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Abstract
Myocardial diseases and atherosclerosis are widely considered to be an immune mediated process. Fcγ 

receptors (FcγRs) contribute to the regulation of immune and inflammatory responses and have been implicated in 
human cardiovascular lesions. Major cell types involved in the pathogenesis of the diseases express FcγRs and their 
ligands such as immune complexes and C-reactive protein have been shown to activate FcγRs signal pathway. This 
review summarizes recent significant progress addressing the various roles of FcγRs in the disease pathogenesis 
which comes from the studies of FcγRs deficient animal models, clinical investigations and in vitro molecular and 
cellular studies. These new findings help us appreciate the emerging role of FcγRs in cardiovascular diseases, and 
suggest FcγRs as a potential therapeutic target for the diseases. 
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Introduction
It is well established that myocardial diseases and atherosclerosis 

are inflammatory diseases of the myocardium and the wall of large-
and medium-sized arteries where both innate and adaptive immunity 
response play a pivotal role in the initiation, growth and progress of the 
lesions [1]. The receptors for the Fc region of IgG (FcγRs) are members 
of the immunoglobulin gene superfamily and are widely expressed 
in the hematopoietic system where they regulate the immune and 
inflammatory responses [2]. Increasing lines of evidence suggest that 
FcγRs are implicated in the pathogenesis of myocardial diseases and 
atherosclerosis. Systemic autoimmune diseases, including systemic 
lupus erythematosus, rheumatoid arthritis and antiphospholipid 
syndrome, are characterized by accelerated cardiovascular diseases 
partly due to the presence of autoantibodies and autoantigens, and 
the subsequent formation of immune complexes [3,4]. For example, 
several autoantibodies such as those directed against oxidized low-
density lipoprotein (ox-LDL) and heat shock proteins have been 
detected in atherosclerotic lesions [5-8]. Immune complexes may 
form between these antigens and autoantibodies and promote the 
progression of the disease via FcγRs cross-linkage and activation and 
complement activation [9]. In addition, C-reactive protein, a crucial 
mediator of cardiovascular disease, elicits a wide array of harmful 
effects in a majority of cell types involved in the disease pathogenesis, 
mostly mediated via Fcγ receptor-dependent pathways [10]. In this 
review we will summarize recent studies addressing the multifaceted 
roles of FcγRs in cardiovascular diseases. 

The Family of Fcγ Receptors 
Most Fcγ receptors are activating receptors and consist of the 

high-affinity receptor FcγRI and a family of low affinity receptors, 
including FcγRIIA, FcγRIIC, FcγRIIIA and FcγRIIIB in humans, 
and FcγRIII and FcγRIV in mice [11]. Activated FcγRs result in the 
phosphorylation of immunoreceptor tyrosine-based activating motifs 
(ITAMs), leading to the activation of the signaling molecule SYK 
and the initiation of the downstream signaling cascade. FcγRIIB 
is conserved in mice and humans and is the only known inhibitory 
FcγR which transmits inhibitory signals through an immunoreceptor 
tyrosine-based inhibitory motif (ITIM) contained in its cytoplasmic 
region [2]. Immunoreceptor signals must be approximately transduced 
and regulated to achieve effective immunity while controlling 

inflammation and autoimmunity. It is generally held that processes 
are mediated by the interplay of distinct activation and inhibitory 
receptors via ITAMs and ITIM. Crosslinking of activated FcγRs results 
in pathogen clearance by antibody-dependent cellular cytotoxicity, 
degranulation and phagocytosis, as well as the release of cytokines and 
other inflammatory mediators. FcγRIIB is coexpressed with activated 
FcγRs of varying affinities and isotype specificities on inflammatory 
effector cells such as mast cells, neutrophils, and macrophages and 
negatively regulates activating signals delivered by these receptors 
[12,13]. Thus, the family of FcγRs provides a prime example of how 
simultaneous triggering of activating and inhibitory signaling pathways 
sets thresholds for cell activation and thus generates a well-balanced 
immune response [14]. 

