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Abstract

Mitochondria-associated endoplasmic reticulum membranes (MAMs) are regions of the endoplasmic reticulum
(ER) tethered to mitochondria, which play a key role in mediating material transfer and signal transduction between
the two organelles. The findings from recent studies on MAMs contributed to deeper understanding of the
complexities associated with the structure, the important proteins involved and the intricacies in the related biological
pathways. A large number of Ca2+ transporter proteins and their regulatory proteins are located on MAMs, which
finely regulate a series of important cellular activities such as mitochondrial Ca2+ homeostasis, ATP production and
cell apoptosis. MAMs are also enriched with many oncogenic proteins and tumor suppressor proteins, which are
closely related to the regulation of Ca2+ transport. Therefore, the role of MAMs in tumorigenesis has received
extensive attention. In this review, we focused on the regulatory mechanisms of Ca2+ transport mediated by MAMs
and their role in tumorigenesis, aiming to acquire the new insight to further understanding the pathogenesis of
tumors.
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Introduction
Mitochondria and the endoplasmic reticulum (ER) regulate

numerous cellular processes, and are critical contributors to cellular
and whole-body homoeostasis. Interestingly, about 5-20% of the
mitochondrial membranes are directly in contact with ER [1].
Therefore, the mitochondria and ER cannot be considered as static
structures, they intimately communicate, forming very dynamic
platforms termed Mitochondria-associated endoplasmic reticulum
membranes (MAMs). With the development of super-resolution
fluorescence imaging, electron tomography and proteomics, MAMs
have been found in various eukaryotes [2,3]. In particular, the MAMs
accommodate flux of Ca2+ from the ER to mitochondria, which
decode them into specific inputs to regulate essential functions,
including metabolism, energy production and apoptosis [4-6].
Furthermore, previous studies have suggested that many human
diseases are closely linked to the mitochondria abnormal Ca2+ intake
mediated by MAMs, such as tumor genesis [7] and
neurodegeneration[8]. Hence, MAMs are not simply be considered as
a static bridge between the ER and mitochondria, but also as dynamic
organelles that play a variety of roles both in physiological and
pathological processes that are crucial in maintaining the health or
establishing a disease due to functional disturbances. Recently, there is
an increased focus on MAMs because numerous oncogenic proteins

and tumor suppressors were found on the MAMs, which exert an
important influence on cell fate and the emerging picture of MAMs
seems to indicate that deregulated MAMs-mediated mitochondrial
Ca2+ intake play an important role in tumor genesis. This review has
focused on the findings from publications from the past ten years.

Structure Basis of MAMs
The association between the ER and mitochondria was first

visualized in the 1970s with electron microscopy by Morre et al. [9]. It
was not until 1990s, however, the Vance group made great progress in
the MAMs field by presenting a detailed protocol describing the
isolation of pure MAMs fractions by differential ultracentrifugation
[1]. In recent years, multiple methods have been developed to dissect
MAMs’ specific properties and the protein composition, either using
biochemical or fluorescent microscopy-based strategies. We have
enormously extended our comprehension on MAMs that MAMs
contain several crucial proteins involved in many biological pathways.
In addition, some researches show that MAMs are closely related to
cellular lipid metabolism [1] and energy metabolism [10].

Molecular Components of the MAMs in Ca2+ Transfer
It has recently become clear that MAMs are crucial for highly

efficient transmission of Ca2+ from the ER to mitochondria, thus
controlling fundamental processes involved in energy production and
also determining the cell fate by triggering or preventing apoptosis.
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Therefore, many Ca2+ transporter proteins, such as Inositol 1,4,5-
trisphosphate receptors (IP3Rs), voltage-dependent anion channel
(VDAC)[11], mitochondrial calcium uniporter (MCU) and their
regulatory proteins were identified on MAMs [12](Figure 1).

Figure 1: Schematic representation of the mitochondria-associated
endoplasmic reticulum membranes (MAMs) [16].

