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Abstract

Considerable evidence in recent years suggests that garlic has anti-proliferative effects on various types of
cancer. Garlic contains water-soluble and oil-soluble sulfur compounds. Oil-soluble compounds (OSCs), such as
diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS) and ajoene are more effective than water-
soluble compounds in protection against cancer. DADS, a major organosulfur compound derived from garlic, can
reduce carcinogen-induced cancers in experimental animals and inhibit the proliferation of various types of cancer
cells. The mechanisms of these action of DADS include activation of metabolic enzymes that detoxify carcinogens,
suppression of the formation of DNA adducts, antioxidant effects, regulation of cell-cycle progression, induction of
apoptosis, and inhibition of angiogenesis and metastasis. These topics are discussed in depth in this review.
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Organosulfur compounds; iNOS; COX-2

Introduction
Cancer is one of the most severe health problems that human beings

are facing now. Epidemiological and experimental studies have shown
that natural or synthetic ingredients in diet may affect the development
of tumors. The daily diets made up of resveratrol, curcumin, genistein,
garlic, and capsaicin can greatly reduce the risk of cancer or slower
down the tumor progression [1]. As far back as ancient times,
Egyptians realized that eating garlic could improve human health. In
recent years, the anti-tumor effects of garlic and its active constituents
have attracted extensive attention [2]. Garlic, commonly used as a food
ingredient in cook, has been found to be associated with lower risk of
certain cancers, such as lung, colorectal, and prostate cancers [3-5].
The organosulfur compounds in garlic can inhibit the development of
cancer cell through targeting multiple signaling pathways that mediate
the cell cycle arrest, apoptosis and antioxidants of cancer cells and the
metabolism of carcinogens [6-9]. The intake of garlic is negatively
associated with the occurrence and development of tumors, including
oropharyngeal, esophageal, colorectal, laryngeal, breast, ovarian and
prostate cancer and renal cell carcinoma [5,10].

As the main component of garlic oil-soluble compounds (OSCs),
the antitumor and immunomodulatory functions of diallyl disulfide
(DADS) have attracted attention of researchers [3]. More and more
studies showed that DADS inhibits the development and progression
of tumors, and the mechanism of action may be closely related to
induction of cell cycle arrest and apoptosis, inhibition of oncogenic
pathways and elimination of free radicals and oxidants [11]. This
article updates the progression in DADS studies.

The anti-tumor effects of DADS
DADS, as one of the OSCs of garlic, has the potential of inhibiting

tumor cell proliferation, promoting tumor cell apoptosis and inhibiting
tumor cell metastasis in addition to the anti-inflammatory [12] and
antibacterial activity [13]. Importantly, as a food ingredient, DADS has
low toxicity and could be used as alternative chemotherapeutic agents
for carcinomas [14]. DADS exerts anti-cancer effects via activating
antioxidant enzymes to degrade carcinogens, inhibiting formation of
carcinogen-DNA adducts [15,16], inducing cell cycle arrest and
apoptosis [17-19], and inhibiting differentiation [20], angiogenesis,
migration and invasion [21-23], etc. For instance, DADS can reduce
35% to 60% of DNA damage induced by N-nitrosodimethylamine in
liver as assessed by the comet assay [24]. In liver cancer cells exposed
to cytotoxic chemicals, DADS can accumulate intracellular ROS and
induce the dysregulation of mitochondrial membrane potential,
triggering DNA damage-induced G2/M phase arrest and
mitochondrial apoptotic pathway [19]. Similarly, DADS can suppress
apoptosis resistance induced by DCA through inhibiting the DCA-
induced ROS production, inflammatory factors, IκBα phosphorylation,
and expression of p50 in the nucleus in a dose-dependent manner in
human barrett's epithelial cells [25,26]. On the other hand, an in vitro
study reported that the oil-soluble compound diallyl disulfide were
more potent inhibitor of human esophageal squamous cell carcinoma
by inducing p53/p21-mediated G2/M phase arrest and apoptosis via
p53/p21 and MEK-ERK pathway [27]. Recently, DADS was reported to
inhibit the invasion and metastasis of MCF-7 cells in vitro by down-
regulating p38 activity [28]. The anti-tumor effect of DADS is achieved
by regulating many complex signaling pathways. Additional studies on
DADS are still needed.