Although humans and mice have orthologous FcγRs and, in 
both species, most of the corresponding genes are clustered in close 
proximity to each other in syntenic regions on chromosome 1 [12], the 
human FcγR system is more complex, and the comparison of FcγRs 
between humans and mice is shown in table 1 [2,11,12]. 

Theoretical Backgrounds of FcγR System in Myocardial 
Diseases

Immunoglobulin therapy has been used for the treatment of 
primary and secondary antibody deficiency for more than 25 years. 
It is a safe preparation with no long-term side effect. Although the 
mode of action remains unknown, the drug is thought to have potent 
immunomodulating and anti-inflammatory actions. Recently we have 
found that immunoglobulin treatment is beneficial upon myocardial 
diseases. In basic aspects, immunoglobulin therapy for experimental 
myocarditis has been found to be effective not only by the Fab portion 
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for anti-pathogen effects but by the Fc portion for anti-inflammatory 
effects. Immunohistochemical analysis showed that therapy with intact 
immunoglobulin, but not F(ab’)2 fragments, suppressed dendritic cell 
(DC) expression. An in vitro study showed that intact immunoglobulin, 
but not F(ab’)2 Fragments, suppressed the lipopolysaccharide-induced 
interleukin-1β production associated with the down regulation of CD32 
antigen (Fcγ receptor II) expression. Thus, intact immunoglobulin 
therapy markedly suppressed myocarditis as a result of Fc receptor-
mediated anti-inflammatory action, and the suppression of the disease 
was associated with the suppression of DCs, ie, the suppression of the 
initial antigen-priming process in experimental giant cell myocarditis 
[15]. Altogether, FcγRIIB-mediated inhibitory action is highly involved 
[16]. In clinical aspects, the effect of immunoglobulin administration 
for fulminant myocarditis and acute dilated cardiomyopathy was 
investigated. Immunoglobulin administration was very useful for 
the treatment of such patients. That is, the drug showed the potential 
beneficial effects against active myocardial damage with myocardial 
dysfunction, and the left ventricular ejection fraction of the patients 
was recovered by the treatment associated with reduced cytokine 
expressions. Accordingly, immunoglobulin treatment for patients with 
heart failure appears to be novel and effective treatment strategies in 
view of anti-inflammatory, anti-cytokine and anti-pathogen effects.

Atherogenic Effects of Fcγ Receptors 
FcγRs are expressed not only by many immune cells such as 

dendritic cells, macrophages, monocytes, neutrophils, mast cells and B 
cells [2,17], but also by platelet, endothelial cells and vascular smooth 
muscle cells [2,18,19]. 

Macrophage-derived foam cells are important constituents of 
atheromatous lesions. Treatment of monocytes with LDL immune 
complexes containing intact anti-LDL could dramatically increase the 
ability of these cells to subsequently bind and take up LDL, whereas 
aggregated LDL or immune complexes of LDL prepared with F(ab’)2 
fragments of anti-LDL had no significant effect [20]. These results 
suggest that the formation and interaction of immune complexes of 
LDL with FcγRs on monocytic cells is involved in the generation of 
macrophage-derived foam cells. Indeed, foam cell development of 
monocytes was enhanced by targeting LDL aggregates to FcγRI or 
FcγRII, and this was accompanied by an apparent impairment of LDL 
degradation through using bispecific antibodies consisting of anti-LDL 
monoclonal antibodies conjugated to anti-Fcγ receptor monoclonal 
antibodies [21]. Further study confirmed that the uptake of LDL 
immune complexes by macrophages predominantly through FcγRI led 
to the transformation of macrophages into foam cells [22]. In addition, 
HDL inhibits the uptake of modified LDL by macrophages, likely 
through interfering with CD36 and FcγRI expression [23]. Notably, 
enhanced CD36 expression in monocytes has been proposed to link 
autoimmunity and atherosclerosis [24]. 

