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Introduction
The increased need to identify novel targets that are relevant 

to disease and chemically tractable has posed a challenge to the 
pharmaceutical industry. It is extremely difficult to identify a 
unique target specific to a certain disease and that does not have off-
target effects. The genomic era has brought with it a basic change in 
experimentation, enabling researchers to look more comprehensively 
at a biological system [1] and rekindling hope for identification of 
novel targets for disease treatment. It is estimated that the number 
of potential therapeutic molecular targets will increase from the 
approximately 1,000 currently used by the pharmaceutical industry to 
as many as 10,000 [2], after proper analysis of genomic data. However, 
this analysis of the vast amounts of genomic data available presents 
the drug discovery community with new challenges. For example, 
G-protein coupled receptors (GPCRs) are the targets commonly used
to inhibit pathological processes. These targets have high therapeutic
relevance and have been studied exhaustively in terms of basic
science. Drug discovery for these common targets, therefore, relies
on a meticulous understanding of their function. In contrast, the
novel potential targets recently identified by genome projects and
environmental sequencing are not usually as well researched. Before
the genomic era, about 100 literature references relating to each target
were published. Now, each newly identified target has approximately
ten references ascribed to it [3,4] recognized that the increased number 
of targets with the corresponding decreased amount of information
about each is ultimately generating a bottleneck in the target validation 
process. Therefore, it is clear that the cure does not lie in identifying
many targets for a particular disease but in the proper mechanistic
understanding of how genetic change causes aberrant function. Figure
1 summarizes the flow of target identification for drug discovery, from
sequence identification to exploiting the proteome.

The sequencing of the human genome [5,6] and related organisms 
represents one of the most significant and historic scientific 
accomplishments. The process of determining the sequence of DNA, 
proposed by Sanger [7], has led to the sequencing of the entire genome 
of an organism. The first finished genome to be published was of the 
Haemophilus influenza [8]. Within three years of this groundbreaking 
publication, more than 10 other genomes of model bacterial species 

like Escherichia coli [9] and Bacillus subtilis [10] and pathogens, such 
as Helicobacter pyroli [11] and Mycobacterium tuberculosis [12] were 
published. The Institute of Genomic Research (TIGR) was a substantial 
leader in the genomic field by fully sequencing the genome of the yeast 
[13]. It was a tremendous effort, utilizing 600 scientists from over 100 
laboratories and representing the largest decentralized experiment in 
modern molecular biology.
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Abstract
Remarkable technological innovations have emerged in recent years allowing for rapid and cost-effective whole 

genome direct sequencing. This generation of massive amounts of genomic data was made with the assumption that 
the better understanding of the Genomics would aid in the identification of new causes for genetic disorders, as well as 
discovering new therapeutic targets. Due to this assumption, many genomes from different organisms, including humans, 
have been sequenced, resulting in an immense amount of genetic data. However, in order to best use this data, a similar 
expansion in our ability to process and analyze the data on a large scale will be necessary. The present review focuses 
on the impact of genome sequencing projects on the identification of novel genes and proteins, with a special focus on the 
role of sequencing pathogenic genomes in potential drug development.
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Figure 1: Genome wide sequencing.
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In parallel with the human genome project, a complementary effort 
has been made to properly analyze the mouse genome [14,15]. The 
mouse genome is an important source, as the mouse serves as powerful 
model organism for bettering our understanding of human disease 
mechanisms and overall biological processes.

Advances in Genome Sequencing Technologies
Genomics has led to the implementation of a more global 

approach to biological problems, overriding the “one gene at a time” 
approach that is limited by not taking into account the full diversity 
and complexity of gene expression. The field has been forever altered 
by the development of high-throughput DNA sequence analysis. 
Development of highly automated methods of DNA sequencing in 
the 1990s considerably increased the capacity to sequence the genome 
in less time. DNA microarray technologies, on the other hand, have 
enabled the simultaneous measurements of hundreds of thousands 
of DNA molecules, as well as RNA. It has permitted the ability to 
measure the extent to which each gene in the genome is switched on 
or off in a microscopic tissue sample, allowing the construction of an 
“expression profile.” Additionally, DNA microarrays can be used to 
determine an individual’s DNA sequence at thousands or millions of 
specified locations in the genome, thereby creating a “genome profile.” 
It has also provided a powerful way to investigate the role of single or 
multiple genes along with DNA sequence variants in disease processes, 
both in individuals and in certain populations.