The anti-tumor mechanisms of DADS
Garlic organosulfur compounds were tested for their anticancer

potential in many isolated cell systems. However, the mechanisms
underlying the anticancer effects of this class of compounds are not
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fully understood [29]. Several mechanisms have been proposed,
including antioxidant activity, cell growth inhibition, effective
stimulation of the immune response, and induction of apoptosis,
which coincides with an increase in the percentage of cells blocked in
the G2/M phase of the cell cycle [30]. In recent years, the studies have
shown that DADS can suppress inflammation and apoptosis by
inhibiting the ROS and NF-κB signaling pathways [10].

Modulation of cytochrome p450-dependent monooxygenase
by DADS

Cytochrome p450-dependent monooxygenase plays an important
role in the metabolism of drugs, steroids, fat soluble vitamins,
carcinogens, pesticides and other chemicals [31]. Carcinogenesis is a
multistage and complex process that requires binding of a chemical
carcinogen to DNA and formation of DNA adduct. Blockage of DNA
adducts is an essential and important early step in prevention of
carcinogenesis [32]. It’s well-known that chemical carcinogens are
often required to modulate metabolic activity through cytochrome
p450-dependent monooxygenase and acceleration of carcinogen
detoxification via induction of phase-I enzymes [33,34]. Animal
experiments have also confirmed that DADS can promote the
degradation of carcinogens by regulating the activity of cytochrome
p450-dependent monooxygenase or activating the metabolism of
phase-II enzymes [35]. For instance, Nkrumah-Elie and his colleagues
had found that DADS can inhibit the carcinogenesis of BP which
required metabolic activation to display its full carcinogenic potential
by the cytochrome p450 pathway [36], via modulating the activation of
multiple phases I and II enzymes, including CYP1A1, CYP1A2,
CYP1B1, and epoxide enzymes in HepG2 cells [37-39]. Many studies
have indicated that inhibition of CYP2E1 (cytochrome p450 2E1) with
DADS leads to significant decrease in the single strand DNA damage,
which can result in significant reduction in the DNA adduct level
[16,40,41]. Not all of the subunits of cytochrome p450-dependent
monooxygenase are inhibited by DADS, but DADS can degrade the
substance closely associated with cyclophosphamide-induced
progressive toxicity and oxidative stress by significantly up-regulation
of CYP2B1/2 and CYP3A1 [42,43]. Therefore, the role of DADS in
cytochrome p450 is also needed to be confirmed by a large number of
studies.

Promotion of the antioxidant response by DADS
The term ROS encompasses a wide range of molecules, including

superoxide (O2-), hydrogen peroxide (H2O2), hydroxyl radical, and
peroxynitrite [44]. Redox control is achieved through the cooperative
and coordinated action of antioxidant enzymes, such as catalase and
low-molecular-weight antioxidant compounds, such as glutathione
(GSH) [45]. Apart from being directly implicated in carcinogenesis,
ROS are strongly involved in tumor proliferation, survival, and
resistance to chemotherapeutic agents [46]. On the one hand, the
constitutive high level of ROS in some cancer cells appears to promote
their proliferation. Additional amounts of ROS above a certain
threshold may further cause cell-cycle arrest and/or apoptosis [47].
Recent studies have shown that DADS achieves anti-tumor effects by
activating antioxidant responses via inhibiting the expression of ROS
[15]. The progressive toxicity and oxidative stress induced by DADS
play an important role in the pathogenesis of cancer through changing
the structure of chromosomes [48,49]. Accordingly, it was observed
that NADPH oxidase and ROS play a pivotal role in DADS-induced
apoptosis [50]. DADS caused pronounced intracellular ROS

accumulation, phosphorylation, and expression of Bcl-2 to cause
apoptosis through the activation of JNK and inactivation of ERK1/2
and Akt.