Human macrophages are efficiently activated by LDL-IC 

mediated by FcγR, as reflected by the release of IL-1β and TNFα and 
the accumulation of oxygen active radicals [25]. A subsequent study 
showed that these effects were due to FcγRI mediated activation 
of the mitogen-activated protein (MAP) kinase signaling pathway, 
thus leading to macrophage activation [26]. Moreover, LDL-ICs 
localized in atherosclerotic lesions induce macrophage MMP-1 
secretion by cross-linking FcγRI and FcγRII and stimulating a protein 
kinase C-dependent MAP kinase pathway [27]. The survival and 
proliferation of macrophages play a critical role in the pathogenesis 
of vascular inflammation [28-30]. OxLDL-IgG ICs promote the 
survival of monocytes by cross-linking FcγRI with ensuing activation 
of Akt-dependent survival signaling [31]. On the other hand, Luo 
et al. recently reported that FcγR activation through cross-linking 
stimulated macrophage proliferation via the activation of the ERK1/2 
signaling pathway and the subsequent transcriptional activation of 
cyclin D1 expression [32]. These results imply that activation of FcγR 
on macrophages may exert a mitogenic effect similar to growth factors 
and consequently stimulate macrophage proliferation. 

Endothelial cells also express FcγRs and are crucially involved in 
atherosclerosis [18,33]. Sumiyoshi et al. were the first to show that 
the deletion of the FcR γ chain preserves the endothelial function and 
attenuates oxidative stress induced by hypercholesterolaemia in FcR 
γ-/- (knockout) mice [34]. FcγR also mediated monocyte adhesion to 
oxLDL-IC deposited on endothelium and the subsequent release of 
chemokine [35]. Thus, the interaction between FcγRs and oxLDL-
IC may be another mechanism for vascular endothelial cell injury 
that could contribute to the progression of atherosclerosis. A recent 
study demonstrated that eNOS antagonism by CRP or immune 
complex is mediated by the coupling of FcγRI to FcγRIIB and the 
subsequent activation of Src kinase and SH2 domain-containing 
instills 5’-phosphatase 1. Therefore, FcγRI and FcγRIIB may constitute 
novel therapeutic targets for preventing endothelial dysfunction in 
inflammatory or immune complex-mediated conditions [36]. 

Increased platelet expression of FcγRIIa may contribute to greater 
platelet reactivity and has been associated with a greater risk of 
subsequent cardiovascular events [37,38]. IFNγ selectively upregulated 
the expression of FcγRIIa by cells exhibiting characteristics of 
megakaryocytes [39]. Konishi et al. demonstrated that FcγRs played a 
pivotal role in the initiation and generation of neointimal hyperplasia 
after balloon injury in mice deficient in FcγRs through the activation 
of platelets by collagen [40]. They further confirmed that collagen-
induced activation of platelets through FcγRs aggravated the extension 
of myocardial ischemia-reperfusion injury [41]. 

Potential Role of Fcγ Recepotrs in Atherosclerosis 
FcγRs have been detected in human atherosclerotic lesions using 

immunocytochemical techniques [10], which suggests a potential 
role for Fcγ receptors in the formation of arterial lesions and adds 

Mouse Human
FcγR FcγRI FcγRIIRB FcγRIII FcγRIV FcγRIA FcγRIIA FcγRIIB FcγRIIC FcγRIII A FcγRIIIB

Signalling pathways ITAM FcR-γ ITAM ITAM FcR-γ ITAM FcR-γ ITAM FcR-γ ITAM ITAM ITAM ITAM FcR-γ
affinity High Low Low Low High Low Low Low Low Low

monocytes/macrophages + + + + + + + − + −
Neutrophils + + + + + + + − − +

Dentritic cells + + + − + + + − + −
B cells − + − − − − + − − −

Mast cells − − − − − − + − − +

Table 1: Comparison of FcγR between humans and mice.
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further support to the hypothesis that FcγRs engage immune 
complexes during atherogenesis. Indeed, immunoglobulin treatment 
reduced atherosclerosis in apoE knockout mice [42,43] and the anti-
atherosclerotic effects of immunoglobulin have been attributed to FcγR 
mediated anti-inflammatory and immunomodulating actions [43]. 