Bacterial genomes in the race

The pharmaceutical industries in their quest to develop new 
antibiotics have adopted these new sequencing technologies, instead 
of applying the traditional approach of random screening for new 
active molecules using simple antibiotic activity for primary selection 
followed by chemical optimization. New bioinformatics tools have been 
generated for comparative genomic analysis to better understand the 
evolutionary and phylogenetic relationships of organisms [16]. Focus 
has been laid on the comparison of a species with a small genome, such 
as Mycoplasma genitalium (469 putative genes) and a more typical 
pathogen such as H. influenzae (1703 genes), which revealed the 
existence of 233 conserved genes [17]. This study suggested that the 
“minimal genome” of at most 250 genes was important enough to be 
conserved across species. The same approach has been followed for the 
analysis of a variety of different genomes (e.g. those of pathogens, such 
as H. influenzae, Streptococcus pneumoniae, Mycoplasma pneumoniae, 
and other streptococci). The comparative analysis of the genomes of 
Chlamydia trachomatis and Chlamydophila pneumoniae has identified 
specific genes that might be responsible for the different pathologies 
seen between these two organisms [18].

In order to understand the genomic differences between pathogenic 
and non-pathogenic variants of the same species (e.g., Mycobacterium 
tuberculosis and Mycobacterium bovis), DNA-array technology can be 
used to determine differences in regions of the variant genomes with 
comparative hybridization analysis. These regions potentially contain 
genes that are likely to be of relevance for the development of new 
antibiotics and/or vaccines [19]. Other approaches have been used over 
time, however, to identify essential genes through genetic manipulation 
that affects organism survival. Often, transposons are used to inactivate 
genes by random insertion [2-25]. Genetic foot-printing using diverse 
hybridization and PCR techniques were then used to map the insertion 
sites in the genomes. Other genome-wide gene inactivation studies 
utilized homologous recombination methods [26-30]. In these studies, 

resistance markers are normally introduced into the genomes to aid 
in screening. However, marker less gene deletions represents the most 
accurate method of gene inactivation.

Such techniques are more difficult and are mainly reported in E. coli 
[31,32]. Furthermore, the observation that a gene cannot be inactivated 
is not final proof of its essentiality for the organism. The genes listed in 
table 1 are considered potentially essential for most species, which was 
based on these studies.

The increasing resistance of bacterial pathogens to present-
day antibiotics demands more innovative and efficient approaches 
towards the development of new drugs. To date, bacterial genomics 
extensively increased the rate at which novel targets are identified and 
validated. Furthermore, it is very likely that “next-generation” genomic 
technologies will further accelerate target identification and generic 
assay development. The application of quantitative structure-activity 
relationship (QSAR) techniques can then help to reduce the later 
stages of the development of antimicrobials, such as lead optimization, 
toxicology, and clinical trials. However, more effort needs to be applied 
in the improvement of existing methodology to decrease the lag-period 
between lead identification and the marketing of a new drug.

Pathogenic protozoan genomes

The resurgence of infectious diseases worldwide has been a 
major impetus in increasing research activities. The World Health 
Organization has identified African trypanosomiasis, Chagas disease, 
dengue fever, lymphatic filariasis, leishmaniasis, leprosy, malaria, 
onchocerciasis, schistosomiasis, and tuberculosis as ten major, yet 
neglected, infectious diseases. There are ongoing and intense efforts to 
control or even eradicate the organisms that cause these diseases [33]. 
Out of these diseases, four are caused by protozoan parasites (African 
trypanosomiasis, Chagas disease, leishmaniasis, and malaria), and 
account for more than 1.3 million deaths annually. Hence, more focus 
has been placed on the genomics of these parasites, as it is believed to 
be a major source for the effective translation of basic research into 
applications pertinent to disease control [34].

Leishmania [35] is a genus of protozoan pathogens that cause a 
range of diseases in humans, the result in extensive suffering and death. 
In recent years, only one compound, miltefosine, has been added to 
the list of promising anti-leishmaniasis drugs [36]. The history of 
miltefosine, an alkylphosphocholine that likely interferes with lipid 
metabolism [37], demonstrates another paradigm in the development 
of antiphrastic drugs. Miltefosine was first developed as an antitumor 
agent but turned out to be clinically ineffective. Only much later its 

Table 1: Number of potential essential genes identified in genome-wide gene 
inactivation studies.

Organism Total genes Methodology References
Escherichia Coli 4279 Transposon mutagenesis Gerdes et al., 2003

Bacillus Subtilis 4101

Plasmid	 insertion
Conditional mutants. 
Estimations derived
from literature study.

Kobayashi et al., 
2003

Haemophilus 
Influenza 1709 Transposon mutagenesis Akerley et al., 2002

Helicobacter 
Pylori 1552 Transposon mutagenesis Salama et al., 2004

Mycoplasma 
Genitalium 484 Transposon mutagenesis Hutchison et al., 

1999
Staphylococcus 
Aureus 2595 Antisense RNA expression Ji et al., 2001; For-

syth et al., 2002
Staphylococcus
Pneumonia 2043 Plasmid insertion 

mutagenesis
Thanassi et al., 
2002
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effectiveness against leishmaniasis was discovered [38,39]. With the 
recent advances in technology, the Leishmania genome was sequenced. 
The organism is diploid, with 36 chromosome pairs. Sequence analysis 
revealed that the Leishmania chromosome 1 is composed of a 257 kb 
information-rich region with 79 protein-coding genes, and contains 
an unusual gene organization. This organization is suggestive of novel 
transcription processes [40]. These new findings could potentially 
allow more drugs to be developed to treat Leishmania infections.