The effects of DADS on IL-1β-induced intracellular ROS production
and lipid peroxidation were detected and the proteins expression of
Nrf2, Bax, Bcl-2, caspase-3, total and phosphorylated JNK, and p38
MAPKs were evaluated [26]. Nuclear transcriptional factor 2 (Nrf2) is
an activator of the antioxidant responsive element (ARE) [51]. In
DMBA/TPA-induced cancer cells, the nuclear localization of Nrf2 is
reduced, leading to the inhibition of the activation of ARE, resulting in
decreased activity of the antioxidant enzymes which activity is essential
to antioxidant responses [52]. However, DADS is capable to inhibit the
tumorigenesis and progression of TPA-induced tumor via promoting
the localization of Nrf2 by up-regulating the expression of p21, or
inhibiting the degradation of Nrf2 [15]. Therefore, Nrf2 is critical for
the inhibition of mouse skin cancer by DADS and can become a
promisinglytherapeutic target. However, the mechanisms that DADS
inhibit the activation of oncogenic factors and the expression of proto-
oncogenes activated by carcinogenic factors are still not very clear,
which requires a large number of studies to clarify.

Induction of G2/M phase arrest by DADS
Studies have confirmed that the anti-proliferative activity of DADS

is associated with a decrease in the percentage of cells in the G1 phase
and a phase G2/M arrest in many human cancer cells [53], but the
mechanisms are not very clear. Previous studies indicated that DADS
induces G2/M phase arrest in MGC803 cells [54]. High
phosphorylation of checkpoint kinase 1(Chk1), low phosphorylation
of Chk2 and the low expression of Cdc25c, 14-3-3 and cyclin B1 are
closely associated with the inactivation of G2/M checkpoint [55].
However, some researchers found that the overexpression of Chk1, but
not Chk2, exhibited increased accumulation in G2/M phase [56]. In
addition, DADS can cause high phosphorylation of Cdc2 and decrease
the expression of Cdc25c protein that is critical in G2/M arrest [57].
Actually, Cdc2 activation depends on the dephosphorylation of Tyr15
by Cdc25c [27]. However, p53 and the p53-responsive gene, p21, can
decrease cyclin B1 and Cdc2 expression by inhibiting either Cdc2
kinase activity or blocking the interaction of cyclin B1-Cdc2 complexes
with their substrates, leading to G2/M-phase cell cycle arrest, which
indicated that p53/p21 signaling pathway may be the mechanism
underlying G2/M phase arrest [58-60]. In addition, DADS can induce
G2/M phase cell cycle arrest by activating p38 [57], and suppressing
the ATR/Chk1/Cdc25C/cyclinB1 signaling pathway by specifically
activating Chk1 [61].

DNA damage has been reported to induce activation of cell cycle
arrest to enhance cellular DNA repair capacity [62]. Yang and other
researchers found that DADS could induce the DNA damage through
up-regulating ROS protein levels in skin cancer cells, and then activate
p21, one of the downstream genes of p53, to affect G2/M regulators,
including Wee l kinase, Cdc25c and Cdc2 (p34), etc. Simultaneously,
p53 can also activate the mitochondrial apoptotic pathway by
activating caspase-9, caspase-3 and PARP, thereby promoting apoptosis
in skin cancer cells [62]. Recent studies have verified that DADS-
induced DNA damage can cause specific phosphorylation of the
Ser345 site of the Chk1 protein and interact with the downstream
effectors that induce G2/M phase arrest in PaCa-2 MIA cancer cells
[19]. The phosphorylation of Chk1 is able to induce the
phosphorylation of Ser216 site of the Cdc25c that ultimately results in
the proteasome degradation of Cdc25c [63]. The degradation of
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Cdc25c protein significantly inhibits the formation of the complex of
cell protein dependent kinase, including Cdc2/cyclin B1 (a crucial
driver of phase G2/M transitions), etc [64]. Ling et al. found that
DADS could increase the rate of phase G0/G1 cells and accordingly
reduce the rate of phase S cells in leukemiacells HL-60 treated with
different concentrations of DADS [20]. But the mechanisms need to be
further elucidated.

