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According to Albert’s definition, “a prodrug is the inactive form 
of its parent drug [1].” However, there are few prodrugs that are active 
before undergoing enzymatic or chemical interconversion themselves. 
For example, aspirin, acetylsalicylic acid, first made by Felix Hoffmann 
at Bayer in 1897, is a synthetic prodrug of salicylic acid, however, it was 
proven that aspirin inhibits Cyclooxygenase (COX-1) via binding to its 
serine to exert a direct anti-inflammatory activity [2]. This terminology 
has created widespread confusion among many who study prodrugs. 
The following discussion aims to clarify the terms associated with 
prodrugs, understand the history in which the terms came about, and 
suggest clearer terminology that can be used.

Prodrug is a term that was first introduced in 1958 by Albert in 
his article in Nature to signify a pharmacologically inactive chemical 
moiety that can be used to temporarily alter the physicochemical 
properties of a drug to increase its usefulness and decrease its associated 
toxicity. Others such as Harper also promoted the concept but used the 
term drug latentiation. The use of the term generally implies a chemical 
device by which a drug is linked to a chemical promoiety via a covalent 
bond. Prodrugs can be enzymatically or chemically converted to the 
parent drug once their goal is achieved, followed by rapid excretion 
of the released promoiety group. A prodrug is designed to overcome 
the barriers to utility through a chemical approach rather than a 
formulation approach. Thus, it is an alternative to the redesign of the 
drug molecule or what is commonly called an analog approach [1-8].

Prodrug design can be exploited to: (1) improve active drug 
solubility and consequently bioavailability; dissolution of the drug 
molecule from the dosage form may be a rate-limiting step to 
absorption, (2) increase permeability and absorption; membrane 
permeability has a significant effect on drug efficacy, and (3) modify 
the distribution profile; before the drug reaches its physiological target 
and exerts the desired effect. The rationale behind the use of prodrugs 
is to optimize the Absorption, Distribution, Metabolism, and Excretion 
Properties (ADME). In addition, the prodrug strategy has been used to 
increase the selectivity of drugs for their intended target [9-13]. Many 
prodrugs discovered a long time ago are still in clinical use.

Methenamine was discovered in 1899 by Schering as a prodrug 
that delivers the antibacterial formaldehyde to treat urinary tract 
infections. Acetylsalicylic acid (aspirin) was marketed in 1899 as a 
less irritating replacement of sodium salicylate to treat inflammation. 
Prontosil was discovered in 1935 as the first sulfa drug and a prodrug 
of sulfanilamide which ushered in the era of sulfonamide antibiotics. 
Diacetylmorphine was synthesized in 1874 and subsequently marketed 
as an over-the-counter drug in 1895 under the name heroin and 
was used as a morphine substitute for treating coughs and for the 
treatment of cocaine and morphine addictions. It is still available by 
prescription in the United Kingdom and other European countries. 
However, the discovery of the rapid metabolism of heroin into 
morphine eventually became a historic blunder for Bayer. Acetanilide 
was used as early as 1886 as a pain killer, but its activity was a result 
of its metabolism to acetaminophen (paracetamol). Phenacetin, 
which was removed from the market due to renal toxicity, exhibited 
its activity due to O-dealkylation to acetaminophen. Acetanilide and 

phenacetin were originally not designed as prodrugs, but their nature 
as prodrugs was determined in hindsight. Other such examples include 
codeine being partially metabolized to morphine, phenylbutazone to 
oxyphenylbutazone, primadone to phenobarbitone, and diazepam to 
desmethyldiazepam and oxazepam. More examples of such hindsight 
recognition are the prodrugs of morphine, heroin and codeine [14]. 

In these examples such as codeine, phenylbutazone and etc., the 
prodrugs and their metabolites are active drugs. Albert states in the 
1985 edition of his Selective Toxicity book,“I apologize for having 
invented the term, now too widely used to alter, for literary purists tell 
me they would have preferred ‘pre-drug’ [13].” Albert essentially gave 
the prodrug concept legitimacy as a tool to be used in drug discovery 
to solve issues with problematic drugs. One of the first examples of 
the application of a prodrug solution to a problematic drug was the 
work performed at Parke-Davis in the 1950s with the antibiotic 
chloramphenicol. Chloramphenicol is sparingly water-soluble and has 
a bitter taste. Parke-Davis developed, after launching chloramphenicol, 
two prodrugs chloramphenicol hemisuccinate sodium salt for IV, IM, 
and ophthalmic administration and chloramphenicol palmitate as a 
suspension for pediatric oral use [15,16]. Paul Ehrlich, in 1908 coined 
the term “magic bullet” to describe drugs or therapies that selectively 
acted at their site of action with minimal exposure to the rest of the 
body. In addition, he also studied the role of drug metabolism in 
activating drugs in his seminal work on arsenicals. Effectively, Ehrlich’s 
magic bullet concept and his work on arsenicals were the precursors to 
today’s ADEPT, GDEPT, and prodrugs in general [17-21].

In our lab, we have studied a large number of novel prodrugs 
that were designed based on enzyme models. Some of these prodrugs 
such as amoxicillin and cephalexin prodrugs were found to be active 
before interconversion to their parent drugs. Among those are aza-
nucleoside derivatives for the treatment of myelodysplastic syndromes, 
paracetamol as a pain killer, anti-malarial atovaquone, anti-Parkinson 
dopamine, anti-viral acyclovir, antihypertensive atenolol, antibacterial 
cefuroxime, anti-psoriasis monomethyl maleate, and phenylephrine as 
decongestant. In vitro kinetic results at a wide pH range have shown 
promising results for obtaining novel prodrugs that may have enhanced 
dissolution, membrane penetration, and thus better bioavailability 
than their corresponding parent drugs [22-56]. In conclusion, based on 
the examples discussed, precise terminology can be drawn as follows: 
inactive prodrugs should be named predrugs and active prodrugs 
should be named drug-predrugs.  
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