A number of in vivo studies in FcγR genetically altered mice 
have been reported. FcγR deficiency conferred the protection against 
the development of atherosclerosis in double-knockout mice which 
were derived from crossing apolipoprotein E-deficient mice (apoE-

/-) with γ chain-deficient mice-/- [44]. In particular, apoE-/-γ-/- mice 
demonstrated a reduced size of atherosclerotic lesions along the aorta 
compared with their corresponding apoE-/- controls. Furthermore, 
the macrophage and T-cell content, the expression of monocyte 
chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 
(ICAM-1), RANTES (regulated on activated normal T-cell expressed 
and secreted) and the activation of nuclear factor-κB (NF-κB) in aortic 
lesions from apoE-/-γ-/- mice were all significantly reduced compared 
to apoE-/- mice. Interestingly, the FcγRI and FcγRIII of apoE-/-γ-/- mice 
were not functional, while the FcγRIIB expression was upregulated in 
the aorta. Thus, in addition to the deficiency of activating FcγRI and 
FcγRIIIA, the upregulation of inhibitory FcγRIIB might provide an 
alternative explanation for the atheroprotection. Zhao et al. further 
evaluated the role of the inhibitory FcγRIIB in atherosclerosis in a 
hypercholesterolemic LDLR deficient mice model transplanted with 
FcγRIIB deficient bone marrow cells [45]. They observed that the 
plaque area in the descending aorta was significantly larger in mice 
transplanted with FcγRIIB-deficient bone marrow cells than in mice 
transplanted with control normal bone marrow cells. Therefore, it 
appears that FcγRIIB deficiency might promote atherogenesis by 
inducing an imbalance of stimulatory and inhibitory immune cells. A 
very recent study reported that male apoE-/- FcγRIIB-/- mice developed 
exacerbated atherosclerosis that was independent of lipid levels, and 
was characterized by increased antibody titers to modified LDL and 
pro-inflammatory cytokines in the aorta [46]. Moreover, recently Kelly 
et al. found that arterial lesion formation was dramatically decreased 
at a relatively later stage of atherogenesis in FcγRIII-/- LDLR-/- mice 
compared with LDLR-/- controls, which was associated with increased 
production of IL-10 by an expansion of CD4+ T-cells and upregulated 
IgG1 and IgG2c titers to oxLDL [47]. Collectively, these new results 
suggest that antibodies against atherosclerosis-associated antigens 
partially protect against atherosclerosis by conveying inhibitory signals 
through the FcγRIIb that downregulates pro-inflammatory signaling 
via other immune receptors. 

Accumulating evidence based on epidemiological studies has 
shown that FcγRs are associated with a variety of atherosclerotic and 
thrombotic disorders. The association between FcγRs polymorphisms 
and coronary atherosclerosis (CAD) was firstly reported by Gavasso et al. 
who genotyped FcγRIIA-R/H131, FcγRIIIB-Na1/Na2 and FcγRIIIA-F/
V158 polymorphisms in 882 patients undergoing diagnostic coronary 
angiography, and found that FcγRIIIA-F/V158 polymorphisms were 
linked to a strong protective effect because patients homozygous for 
the FcγRIIIA-V158 allele had a significantly reduced risk of CAD 
[48]. Later studies confirmed that FcγRIIA-R/H131 polymorphisms 
might not be an independent risk indicator of coronary artery disease, 
including patients with acute coronary syndrome (ACS) [49-53]. 
However, a recent study demonstrated a genetic association of FcγRIIa 
R/R131 genotype with a more frequent occurrence of ACS [54]. In 
addition, the FcγRIIA-R/H131 genotype was shown to be associated 
with endothelial dysfunction, advanced peripheral atherosclerosis and 
carotid artery intima-media thickness [55-57]. 

