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Introduction 
Submerged macrophytes are an important biotic component in 

freshwater ecosystems worldwide [1]. They provide refuge and food for 
various animals [2] and exert a strong influence on the water physical 
and chemical properties [3]. Macrophytes alter (generally increase) 
biodiversity in aquatic habitats [4]. They also provide shelter for 
zooplankton and young fish, reduce nutrient levels, serve as a habitat 
for macro-invertebrates [1,4]. Some field studies have demonstrated 
that the “clearing effect” increased with the macrophytes density and 
spatial extension of stands, but it was only restricted to a short distance 
outside the vegetation [5,6].

Freshwater phytoplankton blooms (mainly cyanobacterial) have 
become an increasingly problematic water quality issue worldwide 
[7-9]. They represent a health threat to domestic animals and human 
consumers of affected waters [10,11]. Blooms are primarily caused 
by excessive loading of nutrients [8] and global warming appears to 
enhance bloom potentials [12]. In recent years, periodic and widespread 
phytoplankton blooms have proliferated in the Taihu, China and this 
phenomenon was particularly serious in Taihu Lake in 2007 [13,14]. 

Submerged macrophytes can play an important role in the control 
of phytoplankton within enclosed shallow water bodies [15,16], and 
a possible negative feedback exists between shading provided by 
macrophytes and phytoplankton bloom development [17]. Enhanced 
nitrogen (N) and phosphorus (P) uptake and accumulation by 
summer biomass buildup of macrophytes leads to N limitation of 
the phytoplankton [15,18]. We investigated nutrient and macrophyte 
interactions with respect to their impacts on phytoplankton bloom 
potentials and water quality in East Lake Taihu, China (referred to as 
East Taihu). The lake has distinct regions where macrophytes form 
an important fraction of primary producers. In the relatively clear 

waters of East Taihu, macrophytes tend to dominate. Conversely, 
primary production in relatively turbid North Taihu is dominated by 
phytoplankton. So the purpose of the study was to investigate the role 
macrophytes played in nutrient cycling in the system by examining the 
partitioning of N and P between the macrophytes, water and sediment 
in East Taihu from March to December in 2009. 

Material and Methods
Study area

The Eastern portion of Taihu is largely comprised of a large (130 
km2), shallow (mean depth 1.0 m) Bay, which was called Eastern 
Taihu. Submerged macrophytes have historically flourished in the lake 
region [19]. This region is also an important water source for the City 
of Shanghai [19]. The entire Taihu is currently eutrophic, with total 
phosphorus (TP) and total nitrogen (TN) concentrations of the water 
column rarely falling below the OECD threshold value of 0.02 mg/L TP 
and 0.2 mg/L TN for eutrophic lakes [20].

Three sampling sites (1#, 2#, 3#) in eastern Taihu were selected 
for transects according to prior results from the Taihu Monitoring 
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Abstract
When macrophytes are growing in the eutrophicated aquatic ecosystem, the vegetation induces important 

effects to the water quality and phytoplankton concentrations in the water which affected by macroscopic physical, 
chemical and biological processes and the effects are the results of direct and indirect interactions of the aquatic 
plants and water body. The interactions between macrophytes, nutrients and phytoplankton blooms were examined 
in the water and sediments of a shallow, eutrophic and typical East Taihu, China. The importance of macrophytes 
as a sink for nutrients, and the inhibitory effect of macrophytes on phytoplankton bloom potential were assessed 
through three different seasons. Luxuriant aquatic plants growth in this system led to decrease available nutrients 
for phytoplankton and prevented bloom development. Uptake of N and P by aquatic plants accounted for a major 
portion of the observed N and P loss from the water column and sediments. Luxury uptake of N and P were indicated 
by high biomass and tissues N and P concentrations, indicating the capacity of macrophytes to act as a nutrient 
sink in midsummer. Dissolved inorganic N (DIN) and soluble reactive phosphorous (SRP) in water were reduced 
in midsummer in the presence of macrophytes. The use of macrophytes to reduce the nutrients in water system 
and thereby inhibit freshwater phytoplankton blooms should be considered as an effective management strategy in 
shallow eutrophicated lakes. As aquatic macrophytes also develops considerable indirect effects that could have a 
vital impact than the direct uptake the nutrients into the plant biomass. 
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Program Stations (Figure 1). The three sites of 1# (E:120.41428°, 
N:30.98694°), 2# (E:120.4342°, N:31.03294°) and 3# (E:120.49765°, 
N:31.08131°) were located at the east suburb channel, near commercial 
crab culture operations, and the main channel of open water region, 
respectively. Sites were sampled in the March, August and December 
of 2009. These months represented the germination, maturation and 
senescence periods for aquatic macrophytes. 