Activation of the apoptotic pathways by DADS
Apoptosis is a phenomenon of programmed cell death in normal

cells. Apoptosis pathways contain the death receptor-mediated
extrinsic pathway [65], the intrinsicmitochondrial pathway [65],
granzyme B-mediated pathway [66], and the endoplasmic reticulum
stress-mediated pathway [67]. The protein closely associated with
apoptosis mainly contains four important protein molecules involved
in apoptotic pathways: caspases (the proteases which execute cell
death), adapter proteins (caspase activators), Bcl-2 family proteins and
inhibitors of apoptosis proteins (IAPs) [68]. In the experiment of
apoptotic cell models established by pretreatment of 10 µM DADS in
HeLa cells with 2Gy high-LET carbon beams, some researchers found
that DADS can obviously promote the activation of apoptosis signal
pathway via up-regulating the balance between Tap73
(transcriptionally active p73 isoforms) and ΔNp73 (N-terminally
truncated anti-apoptotic p73 isoforms). At the same time, DADS can
deregulate important molecules involved in internal and external
apoptotic pathways, such as apoptotic protease-activating
factor-1(APAF1), IL10 and FASLG [69]. Among them, APAF1 plays a
key role in the mechanism of apoptosis and can activate the caspase
cascade reaction responsible for the apoptotic effector phase [70]. In
addition, IL-10 in serum induces apoptosis of T cells by activating the
caspase-8 pathway by Fas signaling [71]. New research confirms that
receptor for advanced glycation endproduct (RAGE) can specifically
deliver DADS into three negative breast cancer cells and significantly
enhance the cytotoxicity of DADS by reducing anti-apoptotic proteins
and upregulation of pro-apoptotic protein [72]. The researchers have
found that DADS-RAGE-SLN can be obviously absorbed by MDA-
MB231 and upregulate the expression of pro-apoptotic proteins (Bax,
caspase-3, and caspase-9) and downregulate the expression of anti-
apoptotic proteins, such as Bcl-2 family (Bcl-2, Bcl-xl, Mcl-1) and
survivin through the experiment of establishing the model of solid
lipid nanoparticles with DADS-loaded solid lipid location
nanoparticles (DADS-SLN), and DADS-loaded solid lipid location
nanoparticles with the RAGE positioning (DADS-RAGE-SLN) [72]. In
fact, caspase-3 plays an important role as the central effector for
initiation of apoptosis [73]. DADS promoted the apoptosis of ECA109
cells by downregulating Bcl-2 mRNA expression and upregulating the
Bax expression in a dose-dependent manner, thus increasing the Bax/
Bcl-2 ratio, leading to a pro-apoptotic process via caspase-3 pathway.
In one word, DADS controls cell apoptosis by activating caspase-3,
upregulating Bax/Bcl-2 ratio and downregulating the MEK-ERK
signaling pathway [19,27,41,74].