Macrophages play a crucial role in the development of vascular 
lesions in atherogenesis. Soluble FcγRIIIa derived from macrophages 
(S FcrR IIIaMΦ) is present in the plasma. The level of sFcγRIIIaMΦ 

was associated with the severity of coronary atherosclerosis in CAD 
patients and positively correlated with LDL-cholesterol to HDL-
cholesterol ratios, but negatively correlated with HDL-cholesterol 
level [58]. Moreover, sFcγRIIIaMΦ level in the plasma was correlated 
with carotid maximum intima-media thickness and a number of risk 
factors for atherosclerosis: such as aging, current smoking, diabetes, 
hypertension, LDL-cholesterol to HDL-cholesterol ratios, and family 
history of atherosclerotic diseases in subjects undergoing an annual 
medical checkup [59]. These findings indicate that the macrophages 
are activated during the process of atherosclerosis, and sFcγRIIIaMΦ 

might serve as a novel biomarker for atherosclerosis. Pfeiffer et al. 
performed quantitative flow cytometry to measure the expression of 
FcγRI and FcγRIIA on peripheral monocytes in patients with severe 
atherosclerosis, and found that the expression of FcγRIIA on peripheral 
monocytes was significantly decreased in patients with clinical 
atherosclerosis compared to control subjects and it was positively 
correlated with serum HDL-cholesterol levels [60]. Base on these data, 
the expression of FcγRIIA may be proposed as a marker for assessing 
relative risk of atherosclerotic disease. 

Collagen-mediated platelet activation contributes significantly to 
coronary and cerebrovascular thrombus formation associated with 
atherosclerotic plaque destabilization. Both collagen and FcγRIIA 
crosslinking have been shown to activate platelets via tyrosine kinase 
Syk signaling pathway [61]. Calverley et al. showed that the expression 
of FcγRIIA on platelet surface was increased in patients with an acute 
coronary or cerebrovascular event, and patients with diabetes mellitus 
or uremia [37,38]. Therefore, increased platelet FcγRIIA expression 
may also contribute to increased risk of atherothrombotic events. 

Fcγ Receptors and C-Reactive Protein 
Although the binding of C-reactive protein to FcγRs is still under 

debate [62-64], a research group has recently provided the quantitative 
characterization of C-reactive protein binding to FcγRs by using 
ultrasensitive confocal imaging analysis [65-67]. Another study also 
presented structural and functional evidence for the involvement of 
pentraxins, including serum amyloid P component and C-reactive 
protein, in the activation of FcγRs [68]. Mineo et al. [69] examined the 
mechanisms of CRP actions on endothelium by testing the hypothesis 
that CRP attenuates endothelial NO synthase (eNOS) activation 
in vitro. The investigators found that CRP-induced declines in NO 
production promote monocyte adhesion to endothelium. They further 
investigated the role of Fcγ receptors, which display high affinity for 
CRP and modulate CRP actions. They found that, in FcγRIIB+/+ mice, 
CRP blunts acetylcholine-induced increases in carotid artery vascular 
conductance, and that, in contrast, CRP enhances acetylcholine 
responses in FcγRIIB-/- mice. They concluded that FcγRIIB mediates 
CRP inhibition of eNOS. 