Targeting human genome

“A more important set of instruction books will never be found by 
human beings. When finally interpreted, the genetic messages encoded 
within our DNA molecules will provide the ultimate answers to the 
chemical underpinnings of human existence. They will not only help 
us understand how we function as healthy human beings but will also 
explain, at the chemical level, the role of genetic factors in a multitude 
of diseases such as cancer, Alzheimer’s disease and schizophrenia—
that diminish the individual lives of so many millions of people.” James 
Watson.

The Human Genome Project that has been described as the “Holy 
Grail” or the “Rosetta Stone” due to its work on deciphering the 
secrets of human life contained within the genome’s 3 billion bases. 
These bases encode for about 35,000 genes, far fewer than the expected 
100,000. The number represents only a little more than twice those of 
the genes found in a fruit fly, a mosquito, or a worm. Still, the massive 
amount of genomic data associated with the larger human genome 
indicates a considerable increase in complexity. The human genome, 
the first sequenced vertebrate genome, is around 30 times larger than 
that of the fly, worm, and mosquito, and 250 times larger than the first-
sequenced eukaryotic genome, the yeast [41].

Analysis of the completed human genome suggests that there are 
tens of thousands of genes [42,43] and at least as many proteins. Many 
of these proteins are potential targets for drug intervention to control 
human disease or injury; popular estimates are in the range of 2,000 
to 5,000 potential proteins [44]. However, drugs discovered in the 
past 100 years have only targeted approximately 500 of these proteins 
[45]. Compiling a more complete list of all potential drug targets from 
genomic analyses is a start, but is unlikely to revolutionize downstream 
research or drug development throughput. The principal value of the 
human genome sequence comes with the ability to produce drugs for 
these targets. Designing drugs with the desired physical properties and 
specificities should become an active process occurring at the very 
earliest stages of target selection, rather than a process primarily driven 
by trial and error.

Better and early development of drug targets is especially crucial 
for addressing the complexity of treating cancer. Based on literature, 
approximately 100,000 somatic mutations found in cancer genomes 
have been reported, with the first reported somatic mutation in the 
gene, HRAS. There is no single technology at present that will detect all 
the types of abnormalities (i.e., deletions, point mutations, frameshift 
mutations, copy number variation, network dynamics, and epigenetic 
changes) associated with cancer. New molecular inventions like exome 
sequencing, next-generation sequencing, microarrays, and gene chip 
analysis are beginning to uncover some key genomic regulators. Over 
the next few years, it is estimated that several hundred million more 
factors will be identified by large-scale, complete sequencing of cancer 
genomes. Many clinical trials now include genomic profiles of cancer 
patients as prognostic and diagnostic indicators. Genomic silhouettes 
are even used to monitor where and how the cancer genome has been 
affected by molecularly targeted therapies. These studies will enable 

earlier and better therapeutic interventions for cancer patients. These 
data will provide us with a detailed picture of the evolutionary processes 
that result in our most common disease, providing new insight into the 
origins and treatment of cancer. However, a comprehensive analysis 
of the cancer genome remains a daunting challenge. Mining and 
sharing of data should eventually help oncologists to better integrate 
the genotypic and phenotypic changes that occur in the many phases 
of cancer.

Conclusion
Many of the computational methods were designed to handle 

extremely long genomic sequences (e.g., LAGAN, Genome scan) 
which can be used to analyze large volumes of sequence data in a high 
throughput manner. These methods are created to compensate for the 
inability of databasesearching algorithms, such as BLAST, FASTA, 
or Smith Waterman [46-48], to handle large sequence queries. Open 
reading frame prediction algorithms, such as GRAIL or GENSCAN 
[49-55] are ~70% accurate in predicting exons from eukaryotic genomic 
sequences [56]. These algorithms, however, have more difficulty in 
determining which exons constitute one single open reading frame 
versus identifying one short single exon [57-61]. Updated lists of 
genome sequencing projects and sequence data are available at the 
Multipurpose Automated Genome Project Investigation Environment, 
National Center for Biotechnology Information and the Institute 
for Genomic Research World Wide Web sites. Just as past chemists 
systematically organized all elements in a table that represented their 
differences and similarities, the Human Genome Project will allow 
modern scientists to construct a biological periodic table relating units 
of nucleotides corresponding to their evolutionary and functional 
relationship. If we are to effectively use the fruits of genomic research, 
we must re-engineer drug discovery and development.
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