Regulation of the miRNAs by DADS
MicroRNAs (miRNAs) are a class of post-transcriptional regulators

that negatively regulate plant development, signal transduction, and
response to abiotic stresses and pathogen invasions [75-77]. Recently,
numerous studies found that DADS could activate/or inhibit the
expression of some miRNAs to regulate cell growth, cell cycle
progression and apoptosis of human cancer cells [32,78]. For example,

miR-200b and miR-22 synergistically induces apoptosis of human GCs
(gastric cancer cells) by enhancing theeffects of DADS in vitro and in
vivo via the Wnt-1 signaling pathway [79]. However, different miRNAs
in different contexts are aberrantly expressed in various cancers, such
as prostatic cancer, esophageal squamous cell carcinoma, breast cancer,
and gastric cancer. For example, the miR-22 shows different effects in
these cancers [80-83]. DADS can silence HIF-1α (hypoxia inducible
factor 1α) via increasing expression of miR-22 to repress VEGF
(vascular endothelial growth factor) expression to block angiogenesis,
leading to the disruption of cancer progression [79,84]. The up-
regulation of miR-22 induced by DADS may post-transcriptionally
target cyclin A2 and CDKN1A (cyclin-dependent kinase inhibitor 1A)
to arrest the cell cycle in G0/G1 phage in CRC and liver cancer cells,
respectively [85,86]. The recent researches have confirmed that DADS
induces apoptosis of SGC-7901 cells by upregulation of miR-34a, via
inhibition of the PI3K-Akt signaling pathway [87]. In addition, DADS
induced neovasculogenesis through the modulation of crucial
signaling pathways and the suppression of miR 221 via mediating the
upregulation of c-kit expression and the phosphorylation (activation)
of the Akt signaling cascade in human EPCs (endothelial progenitor
cells) [32]. However, the role of DADS on miRNAs is still in infancy
and needs to be studied by researchers.

Inhibition of tumor metastasis by DADS
Epithelial-mesenchymal transition (EMT) is an important

phenomenon in the development of tumorigenesis, and is also an
important mechanism for the invasion of tumor cells and secondary
metastasis [88]. The cells with EMT are present certain anti-apoptotic
activity and drug resistance [89]. The signaling pathways involved in
EMT include TGF-β, Wnt, Hedgehog, Notch, ILK, and uPAR
(urokinase-type plasminogen activator receptor) [90-95]. A recent
study has revealed that DADS induces the reversal of the EMT and
inhibits cell growth by inactivating the β-catenin signaling pathway in
breast cancer cells [96]. Interestingly, DADS inhibits the occurrence of
EMT in tumor cells by inhibiting multiple EMT-related signaling
pathways.

Previous researches demonstrated that the DADS-induced
downregulation of uPAR results in the inhibition of the ERK/Fra-1
pathway in addition to gastric cancer cell migration and invasion [97].
DADS downregulates LIM kinase-1 (LIMK1), vimentin and EMT-
related proteins (Slug, Snail), and upregulates E-cadherin and TIMP-3
(tissue inhibitor of metalloproteinase-3) expression which are the signs
of the occurrence of EMT, suggesting that DADS may reverse EMT by
downregulating LIMK1 [97,98]. DADS suppresses actin cytoskeletal
remodeling and cell pseudopodia formation, and the occurrence of
EMT via down regulating LIMK1 expression to decrease the
expression of vimentin, CD34, and Ki-67; increase E-cadherin
expression; and impede cancer cell proliferation, angiogenesis, and
EMT alteration, thereby inhibiting invasion and metastasis [98-100].
Actually, the effects of DADS on E-cadherin and vimentin expression
may result in blockage of the ERK/Fra-1 pathway by inhibition of
LIMK1 expression and activity.