Sampling and analytical methods

Six quadrats were located along each transect crossing the studying 
area. Every sampling site had two quadrats. Water quality data and 
water samples were collected from all quadrats before collection of 
submerged macrophytes and sediment samples were undertaken to 
prevent contamination of the water with sediment. Secchi depth, 
temperature and dissolved oxygen (DO) were measured on sites. The 
suspended solids (SS), pH and EC of the water were measured in the 
laboratory.

Water samples were obtained using a water sampler deployed 
three times at different depths. Sub-samples were collected for 
chemical analyses. Surface sediment per quadrat was sampled and 
then frozen immediately in dry ice. The samples were analyzed for 
sediment chemical composition on the pooled samples of the top 2 cm 
of sediments. This is considered to be the portion of sediment where 
nutrients, P in particular, are enriched [21]. Lastly, the submerged 
macrophytes were collected from each quadrat, with either a submerged 
0.28 m2 quadrat by hand or a circular rake for very small plants [22] or 
large plants, respectively. The plants were then dried at 60°C for 24 h 
and weighed. 

Water samples were analyzed for total phosphorus (TP), total 
dissolved phosphorus (TDP), soluble reactive phosphorous (SRP), total 
nitrogen (TN), total dissolved nitrogen (TDN), ammonium (NH4

+-N), 
and nitrogen oxides (NOX-N). Concentrations of TDN, NH4-N and 
NOX-N were determined colorimetrically on a Skalar Autoanalyser 
(Skalar-SA 3000/5000, Netherlands). TN, TDN were pretreated by 
digestion with potassium sulphite. TDP and TP were determined after 
perchloric acid digest, and SRP was determined using the ascorbic 
acid:molybdate method [23]. Chlorophyll a was measured with hot-
ethanol extraction method as the phytoplankton concentration in the 
sampling water [24,25]. Sediment TP was measured colorimetrically of 
Murphy and Riley [26]. 

Results
Environmental conditions in the East Taihu 

Surface water temperature increased from a March mean of 13°C 
to an August maximum average of 32.0°C (Table 1), and then declined 

to a December mean of 9.0°C. Bottom temperatures were similar to the 
surface water in spring, increasing more gradually over the summer 
time. The trend in surface DO shows a decline from March to August, 
then a rise to December, with some variability among sampling sites. 
The water pH and EC varied relatively little, except for some decrease 
in the aquatic macrophytes maturation period. Water Secchi depth of 
the 1# site was 0.15 m in March, and at the same time it were 0.90 m 
and 0.95 m at 2# site and 3# site, respectively. But the Secchi depth of 
1# site reached 1.60 m in August, it was higher than that the other two 
sites and the water Secchi depth changed along with the season and 
macrophytes growth.

Nutrients changes in water and sediment

The selected three sampling sites exhibited similar water depth 
profiles and fluctuations (Figure 2). However, the three sites showed 
some variability among different forms of nutrients in the water. They 
had the higher concentration in March at 1# site, and then dropped 
to the minimum in August, but then increased again in December. 
The other sites showed an inverse pattern. Dissolved nitrogen and 
phosphorus concentrations in water column were sufficiently high to 
be available to macrophytes and phytoplankton. Sites 2# and 3# had 

Sampling site 1# 2# 3#
Sampling time Mar Aug Dec Mar Aug Dec Mar Aug Dec
Secchi depth (m) 0.15 1.60 1.00 0.95 1.22 0.90 0.45 0.85 1.30
Water depth (m) 1.00 1.60 1.50 0.95 1.22 0.90 1.00 1.60 1.40
Temperature (m) 13.0 32.0 9.0 13.0 32.0 9.0 13.0 32.0 9.0
pH 7.92 8.33 8.02 8.72 7.80 7.79 8.09 7.85 7.87
EC (μs/cm) 560.0 520.0 460.0 420 500.0 520.0 510.0 420.0 500.0
DO (mg/l) 10.10 9.85 4.50 7.56 4.87 9.70 8.30 7.65 9.60
SS (mg/l) 118.64 2.16 7.77 0.80 2.61 9.30 20.88 6.56 8.93