IP3Rs
A key role in the control of Ca2+ signals is attributed to the inositol

1,4,5-trisphosphate (IP3) receptors (IP3Rs), the main Ca2+-release
channels in the ER. As expected, all three IP3R isoforms (IP3R1, IP3R2
and IP3R3) are also enriched in MAMs and precisely control Ca2+
transfer into mitochondria [13]. When the G protein-coupled
receptors are activated, intracellular IP3 binding with IP3Rs can lead to
the release of Ca2+. This creates a micro-domain in which the Ca2+
concentrations are manifold higher than in the cytosol, allowing for
rapid mitochondrial Ca2+ uptake [14]. In addition, some metabolites
can also affect Ca2+ transfer efficient in MAMs by regulating the
activity of IP3Rs. For example, glucose-regulated protein 78 (GRP78)
promotes the activity of IP3Rs and increases the Ca2+ intake of
mitochondria [15]. A fraction of endoplasmic reticulum protein 44
(ERp44) also localizes to the MAM, where it interacts with IP3R1 and
competes with BiP/Grp78 for the same binding site on the IP3R1. Cells
over-expressing ERp44 show reduced IP3R1 Ca2+-release [16,17]. In
addition, ATP can promote the release of Ca2+ mediated by IP3R, but
heparin is the specific inhibitor [13].

VDAC
VDAC is a large, high-conductance, weakly anion-selective channel

that represents the primary permeability pathway through which
solutes enter the mitochondria. VDAC is associated with MAMs and
controls metabolic cross-talk between mitochondria and the rest of the
cell by allowing the influx and efflux of metabolites, ions, nucleotides,
Ca2+ and more [18]. Human cells have three distinct VDAC genes
(VDAC1, VDAC2 and VDAC3), with VDAC1 representing the best

characterized one [19]. For example, VDAC1 selectively interacts with
IP3R3, thereby potentiating the transfer of low-amplitude apoptotic
Ca2+ signals to mitochondria. Therefore, VDAC1 mediates Ca2+
released by ER transmits into the mitochondrial intermembrane space
[19]. Arbel N found that the over expression of VDAC1 led
mitochondrial Ca2+ increase in skeletal muscle cells and Hela cells
[20]. Consistently, VDAC1 knockdown decreased mitochondrial Ca2+
[21]. In addition, it has been reported that, glucose-regulated protein
75 (GRP75) promoted the connection between VDAC1 and IP3Rs
with the subsequent mitochondrial Ca2+ intake [22].

MCU
The mitochondrial Ca2+ uniporter is a complex of proteins

including the Ca2+ selective pore-forming subunit MCU and accessory
proteins including MICU1, MICU2, MCUR1 and EMRE located in the
mitochondrial inner membrane (IMM) and also enriched in MAMs
[23-25]. Ca2+ crosses the IMM through the MCU depending on the
considerable driving force represented by the negative Trans
membrane potential. Several lines of evidence indicate that MICU1
and MICU2 operate together with MCU [24]. MICU1 acts as a
gatekeeper of the uniporter complex, preventing Ca2+ entry under
resting conditions and activating the channel at high cytosolic Ca2+
concentrations [26]. While, MICU2, a paralog of MICU1, can inhibit
MICU1-mediated Ca2+ uptake [27]. Moreover, EMRE was required for
the interaction of MCU with MICU1 and MICU2. Thus, EMRE
bridges the calcium-sensing role of MICU1 and MICU2 with the
calcium-conducting role of MCU [28]. In addition, the expression of
MCU appears to be controlled by microRNA-25, which can efficiently
reduce MCU levels and subsequent mitochondrial Ca2+ transfer [29].
Therefore, Ca2+ transferred by MAMs is an intricate and tightly
regulated process.

