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Introduction
Psoriasis is a complex immune-mediated chronic skin disease 

affecting approximately 2% of the worldwide population [1]. This disease 
is characterized by the recurrent apparition of erythematous plaques 
often covered by silvery scales. These lesions have several histological 
hallmarks, including epidermal hyperplasia, infiltration of leukocytes 
and a highly developed vascular network composed of dilated and 
prominent blood vessels [2]. There have been major advances in our 
understanding of psoriasis pathogenesis in recent years, particularly 
surrounding the immunological and genetic components [3].

A complex interplay between cells from the skin and the immune 
system leads to chronic inflammation within the skin [4,5]. The 
undeniable importance of an abnormal T lymphocytes CD4+ activity 
within skin lesions was demonstrated by several murine models, as well 
as the mechanisms of action for several treatments like cyclosporine 
[6-8]. The formation and perpetuation of psoriatic plaques result from 
an imbalance between pro-inflammatory mediators that promote 
the infiltration of leukocytes and the proliferation of keratinocytes. 
Moreover, links between genetic predisposition and the inflammatory 
activity in this disease are becoming clearer as many susceptibility loci 
identified concern either T cell’s activation or differentiation [1].

On the other hand, vascular alterations observed in lesions are now 

considered to be an important feature of the disease. Indeed, they would 
not only be a consequence of the disease, but in fact a key component 
as it would promote skin inflammation through recruitment of 
leukocytes. An increased angiogenesis caused by psoriatic skin cells 
and the activation of endothelial cells through pro-inflammatory 
cytokines therefore form the bridge between the altered epidermis and 
the immunological component of the disease. This review presents 
evidences of both the importance of angiogenesis in the pathogenesis 
of psoriasis and its clinical implications.

Vascular Alterations
The size of capillaries within psoriatic lesions has been demonstrated 

to be higher than in normal skin or even uninvolved psoriatic skin [9,10]. 
Many studies confirm that those capillaries are wide, dilated, tortuous 
and leaky [9,10]. These alterations would be more important within the 
papillary dermis than the upper reticular dermis [11]. Whether these 
vascular alterations precede or succeed epidermal alterations is unclear 
because contradictory results were published [12,13]. However, such 
alterations are an early event resulting from the expansion of the 
existing blood vessels, not from sprouting angiogenesis [10,14].
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Abstract
Psoriasis is a complex multisystemic skin disease characterized by the recurrent apparition of erythematous plaques 

often covered by silvery scales. In recent years, the importance attributed to angiogenesis in psoriasis by the scientific 
community has grown significantly. The vascular network found within these lesions is highly altered, especially in 
the papillary dermis which is infiltrated by a large number of tortuous and dilated capillaries. Also, endothelial cells 
composing these vessels are activated and express many adhesion molecules promoting leukocyte recruitment (ICAM-
1, VCAM-1, Thy-1, E- and P-selectin). Thus, this pathological angiogenesis is not a mere consequence of the disease, 
but a key component promoting leukocyte accumulation, inflammation and therefore, skin lesions. This review presents 
the current understanding and the clinical implications of angiogenesis in psoriasis. Psoriatic skin cells, particularly 
keratinocytes, promote the expansion of the vascular network through the secretion of pro-angiogenic factors such 
as VEGF and angiopoietins. Moreover, pro-inflammatory cytokines such as TNF-α, which exert pro-angiogenic action 
as well as activation of endothelial cells, also contribute to this process. It was demonstrated by in vivo models that 
angiogenesis, activation of vascular endothelium, inflammation and skin lesions are all closely related in psoriasis. 
Indeed, angiogenesis promoted by VEGF-secreting keratinocytes leads to local inflammation and skin lesions mimicking 
psoriasis. From a clinical perspective, most psoriatic treatments have direct, or at least indirect, anti-angiogenic impact, 
suggesting that their clinical efficacy might be partly explained by these properties. Altogether, these findings identify 
angiogenesis and the activation of endothelial cells as novel pharmacological targets against psoriasis.
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Angiogenesis in psoriasis

