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Introduction
In a broad review, evidence that the corneal biomechanical properties 

influence the results and outcomes of various ocular measurements 
and procedures has existed for some time [1,2]. However, assessing 
the biomechanical properties of corneal tissue in vivo has previously 
not been possible. With the recent introduction of the Reichert Ocular 
Response Analyzer (ORA), direct clinical measurements of the corneal 
biomechanical response are now available and provide novel ways for 
the preoperative screening of refractive surgery candidates. The ORA 
uses a high-speed air puff to deform the cornea and records two corneal 
biomechanical metrics termed corneal hysteresis (CH) and corneal 
resistance factor (CRF). CH may predominantly reflect the viscous 
properties [3], whereas CRF is thought to reflect overall viscoelastic 
resistance of the cornea [4]. 

The ORA has been widely used to study corneal biomechanical 
properties [5-7], and it has been suggested that different clinical 
conditions would affect corneal biomechanical properties, such as the 
decrease in CH with keratoconus and corneal surgeries [8]. Meanwhile, 
more recently published studies have set out to discover the exact 
clinical features and value of CH and CRF as corneal biomechanical 
metrics [9,10]. Recently, it has been reported that CRF strongly 
correlates with corneal spherical-like aberrations, especially in severe 
keratoconus, which implies it should be considered an additional 
factor in keratoconus grading [11]. Additionally, it is well known 
that keratoconus is an ectatic disease of the cornea, with progressive 
thinning and anterior protrusion, eventually leads to an irregular 
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Result: The values of CH and CRF presented normal distribution and the mean CH was (10.38 ± 1.36) mmHg, and 
the mean CRF was (10.70 ± 1.59) mmHg. There is a good correlation between CH, CRF and CCT (CH: r=0.54, P=0.000*, 
CRF: r=0.61, P=0.000*), and a stable correlation with each CV value (r≈0.5, P=0.000*) within central 6 mm diameter 
corneal region. On the other hand, CH and CRF were negatively correlated with anterior central elevation (CH: r=-0.136*, 
P=0.002*; CRF: r=-0.152*, P =0.001*), positively correlated with Q value of anterior surface (CH: r=0.136*, P=0.002; 
CRF: r=0.132*, P=0.003) and corneal spherical aberration (CH: r=0.184*, P=0.000*; CRF: r=0.191*, P =0.000*). 

Conclusions: There is a homogeneous relationship displayed between corneal biomechanical parameters (CH and 
CRF) and corneal morphological features. Our results suggest high biomechanical values might be related to central 
flattening and oblate corneal shape. 

conical alteration of the corneal shape. Using this information, the 
corneal biomechanical properties showed corresponding relationship 
with spherical aberrations in keratoconus patients, to a large degree 
might be related to its corneal shape variation based on the natural 
property of keratoconus disease. Because of this, in this study, the main 
purpose was to collect normative ORA data in normal myopic subjects 
and to evaluate the relationship between corneal morphological 
features and ORA-generated corneal biomechanical properties, in 
order to explore the potential clinical correlation of ORA-generated 
corneal biomechanical metrics.

Methods
Subjects

The study was performed with the approval by the Institutional 
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values. Normality of all data samples was checked by means of 
Kolmogorov-Smirnov Test. Pearson bivariate correlation statistical 
analysis was used to obtain the linear fit of the relationship between 
variables. Statistical significance was set at a level of 0.05.

Results
Subjects

The study consisted of 480 normal myopic eyes (240 healthy 
volunteers), with ages ranging from 18 to 44 years (mean, std 23.84 ± 
5.08 years), and mean spherical equivalent (MSE) ranging from -14.00 
to -1.13 D (mean, std –5.68 ± 2.17 D) (Table 1). 

Mean normative CH and CRF

Table 2 and Figure 1 show the values of CH and CRF presented 
normal distribution and the mean CH was (10.38 ± 1.36) mmHg, 
and the mean CRF was (10.70 ± 1.59) mmHg in this studied normal 
Chinese myopic population. 

