all undergo early oscillations and then settle 
into stable behavior. B) The same network with E=10001, with dynamics of four 
of the five genes shown. Only one gene reaches a stable expression state; the 
other three oscillate continuously.
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interaction.

Oscillation amplitude

Unlike all other phenotypic parameters, the amplitude of 
oscillations for W for Compound networks shows a decreasing 
trend with increasing net density, suggesting a direct relationship 
of amplitude with gene suppression. As expected from the strong 
topological genotype effect shown in Table 1, this trend is not precise 
enough to allow for quantitative formulations, and there is a great deal 

of variation, as shown in Figure 13. It is apparent from the figure that 
all such networks with amplitude=0 (in other words, non-oscillatory, 
stable networks) Dn is ≥ 0, confirming that activation interactions are 
more closely correlated with stability than are suppressive interactions.

Proportion of stable trajectories

For Compound networks, some fraction of the N2N gene 
trajectories may be oscillating, and others will be stable. Since values 
of HG0 and W will oscillate if even one such gene trajectory oscillates, 
networks that exhibit stable values of HG0 or W have 100% stable gene 
trajectories. The proportion of stable to oscillating trajectories is not 
predictable from density and other quantitative genotype values. The 
Topological Genotype Effect for this phenotype is 0.56 (Table 1). We 

Period Length No. %
0 108 22.5
4 74 15.4
2 67 14.0

60 61 12.7
20 52 10.8
12 48 10.0
6 21 4.4

Aperiodic 19 4.0
84 5 1.0

Table 2: Distribution of Oscillating Period Lengths for W in 480 Compound 
Networks. 

Figure 10: The complex oscillatory patterns of three Compound networks. A) 
Oscillatory period=42 iterations. B) An example of a commonly seen period of 
60 iterations (present in about 13% of Compound networks). C) An aperiodic 
network, with an appearance of chaotic dynamics. This network gave a 
consistent R value>0.99 when subjected 10 times to the 0-1 test for chaos 
[41,42].

Figure 11: The relationship between oscillation period length and interactive 
densities in Compound networks. A) points are average period length at each 
value of Dn for 480 Compound networks. B) Points are the same as in A, but the 
density measure is DT, the total density of activators and suppressors. C) Points 
are the actual values of periods of individual networks (not averaged). Each 
point represents many networks. The eight points at the top (at Period=330) 
represent 19 aperiodic networks, whose minimal possible period length is 
greater than 330 iterations. In both B and C there is a demarcation at a value of 
DT=approximately 0.4, below which no networks show long periods or aperiodic 
behavior.
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found no trends for the fraction of stable gene trajectories as a function 
of any density measure (Figure 14). The figure shows that while 
some Compound networks have all of their genes stable at all initial 
conditions, indicated by the fraction of stable gene trajectories=1.0 (the 
same networks with amplitudes=0), there are no networks with mostly 
oscillatory gene trajectories. In fact, all networks have at least 55% of 
their gene trajectories showing stability under all initial conditions. 
Thus, even for Compound networks with erratic aperiodic dynamics in 
values for HG0 and W, the majority of the individual gene state trajectory 
dynamics are stable.

Discussion
The overall purpose of the investigation reported here was to 

determine whether, and under what circumstances, it might be 
possible to formulate mathematical models to fit the behavior of 
complex regulatory networks. Our strategy was to approach this goal 
by initially examining simpler networks (Activation networks), which 
lack any suppressive interactions between genes within the network. 
This proved to be a successful approach, since it allowed us to find 
several features of interacting regulatory networks that are important 
in any kind of theoretical modeling. For example, it became clear that 
precise prediction of the dynamical behavior of individual genes was 
not possible without taking into account the precise topology of the 
network genotype.

The importance of specific topology in determining phenotype 
outcome in GRNs has been observed by other investigators [31,43], 

although it has also been found that topology alone is not sufficient 
to make accurate evolutionary predictions [32]. This is consistent with 
results of Payne and Wagner [33], who proposed that form and function 
in GRNs appear to have no consistent relationship.