Angiogenesis in psoriasis is caused by high local concentration 
of vascular endothelial growth factor (VEGF), the VEFG121 isoform 
being predominant [14-16]. Surprisingly, this isoform is also found 
in higher concentration within uninvolved skin, as compared to skin 
from healthy donors [17]. Interestingly, this particular isoform has 
a lower mitogenic potency on endothelial cells than other isoforms 
like VEGF165 [18]. Also, VEGF121 causes an extensive vasodilation and 
increased permeability of existing vessels, but not the sprouting of new 
vessels [19]. Both these descriptions correspond to the observations 
made of blood vessels within psoriatic lesions, supporting the finding 
that VEGF121 is the predominant isoform, and might be the main 
promoter of angiogenesis in psoriatic scales.

The source of VEGF in psoriatic lesions is keratinocytes [15]. A 
wide variety of factors contribute to this pathologically increased 
secretion by keratinocytes, from genetic predispositions to pro-
inflammatory cytokines secreted by leukocytes. For instance, genetic 
studies have associated several VEGF SNPs to early-onset psoriasis 
[−2578(C/A), −460(C/T) and +405(C/G)] [20, 21]. Young et al. found 
that the production of VEGF by peripheral blood mononuclear cells 
depended on the genotype, whereas production by keratinocytes did 
not [22]. Aside from genetic predispositions, many factors found in high 
concentration within scales, such as epidermal growth factor (EGF), 
transforming growth factor- β1 (TGF-β1) and tumor necrosis factor- α 
(TNF-α), contribute to the high concentration of VEGF by promoting 
its secretion [23]. Up regulation of VEGF by pro-inflammatory 
cytokines could explain the expansion of the vascular network 
following the injection of activated immunocytes within the skin of 
xenotransplantation animal model (severe combined immunodeficient 
mouse: human skin chimeric) [24]. More recently, it was found that 
the vasoactive intestinal peptide can stimulate VEGF production by 
keratinocytes, and that this capacity is enhanced by pro-inflammatory 
cytokines found in psoriasis, such as TNF-α and interferon-γ (IFN-γ) 
[25]. This is particularly interesting considering that these cytokines 
are key components in the inflammatory reaction occurring within 
scales, and also considering the growing importance attributed to 
neuropeptides in the pathogenesis of psoriasis [26]. Indeed, the 
promotion of VEGF secretion, and thus angiogenesis, would be linking 
both neuronal contribution and pro-inflammatory cytokines together, 
making angiogenesis a central process in the disease. 

To investigate the role of VEGF overexpression by keratinocytes, 
Detmar et al. developed a transgenic mice model in which basal 
epidermal keratinocytes express constitutively VEGF (K14-VEGF 
transgenic mice) [27]. They observed an extended vascular network, 
as well as increased rolling and adherence of leukocytes on endothelial 
cells. These mice developed an inflammatory skin condition mimicking 
psoriasis both by its phenotype and the immunological mediators 

secreted [28,29]. This model gave several important insights into the role 
of angiogenesis in the disease, and also potential mechanism causing it. 
Indeed, secretion of VEGF by keratinocytes was enough to significantly 
alter angiogenesis in skin. Moreover, it resulted in the activation of 
endothelial cells, leading to persistent inflammation within the skin. 
Considering the high similitude between inflammations within this 
transgenic model and the one observed in psoriasis, the overexpression 
of VEGF by keratinocytes probably has a cornerstone function in the 
disease. Identifying the mechanisms responsible for VEGF secretion in 
psoriatic scales is therefore crucial.

Even though VEGF has been demonstrated to be important 
in the pathological angiogenesis observed in psoriasis, several 
other less studied factors also seem to contribute significantly: 
angiopoietins, hypoxia-inducible factors (HIF-1α, -2α, et -3α) and 
nitric oxide synthases (iNOS, eNOS and nNOS) [23,30,31]. Recently, 
polymorphisms of eNOS have been associated with psoriasis, although 
other independent studies are necessary to confirm this finding [32].