At first glance their results appear to be contradictory to previous 
reports by our own group [15,16] by Gill et al. [70] In our study, not 
only FcγRIIB-mediated inhibitory effect on experimental autoimmune 
myocarditis in rats [15] but FcγRIIB-mediated antiatherosclerotic 
effect in apolipoprotein E-deficient mice [16] were demonstrated, 
using immunoglobulin preparations. Gill et al. [70] demonstrated 
the targeting effect of immunoglobulin on adhesion molecules using 
ischemia reperfusion model in cats, suggesting the down regulation of 
adhesion molecules via Fc receptors. 
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The fact that FcγRIIB mediates CRP inhibition of eNOS, resulting 
in endothelial dysfunction, is not necessarily in contradiction to 
aforementioned studies from different groups. The precise effect of 
FcγRIIB on cardiovascular inflammatory cascades may depend on 
experimental models. Such opposite activatory and inhibitory actions 
of FcγRIIB against inflammation may occur depending on the dose 
used and the experimental conditions. In fact, there are FcγRIIA, an 
activatory receptor, and FcγRIIB, an inhibitory receptor in humans, 
but only FcγRIIB has been identified in mice (Table 1).

Mineo et al. also explored the fact that FcγRIIB is expressed 
in human endothelial cells and in mouse endothelium. It is well 
known that CRP levels are strongly correlated with increased risk 
for cardiovascular inflammatory diseases [71,72]. Taken together, 
they proposed a CRP-modulating novel therapy by FcγRIIB for 
preventing cardiovascular complications in multiple inflammatory 
and autoimmune disorders. While there is an ongoing debate whether 
CRP participates actively in atherogenesis or is merely an innocent 
bystander, growing amounts of data have shown that CRP elicits a 
proinflammatory and proatherogenic role, ranging from fatty streak 
formation to clinical events, mostly mediated via FcγR-dependent 
pathways [10,73]. 

Several studies have indicated that C-reactive protein binds to 
FcγRI and FcγRII in monocytes [74-76]. C-reactive protein stimulates 
the expression of MMP-1 [77], MMP-9 [78], receptor for advanced 
glycation end products (RAGE) and its inflammatory ligand AGE [79], 
decreases interleukin-10 secretion [80], induces high-mobility group 
box-1 protein release [81] through FcγRs in monocytes/macrophages. 
C-reactive protein also promotes macrophage colony-stimulating 
factor release [82], which promotes macrophage proliferation, and 
CC chemokine receptor 2 expression via FcγRs [83], leading to the 
accumulation of monocytes in the atherogenic arterial wall. Moreover, 
C-reactive protein promotes oxidized LDL uptake via FcγRs which 
contribute to foam cell formation in vitro and in vivo [84,85]. 

C-reactive protein binds and interacts with FcγRI and FcγRII in 
endothelial cells [86], which induces endothelial cell apoptosis [78], 
promotes monocyte-endothelial cell adhesion [18], inhibits eNOS 
activity [69], and uncouples eNOS [87]. FcγRs also mediates C-reactive 
protein-induced reactive oxygen species generation and tissue factor 
expression in vitro and in vivo [19,88,89]. Notably, a recent study found 
that exaggerated neointima formation in human C-reactive protein 
transgenic mice depended on the presence of FcγRI [90]. 

Summary
Immune responses participate in every phase of myocardial 

diseases and atherosclerosis. FcγRs play crucial role in regulating a 
multitude of innate and adaptive immune responses. Findings obtained 
in FcγR knockout mouse models have been invaluable to decipher the 
role of FcγRs in the disease pathogenesis. Nevertheless, due to the 
differences of FcγRs in both species, the future challenge is to develop 
novel humanized models to elucidate the pathophysiological role of the 
different classes of human FcγRs. 

Undoubtedly, a deeper understanding of the role of FcγRs will help 
design new strategy for the prevention and treatment of cardiovascular 
diseases, widely used for treating cardiovascular diseases, inhibit 
FcγRs signaling by disrupting membrane rafts to decrease the release 
of inflammatory mediators by monocyte/macrophage [91]. Therefore, 
targeting FcγRs will open new opportunities for the prevention and 
therapy, although the development and application of intravenous 

immunoglobulin, engineered Fcγ fragments, monoclonal anti-FcγR 
antibodies in vivo presents formidable technical challenges. 
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