MMPs (matrix metalloprotease) have many physiological functions
in tumor metastasis, via degrading extracellular matrix and basement
membrane, which then caused the integrity of basement membrane to
be localized for infiltration and distant metastasis [101]. Thus
inhibition of MMPs activity could prevent or suppress the tumor
metastasis [102,103]. Park et al. have found that DADS significantly
inhibited cell motility and invasive activity by decreasing MMP activity
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and tightening TJs (tight junctions) [104]. The anti-invasive activity of
DADS was associated with inhibition of MMP-2 and MMP-9 activities
through elevation of TIMPs expression, and increased TIMPs/MMPs
ratio is a key factor in regulation of the anti-metastatic process [104].
Recently, the DADS was confirmed that it could inhibit the invasion
and migration of MCF-7 cells in a dose-dependent manner by down-
regulated the expression of vimentin and MMP-9 and up-regulated E-
cadherin expression in the cells via down-regulating the activity of p38
which activates the TGF-β signaling pathway [15]. The recent research
found that DADS dose-dependently inhibited HIF-1α transcriptional
activity and hypoxia-induced hematogenous metastasis of MDA-
MB-231 cells rather than inhibition of HIF-1α mRNA expression or
ubiquitin proteasome degradation [23]. In addition, DADS can alter
cell morphology and cell motility via inhibiting the activation of
PI3K/Akt signal pathway, and then inhibited the tumor migration and
invasion [105]. However, the inhibition by DADS on tumor metastasis
is a complex process, and it is not limited to affecting one key molecule
related to tumor metastasis, more studies are needed.

The inhibition of angiogenesis by DADS
Angiogenesis is essential for proper tissue development, but

neovascularization can facilitate the progression of pathological
conditions, such as tumor growth and survival. Aberrant
neovascularization is an essential pathogenic mechanism in many
human diseases, including tumor growth and survival
[106,107]. Tumor angiogenesis results in abnormally formed, tortuous,
and poorly organized vessels that exhibit altered permeability
[108,109]. Previous researches have confirmed that the aberrant
activated TNF-α receptor signaling is associated with coordination of
tumor angiogenesis and metastasis [110]. DADS can inhibit the CCL2
(CC chemokine-2) releasing induced by TNF-α to play an anti-
angiogenesis role in MDA-MB-231 cells. The decreasing level of CCL2
attenuates the phosphorylation of ERK which is a key molecule of the
MAPK signaling pathway, leading to the weakening of angiogenesis in
tumor cells [111]. Activation of ERK and Akt signaling can promote
the angiogenesis of HCC (hepatocellular carcinoma) [112]. Recently,
DADS has been shown to reduce migration, invasion, and
angiogenesis of human colon cancer in part mediated by NF-κB,
ERK1/2, JNK1/2, and p38 signaling [113]. Xiao et al. found that the p-
Akt protein expression decreased with the
increasing DADS concentration[114], and led to attenuating the pro-
angiogenesis effect of VEGF. The effect of DADS on angiogenesis may
be related to the regulation of metalloproteinase activation which is
essential for the pro-angiogenic growth factors available to their
receptors [115].

However, pervious study found that DADS and DATS dose-
dependently enhance the neovasculogenesis of human EPCs
(endothelial progenitor cells), in part through the up-regulation of c-
kit protein as well as the activation of the PI3K/Akt/NF-κB cascades
and MAPK/ERK pathway [32]. DADS significantly induces the
phosphorylation of the Akt, and I-κBα proteins in human EPCs thus
activating the PI3K/Akt and NF-κB signaling pathways. Meanwhile,
DADS also augment the phosphorylation of the GSK-3β protein and
stabilize its downstream target β-catenin protein through the
suppression of the phosphorylated β-catenin level, resulting in the
inactivation of β-catenin signaling pathway [40,114]. Based on the pro-
angiogenic effects of DADS in human EPCs, whether or not the DADS
has the same effect in tumor still needs further researches.

The inhibition of inflammation by DADS
Inflammation is a main component of the host immune response to

infection, and can have both protective and pathogenic roles.
Some pro-inflammatory cytokines play pathogenic roles during
tumorigenesis [116]. Particularly, chronic inflammation creates and
maintains a tumor microenvironment where there is migration and a
relative abundance of immune inflammatory cells and cytokines [117].
For example, studies have shown that tumor necrosis factor α (TNF-α),
IL-8 and IL-10 levels are higher in patients with inflammation-
associated cancer [118]. DADS has been shown to have both
immunomodulatory and anti-inflammatory effects in several types of
cancer [7,119].