The overexpression of Tie2 in involved psoriatic skin, a receptor 
for angiopoietins Ang-1 and -2,  led to the conception of an interesting 
transgenic mice model led to the conception of an interesting 
transgenic mice model [33]. These mice, which have both endothelial 
cells and keratinocytes expressing Tie2, develop psoriasis-like 
lesions that were characterized by hypervascularization, epidermal 
hyperplasia and leukocytes accumulation [33]. More importantly, 
these pathological features could be partially reversed by treating the 
mice with cyclosporine, an immunosuppressive drug used against 
psoriasis. It was later demonstrated that the overexpression of Tie2 by 
keratinocytes, not by endothelial cells, is responsible for the apparition 
of the psoriasis-like lesions [34]. This is somewhat surprising because 
the expression of Tie2 by either endothelial cell or keratinocytes 
resulted in increased angiogenesis, but lesions were only present when 
keratinocytes expressed Tie2. Another difference between the two 
is that only keratinocyte-Tie2 mice had an increased level of VEGF, 
once again suggesting that VEGF is a cornerstone in the pathogenesis 
of psoriasis. Regarding the inflammatory reaction occurring in these 
mice, it was found that the secretion of several Th-1 and -17 cytokines 
implicated in psoriasis immunogenesis was increased in this model, and 
they were once again downregulated following cyclosporine treatment.

Endothelial cells contribution to inflammation

Endothelial cells plays an essential role in skin inflammation, which 
is the recruitment of leukocytes [35]. Indeed, the expression of adhesion 
molecules and the secretion of chemokines by activated endothelial cells 
is a crucial step required for leukocyte migration towards inflammation 
sites [35]. As presented in table 1, many adhesion molecules involved 
in this process are overexpressed by endothelial cells within psoriatic 
lesions: intercellular adhesion molecule-1 (ICAM-1), vascular cell 
adhesion molecule-1 (VCAM-1), Thy-1, E- and P-selectin [36-40]. 

Functions Main ligands References
ICAM-1
  (CD54) Leukocyte adhesion, facilitates leukocyte transmigration LFA-1 and Mac-1 [36, 64, 80-82]

VCAM-1
  (CD106) Leukocyte adhesion VLA-4 [36, 80, 83]

Thy-1
  (CD90) Leukocyte adhesion, secretion of IL-8 and MMP-9 by neutrophils Mac-1 [40]

E-selectin
(CD62E) Rolling of leukocytes on blood vessels Sialyl LewisA and Sialyl LewisX [36, 38, 82, 83]

P-selectin
(CD62P) Rolling of leukocytes on blood vessels PSGL-1 [36]

Table 1: Adhesion molecules expressed by endothelial cells in psoriasis
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The expression of most of these molecules can be induced through the 
activation of endothelial cells by various pro-inflammatory cytokines 
such as TNF-α, however the exact mechanisms involved in psoriasis 
are not fully known [36].

An interesting example is Thy-1 (CD90), a counterreceptor of 
Mac-1 expressed by polymorphonuclear leukocytes (PMN) [41]. Its 
expression is up regulated by interleukin-1β (IL-1β) and TNF-α, both 
of which are overproduced in psoriasis [42-44]. Thy-1 is over expressed 
by dermal endothelial cells of psoriatic scales [40]. Interestingly, 
psoriatic PMNs also have a higher adhesion to Thy-1 than healthy 
PMNs. Although ICAM-1 is also a counter receptor of Mac-1, this 
increased adherence is specific to Thy-1. Following binding of Thy-1/
Mac-1, neutrophils secrete IL-8 and MMP-9, thus attracting even more 
PMNs and allowing extracellular matrix degradation to facilitate their 
migration within tissue [45]. These studies suggest that the binding of 
Mac-1 to Thy-1 facilitates PMNs migration to skin lesions, therefore 
this binding could be very important in psoriasis.

Clinical significance of angiogenesis in psoriasis

Skin vascular parameters can be assessed in vivo by non-invasive 
techniques [23]. Some researchers have therefore sought to demonstrate 
the correlation between hypervascularization and the patient`s state of 
disease. For instance, Rosina et al. observed a significant reduction of 
capillaries per mm2 and a reduction in their diameter following 30 days 
of treatment with topical calcipotriol and betamethasone dipropionate 
[46]. Those vascular parameters correlated with psoriasis area and 
severity index (PASI) score.