Table 1: The water environmental characteristic in East Lake Taihu in 2008 
(Integrated samples of the water column were obtained using a water sampler deployed three times at different depths. Then water samples were brought back to the 
laboratory with the ice-bag protected and analyzed as soon as possible. The each sampling time was chosen at the same 9:00 am ; and all values presented are mean 
values).

Figure 1:  The sampling sites in the East Taihu Lake.
(The three sites of 1#, 2# and 3# were located at the east suburb channel, 
near the crab culture and the main channel of open water region, respectively).
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the lower concentration of the TDN and TDP, and then increased 
from March to August. During the period from August to December, 
only the concentration of TDP in 1# sampling site rose (Figure 3). 
The PO4

3--P and NO3
--N in water appeared to be directly available to 

macrophytes and phytoplankton. Though the NO3
--N was higher in 

March, it decreased quickly in summer.

The TN and TP concentration in the sediments were similar to those 
in the water column. However, the 2# site had the higher concentration 
in March, and it was the time of the germination period of aquatic 
macrophytes, after which the nutrient concentrations declined during 
the summer (Figure 4). Nutrient accumulations appeared largely 
attributable to macrophytes decomposition. 

Macrophytes and phytoplankton in the water column

The three sampling sites showed similar environmental conditions 
in the water and the macrophytes occurred in shallow regions to a 
maximum depth of 1.60 m in August and a maximum depth of 0.95 
m in March. Macrophytes community composition also varied with 
sampling times and sites. The main species of the macrophytes included: 
Potamogeton malaianus Miq.; Vallisneria natans L.; Elodea nuttallii; 
Hydrilla verticillata Royle; Ceratophyllum demersum with other species 
comprising only a small percentage of the total composition (data not 
shown). 

Site 1# is located at the east suburb channel, the flood discharge 
channel of Taihu and main water supply for the City of Shanghai. The 
macrophytes could obtain amounts of nutrients and grow well as the 
water velocity became lower at the 1# site (Figure 5). The 2# site had 
the highest biomass of aquatic plants during the selected sampling 
sites in March. But the 1# site had the highest biomass among three 
sampling sites in summer (fresh weight reaching 2,255.48 g/m2). The 
3# site had low biomass relatively except in August. Though the species 
composition and the macrophyte biomass showed little difference 
during the sampling time, in general there was an increase in aquatic 
plant biomass at sampling sites except some decreases at the 3# 
sampling site.

Phytoplankton biomass (dominated by cyanobacterial), estimated 
as Chl-a concentrations, varied among sampling times and sites 
(Figure 5). The concentration of phytoplankton biomass at 1# site was 
higher than that at the others sampling sites in March, but it was the 

lowest among the three sampling sites in August, only 5.58 μg Chla L-1. 
The phytoplankton biomass generally increased in the summer, except 
site 3# showed a decrease. The biomass in 2# site became progressively 
higher over summer, reaching a peak in December (21.2 μg Chla L-1).

Discussions
Conditions within the water column

The increase in water temperature in early summer at the 
germination period of aquatic macrophytes would favor growth of 

Figure 2:  The concentration of TN and TP in water column.

Figure 4: The concentration of TN and TP in sediment.

Figure 3: The dissolved nutrients in water (sampling time from March to 
December in 2008).
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these plants. The early summer increase in biomass of photosynthetic 
plants would explain the increase DO concentrations in water in 
March. Differential photosynthetic use of carbon dioxide would also 
explain the fluctuation in pH at the three sampling sites. Higher water 
temperatures could also cause a decrease in the oxygen solubility in the 
water and therefore the August DO concentrations were reduced at all 
sampling sites (Table 1). As some macrophytes decomposed during this 
senescent period, DO consumption would also increase. As mentioned 
above, the macrophytes grew most vigorously from March to October, 
as temperature favored the aquatic plants and phytoplankton growth in 
this period. The results of Wang [27] indicate that water temperature 
and total phosphorus (TP) played dominant roles in controlling 
phytoplankton growth dynamics in most seasons; COD (chemical 
oxygen demand) and BOD (biological oxygen demand) presented 
significant positive relationships with phytoplankton biomass in 
spring, summer and autumn. 