Correlations of biomechanical parameters with CCT, age and 
refractive errors

Figure 2 shows the corneal biomechanical parameters (CH, CRF) 
as a function of corneal central thickness in the study eyes. In present 
study, the values of corneal central thickness are sub-divided into 
the four CCT groups, the mean value of CH and CRF in the Table 3. 
With CH and CRF increasing gradually with CCT, this also has been 
reflected by the statistical result on the relationship between corneal 
biomechanical parameters and corneal central thickness (CH: r=0.54*, 
P=0.000*; CRF: r=0.61*, P=0.000*). However, no statistical significant 
correlation was found between CH, CRF and age, spherical equivalent, 
cylinder equivalent, and mean refractive spherical equivalent.

Correlations of biomechanical parameters with CV

The corneal volume distribution at the different diameters (from 
1.0 to 6.0 mm with 0.5 mm steps) is shown in Figure 3. As can be 
seen in the box plot profile, CV in normal myopic eyes shows a 
homogeneous increase from center to periphery. In addition, the 
Pearson correlational analysis on the relationship between CV and CH 
(Table 4), CRF display a significant and positive correlation along all 
selected diameters zones, Taken a step further, CV presents a stable 
and homogeneous correlation with corneal biomechanical properties 
(r≈0.5, P=0.000*) within the central 6.0 mm diameter corneal zone. 

Review Board at Tianjin Medical University School of Medicine and 
met the tenets of the Declaration of Helsinki. Informed consent was 
obtained from each subject. 240 healthy volunteers (60 males and 180 
females) were recruited at random from refractive surgery candidates 
of Tianjin eye hospital, Tianjin medical university. Subjects were 
evaluated sequentially from October 2009 through March 2010. 

Each subject underwent a comprehensive ophthalmologic 
examination, which included a medical history review, best corrected 
visual acuity, refraction test, slit-lamp and fundoscopic examinations, 
Pentacam topographic evaluation (Oculus, Wetzlar, Germany), and 
ORA measurements (Reichert Ophthalmic Instruments). All eyes 
of the participants were examined by one of the investigators (Lili 
Xie). Exclusion criteria included unstable refraction, evidence of 
keratoconus on topography, any history of systemic or ocular disease, 
previous ocular surgery, systemic or ocular medications, pregnancy, 
and an immunocompromised state. Soft contact lenses were removed 
2 weeks before these measurements and hard contact lenses, at least 3 
weeks before.

Ocular response analyzer (ORA) measurement 

The ORA (Reichert Ophthalmic Instruments, Depew, New 
York, USA) is a new device, which measures the corneal response to 
indentation by a rapid air pulse. The ORA produces two measurements 
of corneal biomechanical properties, corneal hysteresis (CH) and the 
corneal resistance factor (CRF). The corneal hysteresis phenomenon 
is a result of viscoelastic dampening in the cornea, in other words, 
the tissue’s ability to absorb and dissipate energy. Corneal resistance 
factor, CRF, maximizes the correlation to CCT reflecting the overall 
biomechanical strength of the cornea is regarded as an optimized 
corneal biomechanical parameter.

CH and CRF were measured with ORA between 10 AM and 4 PM, 
for each of these examinations at least four successive measurements 
were performed on each eye, all of which showed symmetric peak 
heights and similar widths. The final values of these parameters were 
calculated as the average of the saved measurements. 

Pentacam scheimpflug evaluation

All subjects were imaged with the Pentacam HR (Oculus GmbH, 
Wetzlar, Germany, software version 1.17r27) in both eyes. The 
Pentacam is a rotating Scheimpflug camera that measures 138,000 true 
elevation points to compute corneal topography. Patients were asked to 
blink twice and then look at the fixation device. Image acquisition was a 
2-second scan of 50 rotational Scheimpf﻿lug images through the corneal 
sighting point, the point where the ray of light from the fovea to the 
fixation device crossed the cornea. All measurements were performed 
just after a blink to minimize the effect of tear film alteration on the 
data. Acceptable maps had at least 10.0 mm of corneal coverage with 
no extrapolated data in the central 9.0 mm zone. 