VEGF could also be a biomarker of the disease. Indeed, VEGF 
was found in higher concentration in serum of psoriatic patients in 
comparison to healthy patients [47,48]. There is a correlation between 
VEGF concentrations and PASI scores both before and after treatments 
with psoralen–ultraviolet A (PUVA)  and acitretin [47]. Topical 
treatments for 14 days with 5% salicyl ointment for desquamation and 
then with 0.3% dithranol ointment also reduced VEGF concentrations 
in psoriatic patients [48]. These treatments having a positive impact 
on dermis microcirculation within scales are not an exception. In fact, 
most psoriatic treatments have demonstrated influence on the vascular 
network.

Anti-psoriatic drugs improving vascular alterations

Most clinically used treatments for psoriasis have anti-angiogenic 
proprieties, even though they do not target it specifically. The table 
2 presents psoriatic treatments with such proprieties. A very good 
example is anti-TNF-α treatments, which were a major breakthrough 
in the clinical management of psoriasis. TNF-α is a pro-inflammatory 
cytokine of major importance in the pathogenesis of psoriasis. It has 
pleiotropic effects on a vast number of cells, including the promotion 
of angiogenesis [49]. It also has a role in the induction of adhesion 
molecules in psoriasis, as discussed earlier [36]. Therefore, anti-TNF-α 
could have anti-angiogenic proprieties in psoriatic patients, which 
could partly explain their clinical efficacy.

It was demonstrated in a small prospective study that infliximab 
therapy in combination with methotrexate had impact on the vascular 
network of skin [50]. The authors found a reduced number of blood 
vessels in the dermis. Also, the expressions of several adhesion 
molecules within involved skin (ICAM-1, VCAM-1 and E-selectin) 
were reduced after 4 weeks of treatment. Several studies were able 
to associate Tie2 receptor and angiopoietins to TNF-α-induced 
angiogenesis in other related pathologies such as rheumatoid arthritis 

[51,52]. Markham et al. were able to demonstrate that patients treated 
with infliximab have a reduced expression of Ang1 and Tie2 [53]. 
Moreover, immunohistochemical staining revealed lower presence of 
Ang2, VEGF, Tie2 and TNF-α within scales after 12 weeks of treatment. 
Similar studies regarding the impact of etanercept on microcirculation 
of psoriatic were also conducted [54,55]. It was found to decrease 
angiogenesis and promote the regression of already altered networks. 
Altogether, these studies demonstrate the importance of TNF-α in the 
pathological angiogenesis occurring in psoriasis, and suggest clinical 
efficacy of anti-TNF-α drugs might be linked to the regression of the 
vascular network.

Leukocytes accumulated within scales, which are crucial in the 
pathogenesis of psoriasis, necessarily transited through blood vessel 
walls. Therefore, leukocytes recruitment by adhesion molecules 
is an early event in the formation of lesions, making it an attractive 
pharmacological target. Efalizumab, a recombinant humanized 
monoclonal antibody that binds to CD11a, thus blocking LFA-1/ICAM-
1 interaction, was used to treat psoriasis (withdrawn from the market 
in 2009 for serious side effects) [56]. Its clinical efficacy demonstrated 
the therapeutic potential of a pharmacological strategy targeting the 
inhibition of leukocytes recruitments, although its efficacy can also be 
partly explained by the inhibition of T cells interaction with dendritic 
cells [1]. Another way to achieve this pharmacological goal would be to 
suppress the expression of adhesion molecules by endothelial cells. A 
better understanding of the mechanisms promoting these expressions 
by endothelial cells in psoriasis is necessary, although TNF-α seems 
very important in this process. As mentioned before, this could also 
contribute to the clinical efficacy of anti-TNF-α agents [57].

The expression of VEGF by keratinocytes in monoculture is 
downregulated by retinoid, suggesting a similar action in vivo [58]. 
Furthermore, it was demonstrated in a pharmacogenomic study 
that the −460(C/T) polymorphism of VEGF have predicting values 
for treatment with acitretin [22]. It means that the clinical efficacy 
of acitretin is at least partly due to its inhibiting activity on VEGF 
expression, because VEGF polymorphisms could not affect acitretin 
efficacy if that was not the case. These findings support that VEGF 
and angiogenesis contribute to the psoriasis pathogenesis and have a 
potential as a pharmacological target. 