Macrophytes and nutrients 

N and P values in the Taihu sediment are significantly different 
from those found in East Taihu sediments [28-30]. TN and TP 
concentration in the water was higher in 2# site in March and then 
decreased through the summer period. As in the water column, the 
TN in sediment also had higher content in December than that in 
August, although TP varied little during this period. The N and P 
concentration changes in the sediments indicate that nutrient losses 
from the top 2 cm of sediment were similar to the nutrient gains of the 
macrophyte community (Figure 5), of which the major species was the 
submerged macrophyte Potamogeton malaianus. The N data showed 
an increase in macrophyte N which was not matched by loss from the 
sediment, a phenomenon that has been observed by others [31,32]. 
TDN decreases in water column, although considerable (Figure 3). The 
additional N may have been derived from deeper sediments or from 
western Taihu water, although P data do not support this (Figure 3). 

The macrophytes biomass progressively increased from March 
to August (Figure 5), a period when temperature and irradiance are 
favorable for macrophyte growth. Macrophyte species diversity was 
also enhanced during the same period (data not shown). Thriving 
aquatic plants during this period will optimally adsorb dissolved 
nutrients from the water, and increase the depth of the photic zone 
(Table 1). In a word, these effects would promote a positive-feedback, 
environment friendly ecosystem [33]. 

The Inhibition Effects of Macrophytes on Phytoplankton

The use of macrophytes for reducing N and P availability and 
thereby reducing phytoplankton blooms potential has been used 
in diverse aquatic ecosystems [18,34,35]. Possible inhibition of 
phytoplankton by allelochemicals released by submerged macrophytes 
has been proposed as one of the mechanisms that contribute to the 
maintenance of clear-water states in shallow lakes [36,37]. Although 
direct proof of allelopathy remains elusive, several authors have 
suggested possible involvement of allelopathy to explain phytoplankton 
successional patterns in whole-lake studies of vegetated, shallow lakes 
[38,39]. During this survey, the Chl-a concentration was low at the 
sampling sites except for 1# in March, when it was somewhat higher 
(Figure 5). The reason have been that this sample was taken from a 
site that was influenced by open Taihu water which passed through 
the 1# site, which was the main flood discharge channel of the Taihu. 
Following the summer macrophyte growth period, phytoplankton 
concentrations rapidly decreased. The macrophytes decayed at higher 
temperature in summer and caused oxygen deficiency in water column 

at the 2# site, as proven the nutrients concentration variety (e.g. higher 
concentration of PO4

3--P, TDP in water). The apparent inhibitory 
effects of macrophytes on phytoplankton are consistent with the other 
results [40-42]. Another explanation is salinity (conductivity) control 
of nutrient uptake by macrophytes [43], as the conductivity changed 
during surveying time (ranged from 560 to 42 µs/cm during the March 
to August time). Decreased salinity would promote uptake of N and P 
by these macrophytes, resulting in decreased availability of nutrients 
for phytoplankton. 

Conclusions 
Aquatic macrophytes have been shown to be a significant sink for 

nutrients and they increased clarity in East Taihu. Higher summer 
macrophyte biomass was responsible for uptaking large amounts of 
N and P. Macrophytes incorporation of N and P accounted for most 
of the observed nutrient loss from the sediment and water column. 
Surficial sediment N loss did not account for all the macrophyte N gain. 
Therefore other N sources, including cyanobacterial N2 fixation and 
atmospheric N deposition, are postulated. Water column TDN and 
NO3

--N significantly decreased during the P. crispus growth period. 
Decreased salinity (conductivity) maybe have also promoted N and 
P incorporation by macrophytes and hence the reduction of available 
nutrients for phytoplankton, explaining a reduction in phytoplankton 
biomass and blooms during the summer. The inhibitory effect of 
macrophytes on phytoplankton blooms has significant ramifications 
for management of phytoplankton blooms.
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