Influence of Ca2+ Intake on Mitochondrial Function
The main physiological role of mitochondrial Ca2+ uptake was

assessed to be the control of metabolic activity of the mitochondria. It
has been reported that various enzymes directly involving in the Krebs
cycle are modulated by mitochondrial matrix Ca2+ [30]. For example,
pyruvate dehydrogenase (PDH), which converts pyruvate into acetyl-
CoA, is phosphorylated and activated when the level of mitochondrial
Ca2+ is elevated [30,31]. While mitochondrial Ca2+ was also
demonstrated to increase the affinity of dehydrogenase (ICDH) or
oxoglutarate dehydrogenase (OGDH) with their substrates [31]. In
addition, mitochondrial Ca2+ also directly activates the electron
transport chain and the activity of F0F1ATP synthase [32,33]. On the
contrary, the mitochondrial Ca2+ overload results in dramatic
alterations in mitochondrial functions, including increased reactive
oxygen species (ROS) production and “mitochondrial permeability
transition pore”(mPTP) activity[34]. The mPTP opening can induce
mitochondrial swelling, and these large-scale alterations of organelle
morphology allow the release of caspase cofactors into the cytosol,
which can lead to cell death finally [35]. Therefore, Mitochondria are
not only the energy powerhouse of the cell but also a major hub for
cellular Ca2+ signaling crucial for cell life and death.

Impact of Ca2+ Transfer Regulated by MAMs on Tumor
Genesis

Recently, increasing evidence is beginning to reveal that the
abnormal remodeling of mitochondrial Ca2+ homeostasis has
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important roles in tumor initiation and progression [36]. For example,
decrease of Ca2+ in mitochondria was reported to shift the cancer cells
toward glycolysis, providing chemo resistance but leading to a poor
overall survival [37]. Notably, a wide range of tumor suppressors and
oncogenic proteins were identified to be located on MAMs and play
important roles in mitochondrial Ca2+ transfer [37]. Generally, tumor
suppressors were believed to promote the mitochondrial Ca2+ uptake,
while oncogenic proteins exert opposite roles [38]. Therefore,
enhancing the mitochondrial Ca2+ uptake through MAMs might be a
potential strategy for cancer treatment.

Oncogenic proteins on MAMs
There are some oncogenic proteins on MAMs (Table 1), they can

interact with different molecules and inhibit the apoptosis of tumor
cells. Among oncogenic proteins, Akt is an important sensor of the
bioenergetics of the cell and therefore it is linked to the function of the
mitochondria. Recently, several studies have proved that Akt could
phosphorylate all IP3R isoforms, thus inhibits Ca2+ release from ER
and protects cells from apoptosis. Moreover, Akt also was
demonstrated to promote the interaction between VDAC1 and
hexokinase 2 (HK2) on MAMs through phosphorylation events.
Therefore, this association inhibits apoptosis mediated by
mitochondrial Ca2+. In addition, it has been also found that PTEN
could dephosphorylate PIP3 and reverse PI3K/Akt signaling, which
further promotes the apoptosis of tumor cell. Bcl-2 protein family also
contains numerous anti-apoptotic and pro-apoptotic members.
Therefore, Bcl-2 protein family plays an important role in
mitochondria dependent apoptosis [39]. Recently, researches have
demonstrated that Bcl-2 protein family members interact with
different functional domains of IP3Rs and promote or inhibit Ca2+

signals and the apoptosis of tumor cells [39, 40]. For example, Williams
A. et al. have found that numerous Bcl-2 are rich on MAMs. Moreover,
Bcl-2 interacts directly with IP3Rs to inhibit channel opening and ER
Ca2+-release, thus inhibit tumor cells apoptosis [41]. Monaco G has
proved that anti-apoptotic protein Bcl-XL, which is deregulated in
several cancer types, exerts its anti-apoptotic functions by inhibiting
the activity of Ca2+ channels, including IP3Rs and VDAC isoforms [42,
43]. In addition, Bcl-XL also blocks the apoptosis pathway by
neutralizing pro-apoptotic Bcl-2 members, such as Bak, Bax, Bid and
Bim [44]. Sig1-R is a Ca2+-sensitive and ligand-operated receptor
chaperone and localizes at MAMs, stabilizes the conformation of
IP3R3 and the ER stress sensor IRE1. Normally, Sig1-R forms a
complex at MAMs with the chaperone BiP/GRP78 to regulate Ca2+

homeostasis between the ER and the mitochondria, but upon Ca2+

depletion or via ligand stimulation, Sig1-R dissociates from BiP
leading to a prolonged Ca2+ signaling into mitochondria via IP3R3.
[4-14]