Vitamin D3 analogues also have recognized anti-angiogenic effect. 
Indeed, they would have an antiproliferative activity on endothelial 
cells, although they would be more potent to inhibit it on tumor-derived 
cells [59]. Also, they inhibit VEGF-induced angiogenesis in vitro and 
have a demonstrated anti-angiogenic effect in vivo [60, 61]. Most of 
these studies focus on oncology, but considering the importance of 
angiogenesis (and VEGF-induced angiogenesis) in psoriasis, it is likely 
that topical vitamin D analogues exert this effect on lesions too, and 
that it contributes to their efficacy. 

Methotrexate was first used for its effects on keratinocytes such as 
inducing cellular differentiation in vitro [62]. Low dose methotrexate 
also exerts anti-proliferative effects on endothelial cells [63]. It was later 
suggested that the efficacy of low dose methotrexate resided in its anti-
inflammatory action on T lymphocytes. This hypothesis remains, but 
the mechanism explaining this effect is very pertinent to this review. 
Indeed, methotrexate inhibits the expression of adhesion molecules by 
both T lymphocytes and endothelial cells [64-66]. It demonstrates that 
although angiogenesis by itself is important, the expression of adhesion 
molecules by endothelial cells is a crucial step in the recruitment of 
leukocytes, and therefore the perpetuation of the skin inflammation.

The immunosuppressive action of cyclosporine is also believed 
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to yield its clinical efficacy. However, it also has an impact on skin 
microcirculation of psoriatic lesion [67]. It is interesting to note that 
in one small scale study, microcirculation parameters and clinical 
outcomes seem to be closely related. Also, as it was the case for vitamin 
D analogues, cyclosporine inhibits VEGF-induced angiogensis [68].

Even phototherapy exerts anti-angiogenic effects. In vitro, it 
reduces endothelial cells proliferation and promotes apoptosis [69]. 
Whether these effects also apply in vivo is unclear. However, it was 
observed in patients that PUVA and narrowband ultraviolet B (nUVB) 
therapy reduced circulating level of VEGF [70]. Also, as mentioned 
above, there is a correlation between VEGF concentrations and PASI 
scores both before and after treatments with PUVA and acitretin [47].

Angiogenesis as a Potential Pharmacological Target 
against Psoriasis

All these studies cannot demonstrate whether this regression 
of the vascular network is causing clinical improvement or is only 
its consequence. This is obviously an important question because 
pharmacological agents targeting angiogenesis would only be efficient 
if it can indeed improve clinical outcome. Several animal models 
suggest it might be a viable target.

Adult mice with an epidermal deletion of both JunB and c-Jun 
develop psoriasis-like phenotype which includes both skin alterations 
(e.g. parakeratosis and increased vascularization) and arthritic lesions 
[71]. Also, the inflammatory infiltrate and the various immune 
mediators found within lesions are similar to those observed in 
psoriasis lesions. Schonthaler et al. demonstrated the efficacy of anti-
VEGF antibody in reducing symptoms in these mice [72].

Topical treatments targeting angiogenesis might also be a viable 
option. This was demonstrated using a mice xenotransplantation 
model to which a small peptide mimicking pigment epithelium-derived 
factor (PEDF) was applied topically or injected within the dermis [73]. 
Analysis revealed a reduction in angiogenesis and reduction of the 
epidermis thickness. 

More recently, it has been demonstrated in xenotransplantation 
models and transgenic mice with epidermal expression of TGF-β1 (K5.
TGF-β1) that antiangiogenic non-viral somatic gene therapy could 
reduce clinical scores of the disease in those models [74]. The K5.TGF-β1 
transgenic mice model is complex since TGF-β1 is a cytokine having 
pleiotropic effects on a vast number of cells, including cell proliferation 
and inflammation [75,76]. However, because antiangiogenic gene 

therapy is successful, it demonstrates that increased angiogenesis is a 
key component in this model. Considering that the vascular component 
also seems to be affected in Sano et al. K5.Stat3C transgenic mice, it 
would be interesting to investigate whether the gene therapy could also 
control the lesion’s apparition in this model [77].