We confirmed the hypothesis that genotype topology plays a critical 
role in network phenotype determination by correlating the strength of 
the influence of the topological character of networks with the precision 
of quantitative formulas for prediction of phenotypic outcomes. To do 
this, we used the metric of the strength of the Topological Genotype 
Effect (TGE) in determining each of the possible phenotypes.

We observed an inverse relationship between the TGE and our 
ability to find predictive equations for several phenotypes of networks. 
For stable Activation networks with no suppressor interactions, HG0 
and W are quantitative representations of the final fixed phenotype. 
The theoretically derived equations for these integrative measures 
of network gene expression as functions of quantitative genotype 
parameters were accurate to within less than 5% error of experimental 
results for Activation network simulation runs. Gene number, activator 
density, and number of genes expressed at initial conditions were the 
quantitative input parameters used in these equations (5 and 6).

As expected, the value of TGE for all phenotypes was higher for 
Compound networks than for Activation networks. While empirical 
equations were moderately accurate for average outputs of HG0 and 
W, the phenotypic variability of Compound networks with different 
topologies prevented the prediction of outcomes for specific networks. 
The extent of the TGE in Activation networks proved to be a function of 
G0, meaning that the more genes are expressed at the initial condition, 
the less effect topology has. This seems logical, since if only one 
gene is initially activated, its precise position in the matrix is of great 
importance for gene expression trajectories. On the other extreme, 
when all genes are initially expressed, their positions in the matrix are 
of no relevance.

Some investigators treat dynamically unstable model networks as 
non-viable [14,29,38], but we chose to retain such oscillating (cycling) 
models in our analysis because of their relevance to biological GRNs, 
and because of their interesting dynamical behavior as a function of 
time.

Oscillating values of the state of expression of individual genes (Si,t) 
are common features of model GRNs [44], and have also been found in 
some biological GRNs [5]. Like others [44,45], we found that a majority 

Figure 12: An exponential relationship between the average period length and 
DT at values of DT below 0.4 for 28 Compound networks. The curve is the best 
fit (least squares fit) of the data using an exponential relationship.

Figure 13: An inverse correlation between oscillation amplitude and net 
density. The line is the best fit linear regression line.

Figure 14: No relationship between the fraction of stable gene trajectories and 
net density. This was also seen for all other measures of interaction density.
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large period lengths or aperiodicity. Our data are consistent with the 
conclusion that extremely complex dynamical behavior is a function 
of very specific patterns of interaction within dense networks. No such 
patterns were readily discernible from examination of the topology 
of the aperiodic and chaotic networks, and further elucidation of the 
mathematical basis of such behavior will require more effort.

Very complex dynamic behavior has been extensively reported in 
biological GRNs and network models, including in certain regulatory 
motifs [37], in statistical analyses [15], and in systems of differential 
equations used to model such networks [16-18]. Payne et al. [19] used 
Random Boolean Circuits [55] to explore the effect of chaotic dynamics 
on robustness and evolvability.

In addition to supporting our hypothesis regarding the potential 
to find quantitative relationships to predict model dynamics when the 
effect of topological genotype is low, we have also presented a number of 
novel findings that could be important in future theoretical and applied 
studies into gene regulatory networks. We developed four equations, 
one each for the integrated values of HG0 and W for Activation and 
Compound networks. The two equations for Activation networks 
appear to be quite accurate with respect to the experimental simulation 
data and could be considered quantitative laws governing the dynamics 
of these networks. The equations for Compound networks provide the 
best available approximation of the experimental data but could still be 
useful in modeling real-world biological networks.

The high degree of functional complexity suggested by complex 
time-course behavior of these model interactive networks has some 
interesting implications for understanding how gene regulation might 
operate in biological systems. Compared to the situation in Boolean 
models (where genes can only be on or off, and they can only activate or 
suppress other genes), biological control of gene expression is far more 
complex and nuanced.

The use of randomly generated model GRNs in “experimental” 
studies of interactive network behavior is a valuable tool in the quest 
for useful quantitative relationships that might govern real-world 
networks, at least in approximation. Elucidation of such rules is likely 
to be useful not only in further studies of evolution and robustness 
of GRNs, but also in understanding the fundamental mechanisms by 
which interactive regulatory networks play such a central role in all 
aspects of biological function.
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