Protein Impact on ER-mitochondrial Ca2+ transfer References

AKT Inhibition of Ca2+ release from ER [4-43]

Bcl-2 Induction of Ca2+ leakage from ER [4-42],[4-43]

Bcl-XL Induction of Ca2+ leakage from ER [4-44]

Sig-1R Regulation of Ca2+ homeostasis on MAMs [4-14]

Table 1: Summary of the ant apoptotic proteins on MAMs.

Tumor suppressors on MAMs
Many tumor suppressors are located on MAMs and here we list

several most important tumor suppressors on MAMs (Table 2). The
tumor suppressor PTEN is among the most commonly lost or mutated
tumor suppressors implicated in human cancers, and it is a key
regulator of a wide range of biological functions other than tumor
suppression. Recent findings have shown that it localizes at MAMs
where it interacts with the IP3R3 and regulates Ca2+ release from the
ER in a protein phosphatase-dependent manner that counteracts AKT
activation; thus, it can inhibit AKT-mediated phosphorylation of
IP3R3, which protects from Ca2+-mediated apoptosis [4]. In addition,
the tumor suppressor PML also localizes at the MAMs where it
modulates IP3R3 activity and the ER-mitochondria Ca2+ fluxes by
promoting the formation of a multi protein complex containing IP3R3,
AKT and the protein phosphatase 2A (PP2a) [4-49]. The tumor
suppressor p53 regulates tumor genesis also in a Ca2+ dependent
pathway. P53 physically interacts with SERCA and this increases the
efficiency of the transfer of Ca2+ ions between the ER and
mitochondria, augmenting the propensity of (pre)malignant cells
exposed to oncogenic or chemotherapeutic stress to succumb to
apoptosis. The interplay between p53 and Ca2+ signaling is not limited
to chemotherapy but is also relevant for cellular response following the
photodynamic therapy (PDT) [4-49].

Protei
n

Impact on ER-mitochondrial Ca2+ transfer Referenc
es

PTEN Regulation of Ca2+ release via IP3R3 [4-7]

PML Modulation of the ER-mitochondria Ca2+ flux [4-48],
[4-49]

P53 Modulation of Ca2+ transfer from ER to mitochondria
interacting with Serca

[4-49]

Table 2: Summary of the tumor suppressors on MAMs.

Conclusion
We presented clear evidence to indicate that loss of Calcium

homeostasis in the mitochondria due to defective transfer between the
ER and mitochondria mediated by MAMs has been shown to
contribute to tumor genesis. And above all, we can conclude that there
are two main ways that proteins on MAMs affect tumor cells fate, one
is to interact with Ca2+ tunnels, such as IP3R and VDAC, and another
way is the mutual effect between oncogenic proteins and tumor
suppressors. As a consequence, MAMs dysfunctions have been linked
to many types of human cancer. However, several outstanding
questions still need to be answered before reaching a complete
mechanistic and functional understanding of the MAMs-mediated
mitochondrial Ca2+ uptake. For example, how does cancer cell regulate
the dynamics of the structure of MAMs and the protein located in
MAMs? Which proteins located in MAMs is crucial for cancer cell
survival, inflammation, and therapy responses? Additionally, it is still
not clear how MAMs modulate the mitochondrial unfolded protein
response (UPR) and ER stress in cancer cells. All these are outstanding
questions that await future studies.
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