The Pentacam software calculates the corneal volume contained 
within different diameters centered on the apex. In present study, 
corneal volume was selected within diameters from 1.0 to 6.0 mm with 
0.5 mm steps. 

Statistical analysis

Statistical analysis was performed using the software SPSS version 
13.0 for Windows (SPSS, Chicago, Illinois, USA). Descriptive statistical 
results included mean, standard deviation, minimum, and maximum 

Table 1: Demographics of the study population.

Gender (%)
Age (y)

Mean Spherical Equivalent (D)

Male (25%)
23.84 ± 5.08
-5.68 ± 2.17

Female (75%)
18-44

-14.00-1.13

Table 2: The mean value and range of corneal hysteresis (CH) and the corneal 
resistance factor (CRF) in normal myopic eyes.

Mean ± SD Range
CH (mmHg) 10.38 ± 1.36 6.30-19.23

CRF (mmHg) 10.70 ± 1.59 5.57-19.47

Table 3: Distribution of CH and CRF in different CCT groups.

Group(Number of eyes) CH (mmHg) CRF (mmHg)
<500 µm (63) 8.90 ± 1.06 8.62 ± 1.16

500-550 µm (202) 10.12 ± 1.13 10.39 ± 1.33
551-600 µm (179) 11.14 ± 1.15 11.68 ± 1.17

>600 µm (36) 12.18 ± 2.11 13.06 ± 1.87
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Correlations of biomechanical parameters with morphologi-
cal parameters 

As can be seen in Table 5, CH and CRF were correlated with central 
corneal elevation of anterior surface (CH: r=-0.136*, P=0.002*; CRF: 
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Figure 1: Histogram of CH (A) and CRF (B) distribution in normal myopic eyes.

CH: Corneal Hysteresis; CRF: Corneal Resistance Factor
*denotes statistically significant (P <0.05) predictor coefficients

Table 4: Pearson Correlation Analysis on the relationship between CV and CH, 
CRF.

Corneal 
Volume

CH CRF
r P r P

CV (1.0 mm) 0.513* 0.000* 0.588* 0.000*
CV (1.5 mm) 0.535* 0.000* 0.588* 0.000*
CV (2.0 mm) 0.534* 0.000* 0.585* 0.000*
CV (2.5 mm) 0.560* 0.000* 0.615* 0.000*
CV (3.0 mm) 0.557* 0.000* 0.604* 0.000*
CV (3.5 mm) 0.558* 0.000* 0.603* 0.000*
CV (4.0 mm) 0.565* 0.000* 0.603* 0.000*
CV (4.5 mm) 0.570* 0.000* 0.602* 0.000*
CV (5.0 mm) 0.574* 0.000* 0.598* 0.000*
CV (5.5 mm) 0.575* 0.000* 0.588* 0.000*
CV (6.0 mm) 0.580* 0.000* 0.585* 0.000*

CH: Corneal Hysteresis; CRF: Corneal Resistance Factor
*denotes statistically significant (P <0.05) predictor coefficients

Table 5: Pearson Correlation Analysis on the relationship between corneal 
morphological parameters and CH, CRF.

Morphological Index
CH CRF

r P r P
Central elevation (anterior) -0.136* 0.002* -0.152* 0.001*
Central elevation (posterior) -0.014 0.748 0.082 0.068
Q value (anterior) 0.136* 0.002* 0.132* 0.003*
Q value (posterior) 0.015 0.731 -0.095* 0.034*
Corneal spherical aberration 0.184* 0.000* 0.191* 0.000*
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Figure 2: The distribution of CH and CRF in different CCT groups.
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Figure 3: Box plot showing Corneal Volume (CV) distribution within the different 
diameter discs centered on the apex.
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r=-0.152*, P=0.001*) and Q value of anterior surface (CH: r=0.136*, 
P=0.002*; CRF: r=0.132*, P=0.003*), positively with corneal spherical 
aberration (CH: r=0.184*, P=0.000*; CRF: r=0.191*, P=0.000*). 
However, no significant correlations are found between CH, CRF 
and corneal morphological index on posterior corneal surface. The 
correlations between corneal biomechanical parameters (CH, CRF) 
and corneal anterior central elevation value, Q value and spherical 
aberration are also shown in Figure 4. 