In humans, there have been case reports of clinical improvement 
following anti-VEGF treatment, but those remain anecdotal [78,79]. 
Clinical studies are rather limited and so far, these have had poor 
clinical outcomes, or at least the results did not reach the expectations 
[23]. Further research might be necessary to truly assess the potential 
of these treatments. The review of clinical efficacy of such therapy 
outscopes this article. However, even if these treatments are inefficient, 
one has to remember that multitherapies are not as frequent in 
psoriasis as opposed to many other chronic pathologies (e.g. diabetes 
and hypertension). As discussed above, current drugs used for psoriasis 
have pleiotropic effects affecting proliferation in the dermis, T cell 
activity and angiogenesis. These effects could be synergic and result in 
drug efficacy. It is possible that angiogenesis as a single target might 
not be enough, and therefore drug combinations might be necessary, 
or new anti-angiogenic drugs developed against psoriasis should also 
exert multisystemic effects. Also, the growing understanding of the 
mechanisms underlying angiogenesis associated with psoriasis should 
provide new pharmacological targets, giving significant hope that anti-
angiogenic treatment might be further developed in the near future.

Conclusion
Angiogenesis is both an important feature of psoriasis and a key 

component in its pathogenesis. The mechanisms responsible for it 
are complex and involve secretion by keratinocytes, leukocytes and 
possibly even neurons. Therefore, angiogenesis is a cornerstone of 
the disease affected by both the abnormal skin and the inflammation. 
Moreover, endothelial cells contribute significantly to inflammation by 
expressing adhesion molecules responsible for leukocytes recruitment. 
Animal models demonstrate how altered vascularization can lead to 
skin inflammation and lesions.

Interestingly, many treatments not specifically targeting 
angiogenesis have an important impact on the vascular network in 
psoriatic scales. Whether this effect contributes to the clinical efficacy 
of these treatments or it is only a consequence of lesions going 
into remission is unclear. However, it does demonstrate the tight 
relationship between the vascular component of the disease and the 
clinical symptoms of patients. Therefore, angiogenesis is viewed as 

Treatment Main mechanisms of action Vascular impact References
Anti-TNF-α
(infliximab, etanercept
and adalimumab)

Bind soluble TNF-α (immunosuppressant) Inhibit TNF-α induced angiogenesis and the expression 
of adhesion molecules [36, 49, 50, 53]

Anti-CD11a
  (efalizumab) Block LFA-1 (inhibition of T cell activation by dendritic cells) Block leukocyte adherence to endothelium via ICAM-1 [1, 56]

Retinoids
(acitretin)

Retinoic acid receptors agonist (antiproliferative and promotion 
of epidermal differentiation) Downregulate VEGF secretion by keratinocytes [22, 47, 58]

Vitamin D3 analogues
(calcitriol, calcipotriol
and tacalcitol)

Vitamin D receptor agonist (antiproliferative and promotion of 
epidermal differentiation)

Inhibit VEGF-induced angiogenesis and has 
antiproliferative activity on endothelial cells [59-61]

Methotrexate Dihydrofolate reductase inhibitor (antiproliferative and 
immunosuppressant)

Inhibit the expression of adhesion molecules and has 
antiproliferative activity on endothelial cells [50, 62-66]

Cyclosporine Inhibit calcineurin causing a downregulation of IL-2 
(immunosuppressant) Inhibit VEGF-induced angiogenesis [67, 68]

Phototherapy
(PUVA, nUVB) Damage DNA (antiproliferative and lymphotoxic) Downregulate VEGF secretion and has antiproliferative 

activity on endothelial cells [47, 69, 70]

Table 2: Impact of psoriatic treatment on the vascular endothelium
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a potential new pharmacological target for psoriasis. Although anti-
angiogenic agents in clinical studies have had only limited success so 
far, animal studies have given promising results. Further development 
in this area might lead to new treatment which could be complementary 
to drugs directly targeting inflammation.
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