Although a recent research paper reported that the anti-
inflammatory activity of garlic OSCs help reduce TNF-α, IL-6, and
iNOS [120], whether DADS can suppress inflammatory bowel disease
and the molecular mechanisms haven’t been investigated yet [116].
Many studies has been shown that DADS could suppress nitric oxide
production through inhibiting the activation of NF-κB (nuclear factor
kappa B), and attenuating expression of inducible nitric oxide synthase
(iNOS) and blocking the nuclear translocation of NF-κB
[121]. Interestingly, ROS are recognized as an important link between
inflammation and cancer, who can induce tumor cell proliferation and
mutagenesis and inhibits apoptosis via activating various signaling
pathways, such as NF-κB signaling pathway. Constitutive NF-κB
activation in inflammatory bowel disease is associated with an
increased risk of developing colorectal cancer [122]. The recent
research indicated that DADS exerted its protective effects against
colorectal tumors by suppressing inflammation in the colitis-induced
colorectal cancer AOM/DSS mouse model [123]. The suppressive effect
of DADS on NF-κB activity is likely due to its ability to inhibit the
nuclear translocation of the phosphorylated NF-κB heterodimeric Rel-
A (P65S536)-p50 complex. Meanwhile, DADS can induce the
inactivation of GSK-3(α/β) that can activate the NF-κB signaling
cascade by enhancing the transcriptional activity of NF-κB in the
nucleus by blocking its phosphorylation of serine residue 21/9
[124,125] . Previous studies have confirmed that DADS can obviously
decrease ROS production as a natural antioxidant both in vivo and in
vitro and pro-inflammatory cytokines levels by inhibiting the
phosphorylation of IκBα and the nuclear translocation of p65 and p50
to inactivate the NF-κB signaling pathways [126]. Subsequent
researches have verified that DADS can inhibit the expression of iNOS
and cyclooxygenase (COX-2) in activated RAW 264.7 cells. Due to the
inhibition of signal transduction for the iNOS and COX-2 gene
expression and the direct inhibition of iNOS and COX-2, the
production of NO and PGE2 (prostaglandin E2) is significantly
inhibited. NO, PGE2, and related enzymes have been implicated as
important mediators in the inflammation process. DADS has anti-
inflammatory activity, including the reduction of pro-inflammatory
cytokines, such as TNF-α, a key player in the development of tumors.
The concrete anti-inflammatory mechanism of DADS does not
elucidate very clearly, which need to further study.

Conclusions
As a major component of garlic, more and more evidence indicates

that DADS could have broad-spectrum anti-tumor effects, but has no
toxic effects in healthy cells. The mechanism of action of DADS is
closely related with antioxidants, regulation of cell-cycle arrest,
induction of apoptosis and inhibition of angiogenesis and invasion
(Figure 1).
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Figure 1: Schema pattern of molecular mechanisms of DADS on
anti-cancer effects; DADS inhibits the development and progression
of tumors, and the mechanism of action may be closely related to
induction of cell cycle arrest and apoptosis, inhibition of oncogenic
pathways and elimination of free radicals and oxidants, which
achieved by regulating many complex signaling pathways, such as
inhibiting the ROS, PI3K/Akt, MAPK and NF-κB signaling
pathways.

However, the applications of DADS are only demonstrated in vitro
and in vivo experiments on cancer cell lines and animals. It is
implemented into clinical practice thus far because the potential use of
DADS in the clinical treatment of cancer has not been excavated. The
high concentrations of DADS used in animal studies are unlikely to be
physiologically achievable in humans if such compounds are
considered for clinical applications, and how to modify the DADS
construction to get the clinical effects of cancer treatment is a
challenge. Nevertheless, base on the existing studies, it indicates that
DADS may be a prospective agent for multi-targeted prevention
and/or treatment against human cancer.
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