Discussion
In present study, we collected normative ORA data from 240 

healthy volunteers (480 eyes), and the normative data for CH and CRF 
were consistent with other reports based on healthy eyes. As can be 
seen in Table 6, it details the normative ORA data reported during 
these years. Generally, both mean CH and CRF ranged between 9.0 
and 11.0 mm Hg, which is broadly in agreement with the data from our 
study population. 
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A) Linear regression relating CH to corneal anterior elevation, (r =-0.136, P=0.002*)
B) Linear regression relating CRF to corneal anterior elevation, (r=-0.152, P=0.001*)
C) Linear regression relating CH to corneal Q value (anterior), (r=0.136, P=0.002*)
D) Linear regression relating CRF to corneal Q value (anterior), (r= 0.132, P=0.003*)
E) Linear regression relating CH to corneal spherical aberration, (r=0.184, P=0.000*)
F) Linear regression relating CRF to corneal spherical aberration, (r= 0.191, P=0.000*)

Figure 4: Scatter plot of relationship between corneal biomechanical parameters (CH, CRF) and corneal anterior central elevation value, Q value and spherical 
aberration.
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Previous studies, including present study, indicate a strong positive 
relation between CRF and CH with CCT [23], however in agreement 
with earlier studies [24-26] that CH and CRF have been found no 
significant correlations with either age or the amount of myopia 
in present data. It has been suggested that even though CH is CCT 
independent, it was not associated with corneal swelling induced by 
soft contact lens wear [27], which may be indicative of an inherent 
biomechanical property.

In order to better understand the correlation between corneal 
biological feature and biomechanical metrics, we explored the analysis 
between corneal volume distribution and ORA metrics in this study. 
Corneal-volume distribution, which originates in 3-dimensional (3-D) 
reconstruction of the cornea, opens new horizons to evaluate corneal 
structural and biological features and has been of great utility in 
clinical practice [28,29]. Using the information from corneal-volume, 
Ambrósio et al. [29] found significant differences in corneal-volume 
distribution and percentage increase in volume between keratoconic 
and normal corneas and suggested it could serve as indices to diagnose 
keratoconus and screen refractive candidates. Recently, Mannion et al. 
[30] reported that corneal volume showed decreased in keratoconus, 
especially in central area, which has confirmed its clinical value. Corneal 
volume as a new parameter showed stable moderate correlations with 
ORA-generated biomechanical metrics in this study. The observed 
similarities of correlations with CV in all the selected corneal zones 
might be associated with the microscopic structure of stromal lamellar 
organization [30], and Hurmeric V et al. [19] has confirmed a significant 
relationship between CRF and keratocyte density in their confocal 
microscopy (CM) study. Taking all the above-mention correlations into 
the comprehensive consideration, it supposedly takes into account the 
biomechanical properties of the cornea and has been adjusted not only 
for central corneal thickness but also for corneal volume distributions, 
which enables better understanding on correlations of ORA-generated 
parameters with corneal structural and biological properties. 

It is evident from previous corneal mechanical study that corneal 
shape may be a passive consequence of several forces involving 
intraocular pressure (IOP) [31] and cohesive forces between lamellae 
[32]. Any changes in morphology of cornea often reflect their 
biomechanical variation and physiological status. Therefore, the shape 
of the cornea is not random but a function of the corneal structure, 
material properties, and biomechanical properties of the corneal tissue 
[33]. In the present study, the corneal biomechanical parameters 
(CH and CRF) showed a negative correlation with anterior central 
elevation, a positive correlation with Q value and a positive correlation 
with corneal spherical aberrations, respectively.

With regards to elevation, it can be expressed in micrometers as 
the height of the actual surface relative to a chosen reference surface 
(best-fit-sphere, BFS), which has led to a better understanding of the 
surface since created from the x, y, and z coordinates of the usual 
representation of data in a 3-D world [34]. Based on present results, a 
low CH value could be associated with a high central anterior elevation, 
which means, the higher or steeper the central corneal surface exhibits, 
the lower corneal biomechanical properties might be. On the other 
hand, there is a trend toward positive correlation between CH, CRF 
and Q value with a weak positive r value (CH: r=0.136*, P=0.002*; CRF: 
r=0.132*, P=0.003*). As is well known, most of the normal human 
corneal contour is close to aspheric and prolate shape (flattening of 
the radius of curvature from the apex toward the periphery), and 
mostly modeled by Q value [35]. When Q is negative, the surface is 
prolate; whereas, Q value towards positive, it indicates the surface 
becomes more oblate, flattening from periphery to center [36]. The 
aforementioned relationship between CH, CRF and Q value, showed 
that a more oblate (positive Q value) corneal surface would be more 
likely to have higher corneal biomechanical values, which, in turn, 
from the viewpoint of corneal structural stability, oblate corneal shape 
takes some superiority.

Moreover, the current study was also undertaken to evaluate the 
correlation of optical properties of the cornea, CH and CRF displayed 
significant positive correlations with corneal spherical aberration 
values. This result coincides with that in other previous study [9], 
which has showed CRF strongly correlates with corneal spherical-
like aberrations in keratoconus patients. However, this time the 
relationship has been found in normal population, and thus corneal 
biomechanical parameters might be considered as a new indicator for 
screening candidates for refractive surgery. In summation, all these 
correlations between corneal morphological parameters and corneal 
biomechanical metrics strengthen the same interaction, that the more 
oblate the central anterior corneal surface exhibits, corresponding to the 
higher spherical aberration values, the higher corneal biomechanical 
properties have. Actually, it is understandable that higher corneal 
biomechanical properties [37] would be more effective to avoid ectasia 
and contribute to a much more stable corneal shape.

In this study, we have investigated the relationship between corneal 
biomechanical properties and corneal shape in healthy volunteers, and 
to a certain extent, some distinctive characteristic of corneal shape 
may possess higher biomechanical properties. Further work, including 
population and longitudinal studies, are required to determine the 
clinical role of corneal biomechanics as independent predictors of 
corneal ectasia or keratoconus susceptibility.

Source Subjects (eyes)
CH (mmHg) CRF (mmHg)

Mean ± SD Range Mean ± SD Range
Luce [12] 339 9.6
Shah et al. [13] 207 10.7 ± 2.0 6.1 to 17.6 10.3 ± 2.0 5.7 to 17.1
Hager et al. [14] 156 10.6 ± 2.3 10.9 ± 2.4
Shah et al. [15] 207 10.7 ± 2.0 6.1 to 17.6
Ortiz et al. [16] 164 10.8 ± 1.5 11.0 ± 1.6
Kynigopoulos et al. [17] 49 10.68 ± 1.8 6.9 to 16.3 11.26 ± 1.79 7.4 to 16.3
Sullivan-Mee et al. [18] 71 10.2 ± 1.3
Hurmeric et al. [19] 28 10.1 ± 1.3 10.1 ± 1.8
Fontes et al. [20] 86 10.13 ± 1.75 5.95 to 14.58 10.06 ± 1.97 5.45 to 15.10
Detry-Morel et al. [21] 24 10.8 ± 1.8 7.5 to 14.5 11 ± 2 8.1 to 15.7
Plakitsi et al. [22] 99 10.4 ± 1.2 10.1 ± 1.5
Present study 480 10.38 ± 1.36 6.30 to 19.23 10.70 ± 1.59 5.57 to 19.47

Table 6: literature review on normal value and range of corneal biomechanical parameters (CH, CRF).
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